首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this work was to demonstrate the rank order of motor unit (MU) recruitment by surface EMG based on a Laplacian detection technique and to document the MU features at their recruitment threshold. Surface EMG signals were recorded on the biceps brachii of 10 healthy subjects during linear force ramps. When achievable, the signals were decomposed into MU action potential (MUAP) trains. MU inter-pulse interval (IPI), conduction velocity (MUCV) and amplitude were estimated on the first 12 MUAPs of each detectable train in order to characterize the MU features at their firing onset. A strong correlation was found between MU recruitment threshold and IPI, MUCV, and amplitude, showing that the size principle can be demonstrated by a fully non-invasive EMG technique. However, signal decomposition was not possible on seven subjects due to the effects of the volume conductor when the skinfold thickness was too large. When requirements for an optimal detection of MUAP trains are met, surface EMG may be used to improve our understanding of MU activity.  相似文献   

2.
The purpose of this study was to investigate whether age-related changes in motor unit (MU) contractile properties are reflected in parameters of motor unit action potentials (MUAPs). MUs of the medial gastrocnemius muscle were functionally isolated in anaesthetized Wistar rats. A control group of young animals (5–10 mo) was compared to two groups of old rats (24–25 mo and 28–30 mo). The basic contractile properties of MUs as well as the amplitude, total duration, peak-to-peak time, and number of turns within MUAPs were measured. Effects of aging were mainly observed for fast fatigable MUs (a prolongation of MUAPs and increased number of turns). The MUAP amplitude did not change significantly with aging in either MU type, but it correlated to the twitch or tetanic forces, which tended to increase with age, especially for slow MUs. We concluded that the prolongation of MUAPs and the greater incidence of signal turns was probably a result of a decrease in muscle fiber conduction velocity and/or an increase in their dispersion, and enlargement of MU territories – presumably caused by axonal sprouting of surviving motoneurons. The latter might also be responsible for the observed age-related tendency for a increase in MUAP amplitudes in slow MUs.  相似文献   

3.
It remains unclear if the sizes of higher-threshold motor units (MU) are associated with muscular strength and power. Therefore, the purpose of this study was to examine sex-related differences in muscle cross-sectional area (mCSA), percent myosin heavy chain (%MHC) isoform expression, and the MU action potential amplitudes (MUAPAMPS)-recruitment threshold (RT) relationships of the vastus lateralis and isometric peak torque, isokinetic peak torque and mean power at 1.05 rad·s−1 of the leg extensors. Surface electromyographic decomposition techniques were used to quantify MUAPAMPS recorded during isometric muscle actions at 70% of maximal voluntary contractions and regressed against RTs with the slopes calculated. Ultrasound images were used to measure mCSA. Males had greater slopes from the MUAPAMP-RT relationship than the females (P < 0.05). The greater slopes likely reflected larger higher-threshold MUs for the males. The mCSAs and slopes from the relationships were strongly correlated with isometric and isokinetic peak torque and isokinetic mean power (r = 0.78–0.82), however, type I %MHC isoform was only moderately correlated with isometric peak torque (r = −0.54). The results indicated that sex-related differences in muscular strength and power were associated more so with the sizes of the higher-threshold MUs (slopes) and mCSA than MHC isoforms. The amount of cross-bridge activity within muscle fibers that comprise higher-threshold MUs may be the primary contributor to muscular strength and power rather than the contractile properties of the muscle.  相似文献   

4.
Neurons in vivo must process sensory information in the presence of significant noise. It is thus plausible to assume that neural systems have developed mechanisms to reduce this noise. Theoretical studies have shown that threshold fatigue (i.e. cumulative increases in the threshold during repetitive firing) could lead to noise reduction at certain frequencies bands and thus improved signal transmission as well as noise increases and decreased signal transmission at other frequencies: a phenomenon called noise shaping. There is, however, no experimental evidence that threshold fatigue actually occurs and, if so, that it will actually lead to noise shaping. We analyzed action potential threshold variability in intracellular recordings in vivo from pyramidal neurons in weakly electric fish and found experimental evidence for threshold fatigue: an increase in instantaneous firing rate was on average accompanied by an increase in action potential threshold. We show that, with a minor modification, the standard Hodgkin–Huxley model can reproduce this phenomenon. We next compared the performance of models with and without threshold fatigue. Our results show that threshold fatigue will lead to a more regular spike train as well as robustness to intrinsic noise via noise shaping. We finally show that the increased/reduced noise levels due to threshold fatigue correspond to decreased/increased information transmission at different frequencies. Action Editor: David Golomb  相似文献   

5.
Whole body vibration (WBV) has been suggested to elicit reflex muscle contractions but this has never been verified. We recorded from 32 single motor units (MU) in the vastus lateralis of 7 healthy subjects (34 ± 15.4 yr) during five 1-min bouts of WBV (30 Hz, 3 mm peak to peak), and the vibration waveform was also recorded. Recruitment thresholds were recorded from 38 MUs before and after WBV. The phase angle distribution of all MUs during WBV was nonuniform (P < 0.001) and displayed a prominent peak phase angle of firing. There was a strong linear relationship (r = -0.68, P < 0.001) between the change in recruitment threshold after WBV and average recruitment threshold; the lowest threshold MUs increased recruitment threshold (P = 0.008) while reductions were observed in the higher threshold units (P = 0.031). We investigated one possible cause of changed thresholds. Presynaptic inhibition in the soleus was measured in 8 healthy subjects (29 ± 4.6 yr). A total of 30 H-reflexes (stimulation intensity 30% Mmax) were recorded before and after WBV: 15 conditioned by prior stimulation (60 ms) of the antagonist and 15 unconditioned. There were no significant changes in the relationship between the conditioned and unconditioned responses. The consistent phase angle at which each MU fired during WBV indicates the presence of reflex muscle activity similar to the tonic vibration reflex. The varying response in high- and low-threshold MUs may be due to the different contributions of the mono- and polysynaptic pathways but not presynaptic inhibition.  相似文献   

6.
Previous investigations that have studied motor unit firing rates following strength training have been limited to small muscles, isometric training, or interventions involving exercise machines. We examined the effects of ten weeks of supervised barbell deadlift training on motor unit firing rates for the vastus lateralis and rectus femoris during a 50% maximum voluntary contraction (MVC) assessment. Twenty-four previously untrained men (mean age  = 24 years) were randomly assigned to training (n = 15) or control (n = 9) groups. Before and following the intervention, the subjects performed isometric testing of the right knee extensors while bipolar surface electromyographic signals were detected from the two muscles. The signals were decomposed into their constituent motor unit action potential trains, and motor units that demonstrated accuracy levels less than 92.0% were not considered for analysis. One thousand eight hundred ninety-two and 2,013 motor units were examined for the vastus lateralis and rectus femoris, respectively. Regression analyses were used to determine the linear slope coefficients (pulses per second [pps]/% MVC) and y-intercepts (pps) of the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. Deadlift training significantly improved knee extensor MVC force (Cohen''s d = .70), but did not influence force steadiness. Training had no influence on the slopes and y-intercepts for the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. In agreement with previous cross-sectional comparisons and randomized control trials, our findings do not support the notion that strength training affects the submaximal control of motor units.  相似文献   

7.
Experiments on the cercal wind-sensing system of the American cockroach, Periplaneta americana, showed that the firing rate of the interneurons coding wind information depends on the bandwidth of random noise wind stimuli. The firing rate was shown to increase with decreases in the stimulus bandwidth, and be independent of changes in the total power of the stimulus with constant spectral composition. A detailed analysis of ethologically relevant stimulus parameters is presented. A phenomenological model of these relationships and their relevance to wind-mediated cockroach behavior is proposed.Abbreviations 2D two dimensional - FOWD fiber-optic wind detector - GI giant interneurons - STA spike-triggered average  相似文献   

8.
It is necessary to decompose the intra-muscular EMG signal to extract motor unit action potential (MUAP) waveforms and firing times. Some algorithms were proposed in the literature to resolve superimposed MUAPs, including Peel-Off (PO), branch and bound (BB), genetic algorithm (GA), and particle swarm optimization (PSO). This study aimed to compare these algorithms in terms of overall accuracy and running time. Two sets of two-to-five MUAP templates (set1: a wide range of energies, and set2: a high degree of similarity) were used. Such templates were time-shifted, and white Gaussian noise was added. A total of 1000 superpositions were simulated for each template and were resolved using PO (also, POI: interpolated PO), BB, GA, and PSO algorithms. The generalized estimating equation was used to identify which method significantly outperformed, while the overall rank product was used for overall ranking. The rankings were PSO, BB, GA, PO, and POI in the first, and BB, PSO, GA, PO, POI in the second set. The overall ranking was BB, PSO, GA, PO, and POI in the entire dataset. Although the BB algorithm is generally fast, there are cases where the BB algorithm is too slow and it is thus not suitable for real-time applications.  相似文献   

9.
Experimental investigation of practicing a dynamic, goal-directed movement reveals significant changes in kinematics. Modeling can provide insight into the alterations in muscle activity, associated with the kinematic adaptations, and reveal the potential motor unit (MU) firing patterns that underlie those changes. In this paper, a previously developed muscle model and software (Raikova and Aladjov, Journal of Biomechanics, 35, 2002) have been used to investigate changes in MU control, while practicing fast elbow flexion to a target in the horizontal plane. The first trial (before practice) and the last trial (after extensive practice) of two subjects have been simulated. The inputs for the simulation were the calculated external moments at the elbow joint. The external moments were countered by the action of three flexor muscles and two extensor ones. The muscles have been modeled as a mixture of MUs of different types. The software has chosen the MU firing times necessary to accomplish the movement. The muscle forces and MUs firing statistics were then calculated. Three hypotheses were tested and confirmed: (1) peak muscle forces and antagonist co-contraction increase during training; (2) there is an increase in the firing frequency and the synchronization between MUs; and (3) the recruitment of fast-twitch MUs dominates the action.  相似文献   

10.
The features of the electromyogram (EMG) are studied using a population model of skeletal muscle based on the differing properties and the independent activation of motor units (MUs). It is shown, both analytically and by computer simulation, that: (a) The power spectrum of the EMG is determined by the distribution of filtering and firing properties of the active MUs. (b) A tendency towards a rhythmical grouping of action potentials is to be expected from a set of asynchronous MUs firing semiregularly at similar rates; the grouped electrical activity has a phase-lead over the force output of the set of about 180°. A unified explanation of the properties of the muscle force waveform and the electromyogram, in terms of asynchronous activity of MUs, is proposed. The explanation covers the relationship and the differences between the two signals.  相似文献   

11.
In motor control studies, the F-wave (a recurrent discharge evoked by an axonal antidromic volley) widely used for obtaining information on motoneuron pool behavior. However, such F-wave using is a matter of discussion and still has been not validated experimentally. The aim of the present study was investigation of F-wave properties of single firing motor units (MUs) in healthy humans, the properties, which could give evidence for F-wave origin in motoneuron soma and, therefore, could be used for estimation of a relation between MU firing and motoneuron firing behavior. In total, 91 MUs in five muscles of six healthy subjects, during gentle voluntary contractions, were studied. Peri-stimulus time histograms of single MUs were plotted. None of them revealed statistically significant increasing in MU firing probability at the F-wave latency. Analysis of relationships between characteristics of motoneuron firing behavior (mean firing frequency and target interspike interval duration) and properties of F-waves showed their independence. At the same time, it was found that F-waves were recorded in MUs, whose axons possessed the marked supernormal period in excitability recovery cycle after a discharge. Thus, the present results are in contrast to that which should be expected if the F-wave originated in the motoneuronal soma and could provide evidence for motoneuron firing behavior.  相似文献   

12.
Temporal precision of spiking response in cortical neurons has been a subject of intense debate. Using a canonical model of spike generation, we explore the conditions for precise and reliable spike timing in the presence of Gaussian white noise. In agreement with previous results we find that constant stimuli lead to imprecise timing, while aperiodic stimuli yield precise spike timing. Under constant stimulus the neuron is a noise perturbed oscillator, the spike times follow renewal statistics and are imprecise. Under an aperiodic stimulus sequence, the neuron acts as a threshold element; the firing times are precisely determined by the dynamics of the stimulus. We further study the dependence of spike-time precision on the input stimulus frequency and find a non-linear tuning whose width can be related to the locking modes of the neuron. We conclude that viewing the neuron as a non-linear oscillator is the key for understanding spike-time precision.  相似文献   

13.
Fundamental properties of phasic firing neurons are usually characterized in a noise-free condition. In the absence of noise, phasic neurons exhibit Class 3 excitability, which is a lack of repetitive firing to steady current injections. For time-varying inputs, phasic neurons are band-pass filters or slope detectors, because they do not respond to inputs containing exclusively low frequencies or shallow slopes. However, we show that in noisy conditions, response properties of phasic neuron models are distinctly altered. Noise enables a phasic model to encode low-frequency inputs that are outside of the response range of the associated deterministic model. Interestingly, this seemingly stochastic-resonance (SR) like effect differs significantly from the classical SR behavior of spiking systems in both the signal-to-noise ratio and the temporal response pattern. Instead of being most sensitive to the peak of a subthreshold signal, as is typical in a classical SR system, phasic models are most sensitive to the signal''s rising and falling phases where the slopes are steep. This finding is consistent with the fact that there is not an absolute input threshold in terms of amplitude; rather, a response threshold is more properly defined as a stimulus slope/frequency. We call the encoding of low-frequency signals with noise by phasic models a slope-based SR, because noise can lower or diminish the slope threshold for ramp stimuli. We demonstrate here similar behaviors in three mechanistic models with Class 3 excitability in the presence of slow-varying noise and we suggest that the slope-based SR is a fundamental behavior associated with general phasic properties rather than with a particular biological mechanism.  相似文献   

14.
Threshold fluctuations in axon firing can arise as a result of electrical noise in the excitable membrane. A general theoretical expression for the fluctuations is applied to the analysis of three sources of membrane noise: Johnson noise, excess 1/f noise, and sodium conductance fluctuations. Analytical expressions for the width of the firing probability curve are derived for each of these noise sources. Specific calculations are performed for the node of Ranvier of the frog, and attention is given to the manner in which threshold fluctuations are affected by variations of temperature, ion concentrations, and the application of various drugs. Comparison with existing data suggests that threshold fluctuations can best be explained by sodium conductance fluctuations. Additional experiments directed at distinguishing among the various noise sources are proposed.  相似文献   

15.
Following (tracking) individual motor units over time can provide important new insights, both into the relationships among various motor unit (MU) morphological and functional properties and into how these properties are influenced by neuromuscular disorders or interventions. The present study aimed to determine whether high-density surface EMG (HD-sEMG) recordings, which use an array of surface electrodes over a muscle, can increase the yield of MU tracking studies in terms of the number of MUs that can be tracked. For that purpose, four HD-sEMG recording sessions were performed on the thenar muscles of ten healthy subjects. Decomposition of the recorded composite responses yielded a study total of 2849 motor unit action potentials (MUAPs). MUAPs that were found in both of the first two sessions, performed on the same day, were defined as trackable MUAPs. Our results show that 22 (median value; range, 13–34) MUAPs per nerve were trackable, which represented approximately 5% of the total MU population. Of these trackable MUAPs, 16 (11–26) could also be found in one or both of the third and fourth sessions, which were performed between 1 and 13 weeks after the initial studies. Nine (4–18) MUAPs were found in all four sessions. Many of the characteristic MUAP shapes matched well between sessions, even when these sessions were several weeks apart. However, some MUAPs seem very sensitive to changes in arm position or in the muscle’s morphology (e.g., to changes in muscle fiber length due to variable degrees of thumb flexion or extension), particularly those from larger and/or superficial MUs. Standardization is, therefore, essential to detect even small MUAP changes, as may occur with pathology or interventions. If this is accomplished, MU tracking with HD-sEMG may prove to be a powerful tool for a promising type of neurophysiological investigation.  相似文献   

16.
Experimental investigation of practicing a dynamic, goal-directed movement reveals significant changes in kinematics. Modeling can provide insight into the alterations in muscle activity, associated with the kinematic adaptations, and reveal the potential motor unit (MU) firing patterns that underlie those changes. In this paper, a previously developed muscle model and software (Raikova and Aladjov, Journal of Biomechanics, 35, 2002) have been used to investigate changes in MU control, while practicing fast elbow flexion to a target in the horizontal plane. The first trial (before practice) and the last trial (after extensive practice) of two subjects have been simulated. The inputs for the simulation were the calculated external moments at the elbow joint. The external moments were countered by the action of three flexor muscles and two extensor ones. The muscles have been modeled as a mixture of MUs of different types. The software has chosen the MU firing times necessary to accomplish the movement. The muscle forces and MUs firing statistics were then calculated. Three hypotheses were tested and confirmed: (1) peak muscle forces and antagonist co-contraction increase during training; (2) there is an increase in the firing frequency and the synchronization between MUs; and (3) the recruitment of fast-twitch MUs dominates the action.  相似文献   

17.
18.
The purpose of this paper was to evaluate the effects of the longitudinal single differential (LSD), the longitudinal double differential (LDD) and the normal double differential (NDD) spatial filters, the electrode shape, the inter-electrode distance (IED) on non-Gaussianity and non-linearity levels of simulated surface EMG (sEMG) signals when the maximum voluntary contraction (MVC) varied from 10% to 100% by a step of 10%. The effects of recruitment range thresholds (RR), the firing rate (FR) strategy and the peak firing rate (PFR) of motor units were also considered.A cylindrical multilayer model of the volume conductor and a model of motor unit (MU) recruitment and firing rate were used to simulate sEMG signals in a pool of 120 MUs for 5 s. Firstly, the stationarity of sEMG signals was tested by the runs, the reverse arrangements (RA) and the modified reverse arrangements (MRA) tests. Then the non-Gaussianity was characterised with bicoherence and kurtosis, and non-linearity levels was evaluated with linearity test.The kurtosis analysis showed that the sEMG signals detected by the LSD filter were the most Gaussian and those detected by the NDD filter were the least Gaussian. In addition, the sEMG signals detected by the LSD filter were the most linear. For a given filter, the sEMG signals detected by using rectangular electrodes were more Gaussian and more linear than that detected with circular electrodes. Moreover, the sEMG signals are less non-Gaussian and more linear with reverse onion-skin firing rate strategy than those with onion-skin strategy. The levels of sEMG signal Gaussianity and linearity increased with the increase of the IED, RR and PFR.  相似文献   

19.
This paper investigates the impact of increased salinity on touch-induced receptor and action potentials of Chara internodal cells. We resolved underlying changes in ion transport by current/voltage analysis. In a saline medium with a low Ca(2+) ion concentration [(Ca(2+))(ext)], the cell background conductance significantly increased and proton pump currents declined to negligible levels, depolarizing the membrane potential difference (PD) to the excitation threshold [action potential (AP)(threshold)]. The onset of spontaneous repetitive action potentials further depolarized the PD, activating K(+) outward rectifying (KOR) channels. K(+) efflux was then sustained and irrevocable, and cells were desensitized to touch. However, when [Ca(2+)](ext) was high, the background conductance increased to a lesser extent and proton pump currents were stimulated, establishing a PD narrowly negative to AP(threshold). Cells did not spontaneously fire, but became hypersensitive to touch. Even slight touch stimulus induced an action potential and further repetitive firing. The duration of each excitation was extended when [Ca(2+)](ext) was low. Cell viability was prolonged in the absence of touch stimulus. Chara cells eventually depolarize and die in the saline media, but touch-stimulated and spontaneous excitation accelerates the process in a Ca(2+)-dependent manner. Our results have broad implications for understanding the interactions between mechano-perception and salinity stress in plants.  相似文献   

20.
This study was performed to evaluate the relative significance of changes typical for muscle fatigue on quantitative parameters obtained from turns analysis of simulated intramuscular and surface interference electromyographic (EMG) signals. Effects of reduction of firing rate of motor units (MUs) and changes of intracellular action potential (IAP) profile along active fibers were analyzed. A new analytic function was proposed to simulate changes in IAP shape at different stages of muscle fatigue. In intramuscular EMG, both the decrease in firing rate of MUs and the changes in IAP profile led to reduction in the number of turns per second (NTs) and mean turn amplitude (MTA). The development of fatigue and especially the changes in IAP profile could explain why NTs increased up to only about 50% of maximal voluntary contraction, and remained unchanged above that level of efforts or even decreased. These effects should be especially pronounced in patients with myopathy whose IAP and muscle fatigability are expected to be abnormal. In surface EMG, the MTA increased considerably with fatigue; the sensitivity of NTs to reduction in firing rate (or number of discharges) was low. Thus, the benefits of the turns analysis of surface EMG signals should be lower not only in diagnosis of myopathy but also neuropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号