首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ozone is a commonly encountered environmental oxidant which has been linked to asthma exacerbation in epidemiological studies. Ozone induces airway inflammation and enhances response to inhaled allergen. It has been suggested that antioxidant therapy may minimize the adverse effects of ozone in asthma. We have previously shown that the antioxidant gamma-tocopherol (gammaT), an isoform of vitamin E, also has anti-inflammatory effects. We employed a Brown Norway rat model of ozone-enhanced allergic responses to test the therapeutic effects of gammaT on O(3)-induced airway inflammation. Ovalbumin (OVA)-sensitized rats were intranasally challenged with 0 or 0.5% OVA on Days 1 and 2, and exposed to 0 or 1 ppm ozone (8 h/day) on Days 4 and 5. Rats were also given 0 or 100 mg/kg gammaT on Days 2 through 5. Pulmonary tissue and bronchoalveolar lavage fluid (BALF) were collected on Day 6. OVA challenge caused increased total cells (267% increase) and eosinophils (4000%) in BALF that was unaffected by ozone exposure. Morphometric evaluation of lung tissue revealed increases in intraepithelial mucosubstances (IM) (300%) and subepithelial eosinophils (400%) in main axial airways. Ozone exposure of allergic rats enhanced IM increases in proximal axial airways (200%), induced cys-leukotrienes, MCP-1, and IL-6 production in BALF, and upregulated expression of IL-5 and IL-13 mRNA. gammaT treatment had no effect on IM increases by allergen, but blocked enhancement by ozone. gammaT attenuated both OVA- or ozone-stimulated eosinophilic infiltration, and increases of BALF cys-leukotrienes, MCP-1, and IL-6, as well as IL-5 and IL-13 mRNA. These data demonstrate broad anti-inflammatory effects of a gammaT and suggest that it may be an effective therapy of allergic airway inflammation.  相似文献   

2.
Airway epithelium is rich in labile zinc (Zn), which may have an important protective role in the airway epithelium. The aim of this study is to investigate the effects of Zn on the airway inflammation and the generation of eotaxin, monocyte chemoattractant protein-1 (MCP-1), interleukin-8 (IL-8), interleukin-4 (IL-4), and interferon-?? (IFN-??) in rat models of ovalbumin (OVA)-induced allergic airway inflammation. For this purpose, animal model of asthma was established by OVA challenge and zinc-deficient and zinc-supplemented diets were given. Thirty-two Sprague?CDawley rats were divided into four groups: zinc-deficient diet with OVA treatment group, zinc-supplemented diet with OVA treatment group, zinc-normal diet with OVA treatment group, and zinc-normal diet with saline treatment group. Twenty-four hours after asthma was induced, lung histomorphological changes, cells in bronchoalveolar lavage fluid (BALF), contents of eotaxin, MCP-1, and IL-8 in BALF, and the expression of IFN-?? and IL-4 mRNAs were observed. Compared with the group of zinc-normal diet with OVA challenge rats, the group of zinc-deficient rats had higher numbers of eosinophils, neutrophils, and monocytes in BALF, as well as higher contents of eotaxin and MCP-1 in BALF and lower expression of lung IFN-?? mRNA. Conversely, Zn supplementation would decrease the numbers of eosinophils, neutrophils, and monocytes in BALF; suppress eotaxin and MCP-1 protein secretion; and increase lung IFN-?? mRNA expression. No significant difference was observed in IL-8 and IL-4 among OVA-challenged rats with different zinc diets. These studies suggested that Zn may be an important anti-inflammatory mediator of airway inflammation.  相似文献   

3.
J Yu  MH Oh  JU Park  AC Myers  C Dong  Z Zhu  T Zheng 《PloS one》2012,7(7):e39032
ATOPIC DERMATITIS (AD) IS THE INITIAL STEP OF THE ATOPIC MARCH: the progression from AD to allergic rhinitis and asthma. There is a close association between skin barrier abnormalities and the development of AD and the atopic march. One of cardinal features of AD is that the lesional skin of the majority of AD patients is chronically colonized with Staphylococcus aureus with half isolates producing superantigen enterotoxin B (SEB). Although diverse roles of SEB in the pathogenesis and severity of AD have been recognized, whether SEB contributes to the dermal inflammation that drives lung inflammation and airway hyperresponsiveness (AHR) has not been examined. Here we show a novel role of S. aureus superantigen SEB in augmenting allergen ovalbumin (Ova) induced atopic march through an IL-17A dependent mechanism. When mice epicutaneously (EC) sensitized with allergen Ova, addition of topical SEB led to not only augmented systemic Th2 responses but also a markedly exaggerated systemic Th17/IL-17 immune environment. The ability of SEB in enhancing Th17/IL-17 was mediated through stimulating lymphocytes in spleen and draining lymph nodes to promote IL-6 production. Epicutaneous sensitization of mice with a combination of Ova and SEB significantly enhanced Ova-induced AHR and granulocytic lung inflammation than Ova allergen alone. When IL-17A was deleted genetically, the effects of SEB on augmenting lung inflammation and AHR were markedly diminished. These findings suggest that chronic heavy colonization of enterotoxin producing S. aureus in the skin of patients with atopic dermatitis may have an important role in the development of atopic march via an IL-17A dependent mechanism.  相似文献   

4.
Background and purposeAsthma is a chronic respiratory disease orchestrated by immune and structural cells. Identification of novel therapeutic strategies are needed for asthma due to the limitations of existing therapies. We have validated the anti-inflammatory, anti-asthmatic and immunomodulatory therapeutic properties of herbal decoction, Divya-Swasari-Kwath (DSK) using mouse model of ovalbumin (OVA) induced allergic asthma.Methods and resultsHPLC analysis identified the presence of Rutin, Glycyrrchzin, Gallic acid, Cinnamic acid, Chlorogenic acid, Caffeic acid and Piperine as bioactive herbal metabolites in DSK. Therapeutic treatment with herbal decoction DSK significantly alleviated the pathological features of allergic asthma including inflammatory cell accumulation in Broncho-Alveolar Lavage (BAL) fluids, specifically lymphocytes and eosinophils, lung inflammation, oxidative stress, airway remodelling, and pro-inflammatory cytokine levels. H&E analysis of lung tissue sections identified attenuated inflammatory cell infiltration and thickening of bronchial epithelium by DSK. PAS staining and MT staining identified decrease in OVA-induced mucus hyper secretion and peri-bronchial collagen deposition respectively, upon DSK treatment. Treatment with DSK increased the mRNA expression of antioxidative defence gene Nrf-2 and its downstream target genes HO-1 and NQO-1. In the same line, biochemical analysis for the markers of oxidative/antioxidant system confirmed the restoration of activity of Catalase, GPx, SOD and EPO and the levels of GSH, GSSG, MDA and Nitrite in whole lungs. In line with PAS staining, DSK treatment decreased the OVA-induced expression of Muc5AC and Muc5B genes. DSK treatment reduced the steady state mRNA expression levels of IL-6, IL-1β, TNF-α, IL-4, -5, -33, IFN-γ in whole lung; and IL-6, TNF-α and IL-1β protein levels in BALF.ConclusionCollectively, our results suggest that herbal decoction DSK is effective in protecting against allergic airway inflammation and remodelling by regulating anti-oxidant mechanisms. We postulate that DSK could be the potential therapeutic option for allergic asthma management.  相似文献   

5.
Clara cell secretory protein (CCSP) is synthesized by nonciliated bronchiolar cells in the lung and modulates lung inflammation to infection. To determine the role of CCSP in the host response to allergic airway disease, CCSP-deficient [(-/-)] mice were immunized twice with ovalbumin (Ova) and challenged by Ova (2 or 5 mg/m(3)) aerosol. After 2, 3, and 5 days of Ova aerosol challenge (6 h/day), airway reactivity was increased in CCSP(-/-) mice compared with wild-type [CCSP(+/+)] mice. Neutrophils were markedly increased in the bronchoalveolar lavage fluid of CCSP(-/-) Ova mice, coinciding with increased myeloperoxidase activity and macrophage inflammatory protein-2 levels. Lung histopathology and inflammation were increased in CCSP(-/-) compared with wild-type mice after Ova challenge. Mucus production, as assessed by histological staining, was increased in the airway epithelium of CCSP(-/-) Ova mice compared with that in CCSP(+/+) Ova mice. These data suggest a role for CCSP in airway reactivity and the host response to allergic airway inflammation and provide further evidence for the role of the airway epithelium in regulating airway responses in allergic disease.  相似文献   

6.
Asthma is a chronic inflammatory disorder, previous studies have shown that IL-17A contributes to the development of asthma, and there is a positive correlation between the level of IL-17A and the severity of disease. Here, we constructed recombinant Mycobacterium smegmatis expressing fusion protein Ag85A-IL-17A (rMS-Ag85a-IL-17a) and evaluated whether it could attenuate allergic airway inflammation, and further investigated the underlying mechanism. In this work, the murine model of asthma was established with ovalbumin, and mice were intranasally vaccinated with rMS-Ag85a-IL-17a. Autoantibody of IL-17A in sera was detected, and the airway inflammatory cells infiltration, the local cytokines and chemokines production and the histopathological changes of lung tissue were investigated. We found that the administration of rMS-Ag85a-IL-17a induced the autoantibody of IL-17A in sera. The vaccination of rMS-Ag85a-IL-17a remarkably reduced the infiltration of inflammatory cells and the secretion of mucus in lung tissue and significantly decreased the numbers of the total cells, eosinophils and neutrophils in BALF. Th1 cells count in spleen, Th1 cytokine levels in BALF and supernatant of splenocytes and mediastinal lymph nodes, and T-bet mRNA in lung tissue were significantly increased with rMS-Ag85a-IL-17a administration. Meanwhile, rMS-Ag85a-IL-17a vaccination markedly decreased Th2 cells count, Th2 cytokine and Th17 cytokine levels in BALF and supernatant of splenocytes and mediastinal lymph nodes, and chemokines mRNA expression in lung tissue. These data confirmed that recombinant Mycobacterium smegmatis in vivo could induce autoantibody of IL-17A, which attenuated asthmatic airway inflammation.  相似文献   

7.
8-Oxoguanine-DNA glycosylase (OGG-1) is a base excision DNA repair enzyme; however, its function in modulating allergic diseases remains undefined. Using OGG-1 knockout (KO) mice, we show that this protein affects allergic airway inflammation after sensitization and challenge by ovalbumin(OVA). OGG-1 KO mice exhibited less inflammatory cell infiltration and reduced oxidative stress in the lungs after OVA challenge compared to WT mice. The KO phenotype included decreased IL-4, IL-6, IL-10, and IL-17 in lung tissues. In addition, OGG-1 KO mice showed decreased expression and phosphorylation of STAT6 as well as NF-κB. Down-regulation of OGG-1 by siRNA lowered ROS and IL-4 levels but increased IFN-γ production in cultured epithelial cells after exposure to house dust mite extracts. OGG-1 may affect the levels of oxidative stress and proinflammatory cytokines during asthmatic conditions. OGG-1 deficiency negatively regulates allergen-induced airway inflammatory response.  相似文献   

8.
Surfactant protein-A (SP-A) has well-established functions in reducing bacterial and viral infections but its role in chronic lung diseases such as asthma is unclear. Mycoplasma pneumoniae (Mp) frequently colonizes the airways of chronic asthmatics and is thought to contribute to exacerbations of asthma. Our lab has previously reported that during Mp infection of non-allergic airways, SP-A aides in maintaining airway homeostasis by inhibiting an overzealous TNF-alpha mediated response and, in allergic mice, SP-A regulates eosinophilic infiltration and inflammation of the airway. In the current study, we used an in vivo model with wild type (WT) and SP-A(-/-) allergic mice challenged with the model antigen ovalbumin (Ova) that were concurrently infected with Mp (Ova+Mp) to test the hypothesis that SP-A ameliorates Mp-induced stimulation of eosinophils. Thus, SP-A could protect allergic airways from injury due to release of eosinophil inflammatory products. SP-A deficient mice exhibit significant increases in inflammatory cells, mucus production and lung damage during concurrent allergic airway disease and infection (Ova+Mp) as compared to the WT mice of the same treatment group. In contrast, SP-A deficient mice have significantly decreased Mp burden compared to WT mice. The eosinophil specific factor, eosinophil peroxidase (EPO), which has been implicated in pathogen killing and also in epithelial dysfunction due to oxidative damage of resident lung proteins, is enhanced in samples from allergic/infected SP-A(-/-) mice as compared to WT mice. In vitro experiments using purified eosinophils and human SP-A suggest that SP-A limits the release of EPO from Mp-stimulated eosinophils thereby reducing their killing capacity. These findings are the first to demonstrate that although SP-A interferes with eosinophil-mediated biologic clearance of Mp by mediating the interaction of Mp with eosinophils, SP-A simultaneously benefits the airway by limiting inflammation and damage.  相似文献   

9.
Asthma is characterized by the influx of inflammatory cells, especially of eosinophils as well as reactive oxygen species (ROS) production, driven by the release of the T helper 2 (Th2)-cell-associated cytokines. The cholinergic anti-inflammatory pathway (CAP) inhibit cytokines production and controls inflammation. Thus, we investigated the effects of pharmacological activation of CAP by neostigmine on oxidative stress and airway inflammation in an allergic asthma model. After the OVA challenge, mice were treated with neostigmine. We showed that CAP activation by neostigmine reduced the levels of pro-inflammatory cytokines (IL-4, IL-5, IL-13, IL-1β, and TNF-α), which resulted in a decrease of eosinophils influx. Furthermore, neostigmine also conferred airway protection against oxidative stress, attenuating ROS production through the increase of antioxidant defense, evidenced by the catalase (CAT) activity. We propose, for the first time, that pharmacological activation of the CAP can lead to new possibilities in the therapeutic management of allergic asthma.  相似文献   

10.
11.
The airway plays a vital role in allergic lung diseases by responding to inhaled allergens and initiating allergic inflammation. Various proinflammatory functions of the airway epithelium have been identified, but, equally important, anti-inflammatory mechanisms must also exist. We show in this study that syndecan-1, the major heparan sulfate proteoglycan of epithelial cells, attenuates allergic lung inflammation. Our results show that syndecan-1-null mice instilled with allergens exhibit exaggerated airway hyperresponsiveness, glycoprotein hypersecretion, eosinophilia, and lung IL-4 responses. However, administration of purified syndecan-1 ectodomains, but not ectodomain core proteins devoid of heparan sulfate, significantly inhibits these inflammatory responses. Furthermore, syndecan-1 ectodomains are shed into the airway when wild-type mice are intranasally instilled with several biochemically distinct inducers of allergic lung inflammation. Our results also show that syndecan-1 ectodomains bind to the CC chemokines (CCL7, CCL11, and CCL17) implicated in allergic diseases, inhibit CC chemokine-mediated T cell migration, and suppress allergen-induced accumulation of Th2 cells in the lung through their heparan sulfate chains. Together, these findings uncover an endogenous anti-inflammatory mechanism of the airway epithelium where syndecan-1 ectodomains attenuate allergic lung inflammation via suppression of CC chemokine-mediated Th2 cell recruitment to the lung.  相似文献   

12.
BackgroundAsthma is characterized by type 2 T-helper cell (Th2) inflammation, goblet cell hyperplasia, airway hyperreactivity, and airway fibrosis. Monocyte chemoattractant protein-1 (MCP-1 or CCL2) and its receptor, CCR2, have been shown to play important roles in the development of Th2 inflammation. CCR2-deficient mice have been found to have altered inflammatory and physiologic responses in some models of experimental allergic asthma, but the role of CCR2 in contributing to inflammation and airway hyperreactivity appears to vary considerably between models. Furthermore, MCP-1-deficient mice have not previously been studied in models of experimental allergic asthma.MethodsTo test whether MCP-1 and CCR2 are each required for the development of experimental allergic asthma, we applied an Aspergillus antigen-induced model of Th2 cytokine-driven allergic asthma associated with airway fibrosis to mice deficient in either MCP-1 or CCR2. Previous studies with live Aspergillus conidia instilled into the lung revealed that MCP-1 and CCR2 play a role in anti-fungal responses; in contrast, we used a non-viable Aspergillus antigen preparation known to induce a robust eosinophilic inflammatory response.ResultsWe found that wild-type C57BL/6 mice developed eosinophilic airway inflammation, goblet cell hyperplasia, airway hyperreactivity, elevations in serum IgE, and airway fibrosis in response to airway challenge with Aspergillus antigen. Surprisingly, mice deficient in either MCP-1 or CCR2 had responses to Aspergillus antigen similar to those seen in wild-type mice, including production of Th2 cytokines.ConclusionWe conclude that robust Th2-mediated lung pathology can occur even in the complete absence of MCP-1 or CCR2.  相似文献   

13.

Introduction

Asthma is a chronic inflammatory disorder of the airways, involving oxidative stress. Upon oxidative stress, glutathione covalently binds to protein thiols to protect them against irreversible oxidation. This posttranslational modification, known as protein S-glutathionylation, can be reversed by glutaredoxin 1 (Glrx1) under physiological condition. Glrx1 is known to increase in the lung tissues of a murine model of allergic airway inflammation. However, the temporal relationship between levels of Glrx1, protein S-glutathionylation, and glutathione in the lungs with allergic airway inflammation is not clearly understood.

Methods

BALB/c mice received 3 aerosol challenges with ovalbumin (OVA) following sensitization to OVA. They were sacrificed at 6, 24, 48, or 72 h, or 8 days (5 mice per group), and the levels of Glrx1, protein S-glutathionylation, glutathione, and 25 cytokines/chemokines were evaluated in bronchoalveolar lavage fluid (BALF) and/or lung tissue.

Results

Levels of Glrx1 in BALF were significantly elevated in the OVA 6 h (final challenge) group compared to those in the control, with concurrent increases in protein S-glutathionylation levels in the lungs, as well as total glutathione (reduced and oxidized) and oxidized glutathione in BALF. Protein S-glutathionylation levels were attenuated at 24 h, with significant increases in Glrx1 levels in lung tissues at 48 and 72 h. Glrx1 in alveolar macrophages was induced after 6 h. Glrx1 levels concomitantly increased with Th2/NF-κB-related cytokines and chemokines in BALF.

Conclusions

The temporal relationships of Glrx1 with protein S-glutathionylation, glutathione, and cytokines/chemokines were observed as dynamic changes in lungs with allergic airway inflammation, suggesting that Glrx1 and protein–SSG redox status may play important roles in the development of allergic airway inflammation.  相似文献   

14.

Background

Connexin (Cx)-based gap junction channels play important roles in the inflammatory response. Cx43 is involved in the pathogenesis of some lung diseases such as acute lung injury. However, the Cx43 expression in asthma is unclear. In the present study, we used a murine model of ovalbumin (OVA)-induced allergic airway disease to examine the levels of Cx43 and analyze the relationship between Cx43 and airway inflammation in allergic airway disease.

Methods

Asthma was induced in mice via sensitization and challenge with OVA. Cx43 mRNA and protein expression levels were investigated via QT-PCR, western blot, and immunohistochemistry 0 h, 8 h, 1 d, 2 d and 4 d after the first challenge. The relationship between Cx43 protein levels and inflammatory cell infiltration, cytokine levels was analyzed.

Results

The OVA-induced mice exhibited typical pathological features of asthma, including airway hyper-responsiveness; strong inflammatory cell infiltration surrounding the bronchia and vessels; many inflammatory cells in the bronchoalveolar lavage fluid (BALF); higher IL-4, IL-5 and IL-13 levels; and high OVA specific IgE levels. Low Cx43 expression was detected in the lungs of control (PBS) mice. A dramatic increase in the Cx43 mRNA and protein levels was found in the asthmatic mice. Cx43 mRNA and protein expression levels increased in a time-dependent manner in asthma mice, and Cx43 was mostly localized in the alveolar and bronchial epithelial layers. Moreover, lung Cx43 protein levels showed a significant positive correlation with inflammatory cell infiltration in the airway and IL-4 and IL-5 levels in the BALF at different time points after challenge. Interestingly, the increase in Cx43 mRNA and protein levels occurred prior to the appearance of the inflammatory cell infiltration.

Conclusion

Our data suggest that there is a strong upregulation of Cx43 mRNA and protein levels in the lungs in asthma. Cx43 levels also exhibited a positive correlation with allergic airway inflammation. Cx43 may represent a target to treat allergic airway diseases in the future.  相似文献   

15.
ABSTRACT

The current study aimed to study the effects of Bulleyaconitine A (BLA) on asthma. Asthmatic mice model was established by ovalbumin (OVA) stimulation, and the model mice were treated by BLA. After BLA treatment, the changes in lung and airway resistances, total and differential leukocytes in the bronchoalveolar lavage fluid (BALF) were detected, and the changes in lung inflammation and airway remodeling were observed. Moreover, the secretion of IgE, Th1/Th2-type and IL-17A cytokines in BALF and serum of the asthmatic mice were determined. The resuts showed that BLA attenuated OVA-induced lung and airway resistances, inhibited the inflammatory cell recruitment in BALF and the inflammation and airway remodeling of the asthmatic mice. In addition, BLA suppressed the secretion of IgE, Th2-type cytokines, and IL-17A, but enhanced secretions of Th1-type cytokines in BALF and serum. The current study discovered that BLA inhibited the lung inflammation and airway remodeling via restoring the Th1/Th2 balance in asthmatic mice.  相似文献   

16.
The allergy is dependent on the balance between Th1 and Th2. The fungal immunodulatory protein (FIP-fve) was isolated from Flammulina velutipes. FIP-fve has been demonstrated to skew the response to Th1 cytokine production. We investigated whether oral administrations of FIP-fve inhibited allergen (OVA)-induced chronic airway inflammation in the mouse asthma model. After intranasal challenge with OVA, the airway inflammation and hyperresponsiveness were determined by bronchoalveolar lavage fluid (BALF) analysis and ELISA assay. Both pre-treated and post-treated with FIP-fve suppressed the airway hyperresponsiveness by methacholine challenge and significantly decreased the number of infiltrating inflammatory cells and Th2 cytokines in bronchoalveolar lavage fluid (BALF) and serum compared with the OVA sensitized mice. In addition, FIP-fve reduced OVA-specific IgE levels in serum. FIP-fve markedly alleviated the OVA-induced airway hyperresponsiveness (AHR) to inhaled methacholine. Based on lung histopathological studies using hematoxylin and Liu’s staining, FIP-fve inhibited inflammatory cell infiltration compared with the OVA-sensitized mice. Oral FIP-fve had an anti-inflammatory effect on OVA-induced airway inflammations and might posses the potential for alternative therapy for allergic airway diseases.  相似文献   

17.
Omega-3 polyunsaturated fatty acids (n-3 PUFA) have been implicated in the alleviation of asthma. Recent studies have demonstrated that the n-3 PUFA derived lipid mediators, protectin D1 and resolvin E1, may act as potent resolution agonists in airway inflammation. The effects of the n-3 PUFA tissue status itself on asthma pathogenesis remains to be further investigated. In this study allergic airway inflammation induced by allergen sensitization and aerosol challenge in Fat-1 and wild-type mice was investigated. Fat-1 transgenic mice displayed increased endogenous lung n-3 PUFA. When allergen-sensitized and aerosol-challenged, these animals had decreased airway inflammation with decreased leukocyte accumulation in bronchoalveolar lavage fluid and lung parenchyma. The Fat-1 mice had a shift to the right in the dose-response relationship for methacholine induced bronchoconstriction with a significant increase in the log ED200. The Fat-1 mice had lower BALF concentrations of the pro-inflammatory cytokines IL-1α, IL-2, IL-5, IL-9, IL-13, G-CSF, KC and RANTES. Furthermore, increased lung tissue amounts of the counter-regulatory mediators protectin D1 and resolvin E1 were found in Fat-1 mice after bronchoprovocative challenge. These results therefore demonstrate a direct protective role for lung n-3 PUFA in allergic airway responses and an increased generation of protectin D1 and resolvin E1 in this context.  相似文献   

18.

Background

Multi-walled carbon nanotubes (MWCNTs) represent a human health risk as mice exposed by inhalation display pulmonary fibrosis. Production of IL-1β via inflammasome activation is a mechanism of MWCNT-induced acute inflammation and has been implicated in chronic fibrogenesis. Mice sensitized to allergens have elevated T-helper 2 (Th2) cytokines, IL-4 and IL-13, and are susceptible to MWCNT-induced airway fibrosis. We postulated that Th2 cytokines would modulate MWCNT-induced inflammasome activation and IL-1β release in vitro and in vivo during allergic inflammation.

Methods

THP-1 macrophages were primed with LPS, exposed to MWCNTs and/or IL-4 or IL-13 for 24 hours, and analyzed for indicators of inflammasome activation. C57BL6 mice were sensitized to house dust mite (HDM) allergen and MWCNTs were delivered to the lungs by oropharyngeal aspiration. Mice were euthanized 1 or 21 days post-MWCNT exposure and evaluated for lung inflammasome components and allergic inflammatory responses.

Results

Priming of THP-1 macrophages with LPS increased pro-IL-1β and subsequent exposure to MWCNTs induced IL-1β secretion. IL-4 or IL-13 decreased MWCNT-induced IL-1β secretion by THP-1 cells and reduced pro-caspase-1 but not pro-IL-1β. Treatment of THP-1 cells with STAT6 inhibitors, either Leflunomide or JAK I inhibitor, blocked suppression of caspase activity by IL-4 and IL-13. In vivo, MWCNTs alone caused neutrophilic infiltration into the lungs of mice 1 day post-exposure and increased IL-1β in bronchoalveolar lavage fluid (BALF) and pro-caspase-1 immuno-staining in macrophages and airway epithelium. HDM sensitization alone caused eosinophilic inflammation with increased IL-13. MWCNT exposure after HDM sensitization increased total cell numbers in BALF, but decreased numbers of neutrophils and IL-1β in BALF as well as reduced pro-caspase-1 in lung tissue. Despite reduced IL-1β mice exposed to MWCNTs after HDM developed more severe airway fibrosis by 21 days and had increased pro-fibrogenic cytokine mRNAs.

Conclusions

These data indicate that Th2 cytokines suppress MWCNT-induced inflammasome activation via STAT6-dependent down-regulation of pro-caspase-1 and suggest that suppression of inflammasome activation and IL-1β by an allergic lung microenvironment is a mechanism through which MWCNTs exacerbate allergen-induced airway fibrosis.  相似文献   

19.
Matrix metalloproteinases (MMPs) are involved in inflammatory reaction, including asthma-related airway inflammation. MMP-8, mainly produced by neutrophils, has recently been reported to be increased in the bronchoalveolar lavage fluid (BALF) from asthmatic patients. To evaluate the role of MMP-8 in asthma, we measured MMP-8 expression in lung tissue in an OVA-sensitized mouse model of asthma and addressed the effect of MMP-8 deletion on allergen-induced bronchial inflammation. MMP-8 production was increased in lungs from C57BL/6 mice exposed to allergens. After allergen exposure, MMP-8(-/-) mice developed an airway inflammation characterized by an increased neutrophilic inflammation in BALF and an increased neutrophilic and eosinophilic infiltration in the airway walls. MMP-8 deficiency was associated with increased levels of IL-4 and anti-OVA IgE and IgG1 in BALF and serum, respectively. Although allergen exposure induced an enhancement of LPS-induced CXC chemokine, KC, and MIP-2 levels in BALF and lung parenchyma, no difference was observed between the two genotypes. Inflammatory cell apoptosis was reduced in the lungs from MMP-8(-/-) mice. For the first time, our study evidences an important role of MMP-8 in the control of neutrophilic and eosinophilic infiltration during allergen-induced lung inflammation, and demonstrates that the anti-inflammatory effect of MMP-8 is partly due to a regulation of inflammatory cell apoptosis.  相似文献   

20.
The effect of ovalbumin (Ova) sensitization on pulmonary C-fiber sensitivity was investigated. Brown-Norway rats were sensitized by intraperitoneal injection of Ova followed by aerosolized Ova three times per week for 3 wk. Control rats received the vehicle. At the end of the third week, single-unit fiber activities (FA) of pulmonary C fibers were recorded in anesthetized, artificially ventilated rats. Our results showed the following: 1) Ova sensitization induced airway inflammation (infiltration of eosinophils and neutrophils) and airway hyperresponsiveness in rats; 2) baseline FA in sensitized rats was significantly higher than that in control ones; 3) similarly, the pulmonary C-fiber response to right atrial injection of capsaicin was markedly higher in sensitized rats, which were significantly amplified after the acute Ova inhalation challenge; and 4) similar patterns, but smaller magnitudes of the differences in C-fiber responses to adenosine and lung inflation, were also found between sensitized and control rats. In conclusion, Ova sensitization elevated the baseline FA and excitability of pulmonary C fibers, and the hypersensitivity was further potentiated after the acute Ova inhalation challenge in sensitized rats. Chronic allergic inflammatory reactions in the airway probably contributed to the sensitizing effect on these lung afferents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号