首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
This study investigated the lower extremity torque's active and passive features during the walk-to-run gait transition with continuously increased walking speed. Fourteen volunteers participated in the experiment. Kinematic and kinetic data were collected synchronously. Five strides leading up the gait transition were examined. Peaks of the passive (e.g., contact) and active (e.g., generalized muscle torques), along with net joint torque, and time to peak torques exhibited significant differences at the last stride before gait transition, compared to the first four strides, at the ankle, knee, and hip joints, respectively. Selected peak joint active and passive torques showed significant and opposite trends at critical events within a stride cycle: such ankle joint right after heel-contact, knee joint during weight acceptance, and both hip and knee joints right before toe-off. The magnitude and the corresponding time to active and passive peak torque changed in a nonlinear pattern before the transition from walk to run. The lower extremity segment-interaction during gait transition appeared to be an active reorganization exemplified by the interaction between the lower extremity's active and passive torque components.  相似文献   

2.
Walking with increased ankle pushoff decreases hip muscle moments   总被引:1,自引:1,他引:0  
In a simple bipedal walking model, an impulsive push along the trailing limb (similar to ankle plantar flexion) or a torque at the hip can power level walking. This suggests a tradeoff between ankle and hip muscle requirements during human gait. People with anterior hip pain may benefit from walking with increased ankle pushoff if it reduces hip muscle forces. The purpose of our study was to determine if simple instructions to alter ankle pushoff can modify gait dynamics and if resulting changes in ankle pushoff have an effect on hip muscle requirements during gait. We hypothesized that changes in ankle kinetics would be inversely related to hip muscle kinetics. Ten healthy subjects walked on a custom split-belt force-measuring treadmill at 1.25m/s. We recorded ground reaction forces and lower extremity kinematic data to calculate joint angles and internal muscle moments, powers and angular impulses. Subjects walked under three conditions: natural pushoff, decreased pushoff and increased pushoff. For the decreased pushoff condition, subjects were instructed to push less with their feet as they walked. Conversely, for the increased pushoff condition, subjects were instructed to push more with their feet. As predicted, walking with increased ankle pushoff resulted in lower peak hip flexion moment, power and angular impulse as well as lower peak hip extension moment and angular impulse (p<0.05). Our results emphasize the interchange between hip and ankle kinetics in human walking and suggest that increased ankle pushoff during gait may help to compensate for hip muscle weakness or injury and reduce hip joint forces.  相似文献   

3.
Mechanical tuning of an ankle-foot orthosis (AFO) is important in improving gait in individuals post-stroke. Alignment and resistance are two factors that are tunable in articulated AFOs. The aim of this study was to investigate the effects of changing AFO ankle alignment on lower limb joint kinematics and kinetics with constant dorsiflexion and plantarflexion resistance in individuals post-stroke. Gait analysis was performed on 10 individuals post-stroke under four distinct alignment conditions using an articulated AFO with an ankle joint whose alignment is adjustable in the sagittal plane. Kinematic and kinetic data of lower limb joints were recorded using a Vicon 3-dimensional motion capture system and Bertec split-belt instrumented treadmill. The incremental changes in the alignment of the articulated AFO toward dorsiflexion angles significantly affected ankle and knee joint angles and knee joint moments while walking in individuals post-stroke. No significant differences were found in the hip joint parameters. The alignment of the articulated AFO was suggested to play an important role in improving knee joint kinematics and kinetics in stance through improvement of ankle joint kinematics while walking in individuals post-stroke. Future studies should investigate long-term effects of AFO alignment on gait in the community in individuals post-stroke.  相似文献   

4.
Robotic lower limb exoskeletons hold significant potential for gait assistance and rehabilitation; however, we have a limited understanding of how people adapt to walking with robotic devices. The purpose of this study was to test the hypothesis that people reduce net muscle moments about their joints when robotic assistance is provided. This reduction in muscle moment results in a total joint moment (muscle plus exoskeleton) that is the same as the moment without the robotic assistance despite potential differences in joint angles. To test this hypothesis, eight healthy subjects trained with the robotic hip exoskeleton while walking on a force-measuring treadmill. The exoskeleton provided hip flexion assistance from approximately 33% to 53% of the gait cycle. We calculated the root mean squared difference (RMSD) between the average of data from the last 15 min of the powered condition and the unpowered condition. After completing three 30-min training sessions, the hip exoskeleton provided 27% of the total peak hip flexion moment during gait. Despite this substantial contribution from the exoskeleton, subjects walked with a total hip moment pattern (muscle plus exoskeleton) that was almost identical and more similar to the unpowered condition than the hip angle pattern (hip moment RMSD 0.027, angle RMSD 0.134, p<0.001). The angle and moment RMSD were not different for the knee and ankle joints. These findings support the concept that people adopt walking patterns with similar joint moment patterns despite differences in hip joint angles for a given walking speed.  相似文献   

5.
This paper reports on a methodology developed for studying the effects of various types of prosthetic feet on the gait of trans-femoral amputees. It is shown that an analysis in three planes of motion of not only the prosthetic, but also the sound limb provides important information on the performance of prosthetic feet. Two male trans-femoral amputees were tested with four different prosthetic feet; the Springlite II, Carbon Copy III, Seattle LightFoot and the Multiflex foot. A detailed analysis of the results of one amputee and a summary of the most important results of a second subject is presented. The tests were carried out at normal (1.16 m s(-1)) and fast (1.56 m s(-1)) walking speeds. Three dimensional gait analysis was carried out to derive the time curves of the joint angles, intersegmental moments and power at the ankle, knee and hip joints at both the prosthetic and sound sides. A higher first peak of the ground reaction force at the sound side with the Seattle LightFoot compared to that with the Springlite II, may be the result of the lower late stance dorsiflexion angle with the former. Compared to the other two feet, the Carbon Copy III and the Springlite II showed higher prosthetic dorsiflexing moments and positive power at late stance, which could assist in the push-off. The 3D intersegmental loads at the ankle and knee can be used as a guide for design and for compilation of standards for testing of lower limb prostheses incorporating flexible feet.  相似文献   

6.
A method for gait analysis using wearable acceleration sensors and gyro sensors is proposed in this work. The volunteers wore sensor units that included a tri-axis acceleration sensor and three single axis gyro sensors. The angular velocity data measured by the gyro sensors were used to estimate the translational acceleration in the gait analysis. The translational acceleration was then subtracted from the acceleration sensor measurements to obtain the gravitational acceleration, giving the orientation of the lower limb segments. Segment orientation along with body measurements were used to obtain the positions of hip, knee, and ankle joints to create stick figure models of the volunteers. This method can measure the three-dimensional positions of joint centers of the hip, knee, and ankle during movement. Experiments were carried out on the normal gait of three healthy volunteers. As a result, the flexion–extension (F–E) and the adduction–abduction (A–A) joint angles of the hips and the flexion–extension (F–E) joint angles of the knees were calculated and compared with a camera motion capture system. The correlation coefficients were above 0.88 for the hip F–E, higher than 0.72 for the hip A–A, better than 0.92 for the knee F–E. A moving stick figure model of each volunteer was created to visually confirm the walking posture. Further, the knee and ankle joint trajectories in the horizontal plane showed that the left and right legs were bilaterally symmetric.  相似文献   

7.
This study examines the effects of a radical bariatric surgery-induced weight loss on the gait of obese subjects. We performed a three-dimensional motion analysis of lower limbs, and collected force platform data in the gait laboratory to calculate knee and hip joint moments. Subjects (n=13) performed walking trials in the laboratory before and 8.8 months (SD 4.2) after the surgical procedure at two gait speeds (1.2m/s and 1.5m/s). The average weight loss was 26.7kg (SD 9.2kg), corresponding to 21.5% (SD 6.8%) of the initial weight. We observed a decrease in step width at both gait speeds, but no changes in relative double support or swing time or stride length. A significant decrease was noted in the absolute values of peak knee abductor, peak knee flexor and peak hip extensor moments. However, the moment values normalized by the body weight and height remained unchanged in most cases. Thus, we conclude that weight loss reduces hip and knee joint moments in proportion to the amount of weight lost.  相似文献   

8.
Hip and knee functions are intimately connected and reduced hip abductor function might play a role in development of knee osteoarthritis (OA) by increasing the external knee adduction moment during walking. The purpose of this study was to test the hypothesis that reduced function of the gluteus medius (GM) muscle would lead to increased external knee adduction moment during level walking in healthy subjects. Reduced GM muscle function was induced experimentally, by means of intramuscular injections of hypertonic saline that produced an intense short-term muscle pain and reduced muscle function. Isotonic saline injections were used as non-painful control. Fifteen healthy subjects performed walking trials at their self-selected walking speed before and immediately after injections, and again after 20 min of rest, to ensure pain recovery. Standard gait analyses were used to calculate three-dimensional trunk and lower extremity joint kinematics and kinetics. Surface electromyography (EMG) of the glutei, quadriceps, and hamstring muscles were also measured. The peak GM EMG activity had temporal concurrence with peaks in frontal plane moments at both hip and knee joints. The EMG activity in the GM muscle was significantly reduced by pain (?39.6%). All other muscles were unaffected. Peaks in the frontal plane hip and knee joint moments were significantly reduced during pain (?6.4% and ?4.2%, respectively). Lateral trunk lean angles and midstance hip joint adduction and knee joint extension angles were reduced by ?1°. Thus, the gait changes were primarily caused by reduced GM function. Walking with impaired GM muscle function due to pain significantly reduced the external knee adduction moment. This study challenge the notion that reduced GM function due to pain would lead to increased loads at the knee joint during level walking.  相似文献   

9.
In this study, we examined Spatial–temporal gait stride parameters, lower extremity joint angles, ground reaction forces (GRF) components, and electromyographic activation patterns of 10 healthy elderly individuals (70 ± 6 years) walking in water and on land and compared them to a reference group of 10 younger adults (29 ± 6 years). They all walked at self-selected comfortable speeds both on land and while immersed in water at the Xiphoid process level. Concerning the elderly individuals, the main significant differences observed were that they presented shorter stride length, slower speed, lower GRF values, higher horizontal impulses, smaller knee range of motion, lower ankle dorsiflexion, and more knee flexion at the stride’s initial contact in water than on land. Concerning the comparison between elderly individuals and adults, elderly individuals walked significantly slower on land than adults but both groups presented the same speed walking in water. In water, elderly individuals presented significantly shorter stride length, lower stride duration, and higher stance period duration than younger adults. That is, elderly individuals’ adaptations to walking in water differ from those in the younger age group. This fact should be considered when prescribing rehabilitation or fitness programs for these populations.  相似文献   

10.
This study aimed to identify adaptive changes in running kinematics and impact shock transmission as a function of head stability requirements. Fifteen strides from twelve recreational runners were collected during preferred speed treadmill running. Head stability demands were manipulated through real-time visual feedback that required head-gaze orientation to maintain within boxes of different sizes, ranging from 21° to 3° of visual angle with 3° decrements. The main outcome measures were tibial and head peak accelerations in the time and frequency domains (impact and active phases), shock transmission from tibia to head, stride parameters, and sagittal plane joint kinematics. Increasing head stability requirements resulted in decreases in the amplitude and integrated power of head acceleration during the active phase of stance. During the impact portion of stance tibial and head acceleration and shock transmission remained similar across visual conditions. In response to increased head stability requirements, participants increased stride frequency approximately 8% above preferred, as well as hip flexion angle at impact; stance time and knee and ankle joint angles at impact did not change. Changes in lower limb joint configurations (smaller hip extension and ankle plantar-flexion and greater knee flexion) occurred at toe-off and likely contributed to reducing the vertical displacement of the center of mass with increased head stability demands. These adaptive changes in the lower limb enabled runners to increase the time that voluntary control is allowed without embedding additional impact loadings, and therefore active control of the head orientation was facilitated in response to different visual task constraints.  相似文献   

11.
The purpose of the present study was to determine the day-to-day reliability in stride characteristics in rats during treadmill walking obtained with two-dimensional (2D) motion capture. Kinematics were recorded from 26 adult rats during walking at 8 m/min, 12 m/min and 16 m/min on two separate days. Stride length, stride time, contact time, swing time and hip, knee and ankle joint range of motion were extracted from 15 strides. The relative reliability was assessed using intra-class correlation coefficients (ICC(1,1)) and (ICC(3,1)). The absolute reliability was determined using measurement error (ME). Across walking speeds, the relative reliability ranged from fair to good (ICCs between 0.4 and 0.75). The ME was below 91 mm for strides lengths, below 55 ms for the temporal stride variables and below 6.4° for the joint angle range of motion. In general, the results indicated an acceptable day-to-day reliability of the gait pattern parameters observed in rats during treadmill walking. The results of the present study may serve as a reference material that can help future intervention studies on rat gait characteristics both with respect to the selection of outcome measures and in the interpretation of the results.  相似文献   

12.
Active joint torques are the primary source of power and control in dynamic walking motion. However the amplitude, rate, timing and phasic behavior of the joint torques necessary to achieve a natural and stable performance are difficult to establish. The goal of this study was to demonstrate the feasibility and stable behavior of an actively controlled bipedal walking simulation wherein the natural system dynamics were preserved by an active, nonlinear, state-feedback controller patterned after passive downhill walking. A two degree-of-freedom, forward-dynamic simulation was implemented with active joint torques applied at the hip joints and stance leg ankle. Kinematic trajectories produced by the active walker were similar to passive dynamic walking with active joint torques influenced by prescribed walking velocity. The control resulted in stable steady-state gait patterns, i.e. eigenvalue magnitudes of the stride function were less than one. The controller coefficient analogous to the virtual slope was modified to successfully control average walking velocity. Furture developments are necessary to expand the range of walking velocities.  相似文献   

13.
Most clinical gait analyses are conducted using motion capture systems which track retro-reflective markers that are placed on key landmarks of the participants. An alternative to a three-dimensional (3D) motion capture, marker-based, optical camera system may be a marker-less video-based tracking system. The aim of our study was to investigate the efficacy of the use of a marker-less tracking system in the calculation of 3D joint angles for possible use in clinical gait analysis. Ten participants walked and jogged on a treadmill and their kinematic data were captured with a marker and marker-less tracking system simultaneously. The hip, knee and ankle angles in the frontal, sagittal and transverse planes were computed. Root Mean Square differences (RMSdiff) between corresponding angles for each participant’s support phase were calculated and averaged to derive the mean within-subject RMSdiff. These within-subject means were averaged to obtain the mean between-subject RMSdiff for the relevant joint angles in the two gait conditions (walking and jogging). The RMSdiff between the two tracking systems was less than 1° for all rotations of the three joint angles of the hip and knee. However, there were slightly larger differences in the ankle joint angles. The results of this study suggest a potential application in gait analysis in clinical settings where observations of anatomical motions may provide meaningful feedback.  相似文献   

14.
Diabetic neuropathy is related to joint stiffness during late stance phase   总被引:1,自引:0,他引:1  
The majority of plantar ulcers in the diabetic population occur in the forefoot. Peripheral neuropathy has been related to the occurrence of ulcers. Long-term diabetes results in the joints becoming passively stiffer. This static stiffness may translate to dynamic joint stiffness in the lower extremities during gait. Therefore, the purpose of this investigation was to demonstrate differences in ankle and knee joint stiffness between diabetic individuals with and without peripheral neuropathy during gait. Diabetic subjects with and without peripheral neuropathy were compared. Subjects were monitored during normal walking with three-dimensional motion analysis and a force plate. Neuropathic subjects had higher ankle stiffness (0.236 N.m/deg) during 65 to 80% of stance when compared with non-neuropathic subjects (-0.113 N.m/deg). Neuropathic subjects showed a different pattern in ankle stiffness compared with non-neuropathic subjects. Neuropathic subjects demonstrated a consistent level of ankle stiffness, whereas non-neuropathic subjects showed varying levels of stiffness. Neuropathic subjects demonstrated lower knee stiffness (0.015 N.m/deg) compared with non-neuropathic subjects (0.075 N.m/deg) during 50 to 65% of stance. The differences in patterns of ankle and knee joint stiffness between groups appear to be related to changes in timing of peak ankle dorsiflexion during stance, with the neuropathic group reaching peak dorsiflexion later than the non-neuropathic subjects. This may partially relate to the changes in plantar pressures beneath the metatarsal heads present in individuals with neuropathy.  相似文献   

15.
Walking is one of the fundamental motor tasks executed during aquatic therapy. Previous kinematics analyses conducted using waterproofed video cameras were limited to the sagittal plane and to only one or two consecutive steps. Furthermore, the set-up and post-processing are time-consuming and thus do not allow a prompt assessment of the correct execution of the movements during the aquatic session therapy. The aim of the present study was to estimate the 3D joint kinematics of the lower limbs and thorax-pelvis joints in sagittal and frontal planes during underwater walking using wearable inertial and magnetic sensors. Eleven healthy adults were measured during walking both in shallow water and in dry-land conditions. Eight wearable inertial and magnetic sensors were inserted in waterproofed boxes and fixed to the body segments by means of elastic modular bands. A validated protocol (Outwalk) was used. Gait cycles were automatically segmented and selected if relevant intraclass correlation coefficients values were higher than 0.75. A total of 704 gait cycles for the lower limb joints were normalized in time and averaged to obtain the mean cycle of each joint, among participants. The mean speed in water was 40% lower than that of the dry-land condition. Longer stride duration and shorter stride distance were found in the underwater walking. In the sagittal plane, the knee was more flexed (≈ 23°) and the ankle more dorsiflexed (≈ 9°) at heel strike, and the hip was more flexed at toe-off (≈ 13°) in water than on land. On the frontal plane in the underwater walking, smoother joint angle patterns were observed for thorax-pelvis and hip, and ankle was more inversed at toe-off (≈ 7°) and showed a more inversed mean value (≈ 7°). The results were mainly explained by the effect of the speed in the water as supported by the linear mixed models analysis performed. Thus, it seemed that the combination of speed and environment triggered modifications in the joint angles in underwater gait more than these two factors considered separately. The inertial and magnetic sensors, by means of fast set-up and data analysis, can supply an immediate gait analysis report to the therapist during the aquatic therapy session.  相似文献   

16.
Diabetic patients have an altered gait strategy during walking and are known to be at high risk of falling, especially when diabetic peripheral neuropathy is present. This study investigated alterations to lower limb joint torques during walking and related these torques to maximum strength in an attempt to elucidate why diabetic patients are more likely to fall. 20 diabetic patients with moderate/severe peripheral neuropathy (DPN), 33 diabetic patients without peripheral neuropathy (DM), and 27 non-diabetic controls (Ctrl) underwent gait analysis using a motion analysis system and force plates to measure kinetic parameters. Lower limb peak joint torques and joint work done (energy expenditure) were calculated during walking. The ratio of peak joint torques and individual maximum joint strengths (measured on a dynamometer) was then calculated for 59 of the 80 participants to yield the ‘operating strength’ for those participants. During walking DM and DPN patients showed significantly reduced peak torques at the ankle and knee. Maximum joint strengths at the knee were significantly less in both DM and DPN groups than Ctrls, and for the DPN group at the ankle. Operating strengths were significantly higher at the ankle in the DPN group compared to the Ctrls. These findings show that diabetic patients walk with reduced lower limb joint torques; however due to a decrement in their maximum ability at the ankle and knee, their operating strengths are higher. This allows less reserve strength if responding to a perturbation in balance, potentially increasing their risk of falling.  相似文献   

17.
Objectives:We aimed to determine whether GS can help to plan and rearrange the treated side by using IMUs to measure the joint angle of the hip, knee, and ankle. We hypothesized that the kinematics in healthy individuals for both sides are approximately equal during walking.Methods:IMUs were used to measure the joint angles of 25 healthy participants during walking. The participants performed the 10-meter walk test. The normalized symmetry index (SInorm) was used to calculate the symmetry of joint angles for the hip, knee, and ankle throughout the gait cycle.Results:The SInorm demonstrated high symmetry between both legs; and the ranges were -1.5% and 1.1% for the hip, -3.0% and 3.1% for the knee, and -12% and 9.2% for the ankle joint angle throughout the gait cycle.Conclusion:The SInorm provides strong information that can be helpful in the planning process for the surgeries. Further, the IMUs system gives the possibility to measure the patients before their surgeries and use their data to plan and rearrange for the operated side.  相似文献   

18.
Modern three-dimensional gait analysis systems give information on joint angles and moments in the sagittal and coronal planes, for which normal ranges may not be readily available in the literature. Since patients with joint disease tend to walk slowly and with a short stride, it is essential that normal ranges for gait parameters should be defined with reference to speed of walking. This we have done using a population of 10 normal male subjects agea from 18 to 63 years, walking at speeds which range from very slow to very fast. The ranges of knee angle and moment are given, together with the changes in these parameters with walking speed. Peak knee flexion moment is strongly related to walking speed, whereas coronal plane knee angle is virtually independent of it. The stride length is probably the best basis for deciding the normal range for a particular measurement.  相似文献   

19.
Positive and negative work are generated at the lower limb joints in order to locomote over various terrains. Joint work quantifies the changes in energy that are necessary to adapt gait to environmental demands. The aim of this study was to quantify 3D joint work at the hip, knee, and ankle during slope walking. Work was calculated for ten males (23.9 ± 1.1 years) walking at a self-selected speed on inclines and declines (−20, −12, −6, 0, 6, 12, 20 degrees). Sagittal positive work significantly increased at the hip, knee, and ankle for incline walking (for example, hip positive work increased 153%, 280%, and 453% for 6, 12, and 20 degrees, respectively; knee and ankle positive work also increased) (p ≤ 0.05), in order to raise and propel the body forward. Sagittal negative work increased significantly at the hip, knee and ankle for decline walking (for example, knee negative work increased 193%, 355%, and 496% for −6, −12, and −20 degrees, respectively; hip and ankle negative work also increased) (p ≤ 0.05), in order to control body descent. These substantial changes in work will be especially challenging for people with compromised strength due to age and disease. Furthermore, changes in work were not limited to the sagittal plane: 46% of the total hip joint work occurred in the frontal and transverse planes for six degree decline walking. Thus, decline walking placed greater demands on the hip ab/adductors and rotators, and this may be related to the greater risk of falls observed for descent versus ascent.  相似文献   

20.
The purpose of this study was to develop a method for identifying subject-specific passive elastic joint moment-angle relationships in the lower extremity, which could subsequently be used to estimate passive contributions to joint kinetics during gait. Twenty healthy young adults participated in the study. Subjects were positioned side-lying with their dominant limb supported on a table via low-friction carts. A physical therapist slowly manipulated the limb through full sagittal hip, knee, and ankle ranges of motion using two hand-held 3D load cells. Lower extremity kinematics, measured with a passive marker motion capture system, and load cell readings were used to compute joint angles and associated passive joint moments. We formulated a passive joint moment-angle model that included eight exponential functions to account for forces generated via the passive stretch of uni-articular structures and bi-articular muscles. Model parameters were estimated for individual subjects by minimizing the sum of squared errors between model predicted and experimentally measured moments. The model predictions closely replicated measured joint moments with average root-mean-squared errors of 2.5, 1.4, and 0.7 Nm about the hip, knee, and ankle respectively. We show that the models can be coupled with gait kinematics to estimate passive joint moments during walking. Passive hip moments were substantial from terminal stance through initial swing, with energy being stored as the hip extended and subsequently returned during pre- and initial swing. We conclude that the proposed methodology could provide quantitative insights into the potentially important role that passive mechanisms play in both normal and abnormal gait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号