共查询到20条相似文献,搜索用时 15 毫秒
1.
Roger Cai Xiang Soh Guan Heng Tay Wen Siang Lew James Cheow Lei Lee 《Reports of Practical Oncology and Radiotherapy》2018,23(5):413-424
Aim
To identifying depth dose differences between the two versions of the algorithms using AIP CT of a 4D dataset.Background
Motion due to respiration may challenge dose prediction of dose calculation algorithms during treatment planning.Materials and methods
The two versions of depth dose calculation algorithms, namely, Anisotropic Analytical Algorithm (AAA) version 10.0 (AAAv10.0), AAA version 13.6 (AAAv13.6) and Acuros XB dose calculation (AXB) algorithm version 10.0 (AXBv10.0), AXB version 13.6 (AXBv13.6), were compared against a full MC simulated 6X photon beam using QUASAR respiratory motion phantom with a moving chest wall. To simulate the moving chest wall, a 4 cm thick wax mould was attached to the lung insert of the phantom. Depth doses along the central axis were compared in the anterior and lateral beam direction for field sizes 2 × 2 cm2, 4 × 4 cm2 and 10 × 10 cm2.Results
For the lateral beam direction, the moving chest wall highlighted differences of up to 105% for AAAv10.0 and 40% for AXBv10.0 from MC calculations in the surface and buildup doses. AAAv13.6 and AXBv13.6 agrees with MC predictions to within 10% at similar depth. For anterior beam doses, dose differences predicted for both versions of AAA and AXB algorithm were within 7% and results were consistent with static heterogeneous studies.Conclusions
The presence of the moving chest wall was capable of identifying depth dose differences between the two versions of the algorithms. These differences could not be identified in the static chest wall as shown in the anterior beam depth dose calculations. 相似文献2.
Employment of β-decaying radionuclides, used in many fields (industrial, clinical, research) requires a correct assessment of the operators’ radiological exposure. Usually, in the dosimetric evaluation, the contribution coming from Internal Bremsstrahlung (IB) accompanying the β-decay is not kept into account; nevertheless, this negligibility does not always appear justified, at least for high-energy β-emitters. By means of Monte Carlo (MC) simulations, we showed how the contribution from IB photons is noteworthy for the evaluation of the overall radiation absorbed dose in the case of 90Y source. We evaluated an increase of the absorbed doses, respectively for a point source and the considered receptacles, up to + 34% and + 60% or + 15% and + 28%, depending on the adopted model of IB spectrum. These results demonstrate the relevance of IB phenomenon in radiation protection estimations and suggest extending future theoretical and experimental studies to other β-decaying radionuclides. 相似文献
3.
《Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)》2016,32(10):1216-1224
The application of nanoparticles (NPs) in radiotherapy is an increasingly attractive technique to improve clinical outcomes. The internalisation of NPs within the tumour cells enables an increased radiation dose to critical cellular structures. The purpose of this study is to investigate, by means of Geant4 simulations, the dose enhancement within a cell population irradiated with a 150 kVp photon field in the presence of a varying concentration of tantalum pentoxide (Ta2O5) NP aggregates, experimentally observed to form shells within tumour cells. This scenario is compared to the more traditionally simulated homogeneous solution of NP material in water with the same weight fraction of Ta2O5, as well as to a cell population without NPs present. The production of secondary electrons is enhanced by increased photoelectric effect interactions within the high-Z material and this is examined in terms of their kinetic energy spectra and linear energy transfer (LET) with various NP distributions compared to water. Our results indicate that the shell formation scenario limits the dose enhancement at 150 kVp. The underlying mechanism for this limit is discussed. 相似文献
4.
New version 13.6.23 of the electron Monte Carlo (eMC) algorithm in Varian Eclipse™ treatment planning system has a model for 4 MeV electron beam and some general improvements for dose calculation. This study provides the first overall accuracy assessment of this algorithm against full Monte Carlo (MC) simulations for electron beams from 4 MeV to 16 MeV with most emphasis on the lower energy range. Beams in a homogeneous water phantom and clinical treatment plans were investigated including measurements in the water phantom. Two different material sets were used with full MC: (1) the one applied in the eMC algorithm and (2) the one included in the Eclipse™ for other algorithms. The results of clinical treatment plans were also compared to those of the older eMC version 11.0.31. In the water phantom the dose differences against the full MC were mostly less than 3% with distance-to-agreement (DTA) values within 2 mm. Larger discrepancies were obtained in build-up regions, at depths near the maximum electron ranges and with small apertures. For the clinical treatment plans the overall dose differences were mostly within 3% or 2 mm with the first material set. Larger differences were observed for a large 4 MeV beam entering curved patient surface with extended SSD and also in regions of large dose gradients. Still the DTA values were within 3 mm. The discrepancies between the eMC and the full MC were generally larger for the second material set. The version 11.0.31 performed always inferiorly, when compared to the 13.6.23. 相似文献
5.
《Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)》2016,32(11):1444-1452
This study provides the first proof of the novel application of bismuth oxide as a radiosensitiser. It was shown that on the highly radioresistant 9L gliosarcoma cell line, bismuth oxide nanoparticles sensitise to both kilovoltage (kVp) or megavoltage (MV) X-rays radiation. 9L cells were exposed to a concentration of 50 μg.mL−1 of nanoparticle before irradiation at 125 kVp and 10 MV. Sensitisation enhancement ratios of 1.48 and 1.25 for 125 kVp and 10 MV were obtained in vitro, respectively. The radiation enhancement of the nanoparticles is postulated to be a combination of the high Z nature of the bismuth (Z = 83), and the surface chemistry. Monte Carlo simulations were performed to elucidate the physical interactions between the incident radiation and the nanoparticle. The results of this work show that Bi2O3 nanoparticles increase the radiosensitivity of 9L gliosarcoma tumour cells for both kVp and MV energies. Monte Carlo simulations demonstrate the advantage of a platelet morphology. 相似文献
6.
《Reports of Practical Oncology and Radiotherapy》2020,25(2):233-240
AimThe aim of this study was to characterize the radiation contamination inside and outside the megavoltage radiotherapy room.BackgroundRadiation contamination components in the 18 MV linac room are the secondary neutron, prompt gamma ray, electron and linac leakage radiation.Materials and MethodsAn 18 MV linac modeled in a typical bunker employing the MCNPX code of Monte Carlo. For fast calculation, phase-space distribution (PSD) file modeling was applied and the calculations were conducted for the radiation contamination components dose and spectra at 6 locations inside and outside the bunker.ResultsThe results showed that the difference of measured and calculated percent depth-dose (PDD) and photo beam-profile (PBP) datasets were lower than acceptable values. At isocenter, the obtained photon dose and neutron fluence were 2.4 × 10−14 Gy/initial e° and 2.22 × 10-8 n°/cm2, respectively. Then, neutron apparent source strength (QN) value was found as 1.34 × 1012 n°/Gy X at isocenter and the model verified to photon and neutron calculations. A surface at 2 cm below the flattening filter was modeled as phase-space (PS) file for PDD and PBP calculations. Then by use of a spherical cell in the center of the linac target as a PS surface, contaminant radiations dose, fluence and spectra were estimated at 6 locations in a considerably short time, using the registered history of all particles and photons in the 13GB PSD file as primary source in the second step.ConclusionDesigning the PSD file in MC modeling helps user to solve the problems with complex geometry and physics precisely in a shorter run-time. 相似文献
7.
ObjectivesTo estimate the organ equivalent doses and the effective doses (E) in patient undergoing percutaneous transhepatic biliary drainage (PTBD) examinations, using the MCNP5 and PCXMC2 Monte Carlo-based codes.MethodsThe purpose of this study is to estimate the organ doses to patients undergoing PTBD examinations by clinical measurements and Monte Carlo simulation. Dose area products (DAP) values were assessed during examination of 43 patients undergoing PTBD examination separated into groups based on the gender and the dimensions and location of the beam.ResultsMonte Carlo simulation of photon transport in male and female mathematical phantoms was applied using the MCNP5 and PCXMC2 codes in order to estimate equivalent organ doses. Regarding the PTBD examination the organ receiving the maximum radiation dose was the lumbar spine. The mean calculated HT for the lumbar spine using the MCNP5 and PCXMC2 methods respectively, was 117.25 mSv and 131.7 mSv, in males. The corresponding doses were 139.45 mSv and 157.1 mSv respectively in females. The HT values for organs receiving considerable amounts of radiation during PTBD examinations were varied between 0.16% and 73.2% for the male group and between 1.10% and 77.6% for the female group. E in females and males using MCNP5 and PCXMC2.0 was 5.88 mSv and 6.77 mSv, and 4.93 mSv and 5.60 mSv.ConclusionThe doses remain high compared to other invasive operations in interventional radiology. There is a reasonable good coincidence between the MCNP5 and PCXMC2.0 calculation for most of the organs. 相似文献
8.
9.
10.
PurposeThis study reports a sensitivity enhancement of gold-coated contact lens-type ocular in vivo dosimeters (CLODs) for low-dose measurements in computed tomography (CT).MethodsMonte Carlo (MC) simulations were conducted to evaluate the dose enhancement from the gold (Au) layers on the CLODs. The human eye and CLODs were modeled, and the X-ray tube voltages were defined as 80, 120, and 140 kVp. The thickness of the Au layer attached to a CLOD ranged from 100 nm to 10 μm. The thickness of the active layer ranged from 20 to 140 μm. The dose ratio between the active layer of the Au-coated CLOD and a CLOD without a layer, i.e., the dose enhancement factor (DEF), was calculated.ResultsThe DEFs of the first 20-μm thick active layer of the 5-μm thick Au-coated CLOD were 18.4, 19.7, 20.2 at 80, 120, and 140 kVp, respectively. The DEFs decreased as the thickness of the active layer increased. The DEFs of 100-nm to 5-μm thick Au layers increased from 1.7 to 5.4 for 120-kVp X-ray tube voltage when the thickness of the active layer was 140 μm.ConclusionsThe MC results presented a higher sensitivity of Au-coated CLODs (∼20-times higher than that of CLODs without a gold layer). Au-coated CLODs can be applied to an evaluation of very low doses (a few cGy) delivered to patients during CT imaging. 相似文献
11.
Monte Carlo (MC) modeling is a valuable tool to gain fundamental understanding of light-tissue interactions, provide guidance and assessment to optical instrument designs, and help analyze experimental data. It has been a major challenge to efficiently extend MC towards modeling of bulk-tissue Raman spectroscopy (RS) due to the wide spectral range, relatively sharp spectral features, and presence of background autofluorescence. Here, we report a computationally efficient MC approach for RS by adapting the massively-parallel Monte Carlo eXtreme (MCX) simulator. Simulation efficiency is achieved through “isoweight,” a novel approach that combines the statistical generation of Raman scattered and Fluorescence emission with a lookup-table-based technique well-suited for parallelization. The MC model uses a graphics processor to produce dense Raman and fluorescence spectra over a range of 800 − 2000 cm−1 with an approximately 100× increase in speed over prior RS Monte Carlo methods. The simulated RS signals are compared against experimentally collected spectra from gelatin phantoms, showing a strong correlation. 相似文献
12.
《Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)》2016,32(11):1397-1404
PurposeTo study the impact of shielding elements in the proximity of Intra-Operative Radiation Therapy (IORT) irradiation fields, and to generate graphical and quantitative information to assist radiation oncologists in the design of optimal shielding during pelvic and abdominal IORT.MethodAn IORT system was modeled with BEAMnrc and EGS++ Monte Carlo codes. The model was validated in reference conditions by gamma index analysis against an experimental data set of different beam energies, applicator diameters, and bevel angles. The reliability of the IORT model was further tested considering shielding layers inserted in the radiation beam. Further simulations were performed introducing a bone-like layer embedded in the water phantom. The dose distributions were calculated as 3D dose maps.ResultsThe analysis of the resulting 2D dose maps parallel to the clinical axis shows that the bevel angle of the applicator and its position relative to the shielding have a major influence on the dose distribution. When insufficient shielding is used, a hotspot nearby the shield appears near the surface. At greater depths, lateral scatter limits the dose reduction attainable with shielding, although the presence of bone-like structures in the phantom reduces the impact of this effect.ConclusionsDose distributions in shielded IORT procedures are affected by distinct contributions when considering the regions near the shielding and deeper in tissue: insufficient shielding may lead to residual dose and hotspots, and the scattering effects may enlarge the beam in depth. These effects must be carefully considered when planning an IORT treatment with shielding. 相似文献
13.
PurposeEvaluation of the out-of-field dose is an important aspect in radiotherapy. Due to the fetus radiosensitivity, this evaluation becomes even more conclusive when the patient is pregnant. In this work, a linear accelerator Varian Clinac 2100c operating at 6 MV, a pregnant anthropomorphic phantom (Maria), and different shields added above the abdominal region of the phantom were used for the analysis based on MCNPX. Methods: The simulations were performed for the medial and lateral projections, using either an open field collimation (10×16 cm2) or a multileaf collimator. The added shields (M1 and M2) were designed based on models proposed by Stovall et al. [1], intending to reduce the deposited dose on the fetus and related structures. Results: The presence of the shields showed to be effective in reducing the doses on the fetus, amniotic sac, and placenta, for example. A reduction of about 43% was found in the dose on the fetus when M2 was added, using the open field collimation, in comparison with the situation with no shield, being the lateral projection the main responsible for the dose. The use of MLC significatively reduced the doses in different structures, including on the fetus and amniotic sac, for example, in comparison to the open field situation. A slight increment on the dose in organs such as the eyes, thyroid and brain was found in both collimation systems, due to the presence of the shields. The contribution of the leakage radiation from the tube head of the linear accelerator was found to be in the order of µGy, being reduced by the presence of the M2 shield. Conclusion: Using the shields showed to be an essential feature in order to reduce the dose not only on the fetus, but also in important structures responsible to its development. 相似文献
14.
Abstract The principle purpose of this paper is to demonstrate the use of the Inverse Monte Carlo technique for calculating pair interaction energies in monoatomic liquids from a given equilibrium property. This method is based on the mathematical relation between transition probability and pair potential given by the fundamental equation of the “importance sampling” Monte Carlo method. In order to have well defined conditions for the test of the Inverse Monte Carlo method a Metropolis Monte Carlo simulation of a Lennard Jones liquid is carried out to give the equilibrium pair correlation function determined by the assumed potential. Because an equilibrium configuration is prerequisite for an Inverse Monte Carlo simulation a model system is generated reproducing the pair correlation function, which has been calculated by the Metropolis Monte Carlo simulation and therefore representing the system in thermal equilibrium. This configuration is used to simulate virtual atom displacements. The resulting changes in atom distribution for each single simulation step are inserted in a set of non-linear equations defining the transition probability for the virtual change of configuration. The solution of the set of equations for pair interaction energies yields the Lennard Jones potential by which the equilibrium configuration has been determined. 相似文献
15.
《Reports of Practical Oncology and Radiotherapy》2020,25(2):187-192
AimThe aim of this study was to estimate the secondary malignancy risk from the radiation in FFB prostate linac-based radiotherapy for different organs of the patient.BackgroundRadiation therapy is one of the main procedures of cancer treatment. However, the application the radiation may impose dose to organs of the patient which can be the cause of some malignancies.Materials and methodsMonte Carlo (MC) simulation was used to calculate radiation doses to patient organs in 18 MV linear accelerator (linac) based radiotherapy. A humanoid MC phantom was used to calculate the equivalent dose s for different organs and probability of secondary cancer, fatal and nonfatal risk, and other risks and parameters related to megavoltage radiation therapy. In out-of-field radiation calculation, it could be seen that neutrons imparted a higher dose to distant organs, and the dose to surrounding organs was mainly due to absorbed scattered photons and electron contamination.ResultsOur results showed that the bladder and skin with 54.89 × 10−3 mSv/Gy and 46.09 × 10−3 mSv/Gy, respectively, absorbed the highest equivalent dose s from photoneutrons, while a lower dose was absorbed by the lung at 3.42 × 10−3 mSv/Gy. The large intestine and bladder absorbed 55.00 × 10−3 mSv/Gy and 49.08 × 10−3, respectively, which were the highest equivalent dose s due to photons. The brain absorbed the lowest out-of-field dose, at 1.87 × 10−3 mSv/Gy.ConclusionsWe concluded that secondary neutron portion was higher than other radiation. Then, we recommended more attention to neutrons in the radiation protection in linac based high energy radiotherapy. 相似文献
16.
PurposeThe aim of this proof-of-concept study is to propose a simplified personalized kidney dosimetry procedure in 177Lu peptide receptor radionuclide therapy (PRRT) for neuroendocrine tumors and metastatic prostate cancer. It relies on a single quantitative SPECT/CT acquisition and multiple radiometric measurements executed with a collimated external probe, properly directed on kidneys.MethodsWe conducted a phantom study involving external count-rate measurements in an abdominal phantom setup filled with activity concentrations of 99mTc, reproducing patient-relevant organ effective half-lives occurring in 177Lu PRRT. GATE Monte Carlo (MC) simulations of the experiment, using 99mTc and 177Lu as sources, were performed. Furthermore, we tested this method via MC on a clinical case of 177Lu-DOTATATE PRRT with SPECT/CT images at three time points (2, 20 and 70 hrs), comparing a simplified kidney dosimetry, employing a single SPECT/CT and probe measurements at three time points, with the complete MC dosimetry.ResultsThe experimentally estimated kidney half-life with background subtraction applied was compatible within 3% with the expected value. The MC simulations of the phantom study, both with 99mTc and 177Lu, confirmed a similar level of accuracy. Concerning the clinical case, the simplified dosimetric method led to a kidney dose estimation compatible with the complete MC dosimetry within 6%, 12% and 2%, using respectively the SPECT/CT at 2, 20 and 70 hrs.ConclusionsThe proposed simplified procedure provided a satisfactory accuracy and would reduce the imaging required to derive the kidney absorbed dose to a unique quantitative SPECT/CT, with consequent benefits in terms of clinic workflows and patient comfort. 相似文献
17.
Daisuke Kawahara Shuichi Ozawa Akito Saito Tomoki Kimura Tatsuhiko Suzuki Masato Tsuneda Sodai Tanaka Kazunari Hioki Takeo Nakashima Yoshimi Ohno Yuji Murakami Yasushi Nagata 《Reports of Practical Oncology and Radiotherapy》2018,23(1):50-56
Aim
Lipiodol was used for stereotactic body radiotherapy combining trans arterial chemoembolization. Lipiodol used for tumour seeking in trans arterial chemoembolization remains in stereotactic body radiation therapy. In our previous study, we reported the dose enhancement effect in Lipiodol with 10× flattening-filter-free (FFF). The objective of our study was to evaluate the dose enhancement and energy spectrum of photons and electrons due to the Lipiodol depth with flattened (FF) and FFF beams.Methods
FF and FFF for 6 MV beams from TrueBeam were used in this study. The Lipiodol (3 × 3 × 3 cm3) was located at depths of 1, 3, 5, 10, 20, and 30 cm in water. The dose enhancement factor (DEF) and the energy fluence were obtained by Monte Carlo calculations of the particle and heavy ion transport code system (PHITS).Results
The DEFs at the centre of Lipiodol with the FF beam were 6.8, 7.3, 7.6, 7.2, 6.1, and 5.7% and those with the FFF beam were 20.6, 22.0, 21.9, 20.0, 12.3, and 12.1% at depths of 1, 3, 5, 10, 20, and 30 cm, respectively, where Lipiodol was located in water. Moreover, spectrum results showed that more low-energy photons and electrons were present at shallow depth where Lipiodol was located in water. The variation in the low-energy spectrum due to the depth of the Lipiodol position was more explicit with the FFF beam than that with the FF beam.Conclusions
The current study revealed variations in the DEF and energy spectrum due to the depth of the Lipiodol position with the FF and FFF beams. Although the FF beam could reduce the effect of energy dependence due to the depth of the Lipiodol position, the dose enhancement was overall small. To cause a large dose enhancement, the FFF beam with the distance of the patient surface to Lipiodol within 10 cm should be used. 相似文献18.
The availability of a resource collecting dose factors for the evaluation of the absorbed doses from external exposure during the manipulation of radioactive substances is fundamental for radiological protection purposes. Monte Carlo simulations are useful for the accurate calculation of dose distributions in complex geometries, particularly in presence of extended spectra of multi-radiation sources. We considered, as possible irradiation scenarios, a point source, a uniform planar source resembling a contaminated surface, several source volumes contained in plastic or glass receptacles, and the direct skin contamination case, implementing the corresponding Monte Carlo simulations in GAMOS (GEANT4-based Architecture for Medicine-Oriented Simulations). A set of 50 radionuclides was studied, focusing the attention on those ones mainly used in nuclear medicine, both for diagnostic and therapeutic purposes, in nuclear physics laboratories and for instrument calibration. Skin dose equivalents at 70 μm of depth and deep dose equivalents at 10 mm of depth are reported for different configurations and organized in easy-to-read tables. 相似文献
19.
PurposeOver the last decades, Gold Nanoparticles (AuNPs) have been presented as an innovative approach in radiotherapy (RT) enhancement. Several studies have proven that the irradiation of tumors containing AuNPs could lead to more effective tumor control than irradiation alone. Studies with low kV photons and AuNPs conclude in encouraging results regarding the level of radioenhancement. However, experimental and theoretical studies with MV photons report controversial findings concerning the correlation between dose enhancement effect and tumor cell killing. The great variation in the experimental protocols and simulations complicates the comparison of their outcomes and depicts the need for limiting the variety of investigated parameters. Our purpose is to point out a possible direction for building realistic Monte Carlo (MC) models that could end up with promising results in MV photons RT enhancement.MethodsWe explored published in silico studies concerning AuNPs enhanced RT from 2010 to 2019. In this review, we discuss the different AuNPs and MV photon beams characteristics that have been reported and their effect in dose enhancement.ResultsAuNPs size, concentration, type of distribution along with photon beams energy and the presence of flattening filter in linear accelerators seem to be the major parameters that determine AuNPs radioenhancement in silico.ConclusionsPrior to AuNPs clinical translation in photon radiotherapy, in silico studies should emphasize on nanodosimetry and track structure codes than condensed history ones. Toxicity estimation and biological aspects should be implemented in MC simulations so as to achieve accurate and realistic modelling of AuNPs driven RT. 相似文献
20.
The aim of this study is to determine effects of size deviations of brachytherapy seeds on two dimensional dose distributions around the seed. Although many uncertainties are well known, the uncertainties which stem from geometric features of radiation sources are weakly considered and predicted. Neither TG-43 report which is not completely in common consensus, nor individual scientific MC and experimental studies include sufficient data for geometric uncertainties. Sizes of seed and its components can vary in a manufacturing deviation. This causes geometrical uncertainties, too. In this study, three seeds which have different geometrical properties were modeled using EGSnrc-Code Packages. Seeds were designed with all their details using the geometry package. 5% deviations of seed sizes were assumed. Modified seeds were derived from original seed by changing sizes by 5%. Normalizations of doses which were calculated from three kinds of brachytherapy seed and their derivations were found to be about 3%–20%. It was shown that manufacturing differences of brachytherapy seed cause considerable changes in dose distribution. 相似文献