首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PurposeA radiomics features classifier was implemented to evaluate segmentation quality of heart structures. A robust feature set sensitive to incorrect contouring would provide an ideal quantitative index to drive autocontouring optimization.MethodsTwenty-five cardiac sub-structures were contoured as regions of interest in 36 CTs. Radiomic features were extracted from manually-contoured (MC) and Hierarchical-Clustering automatic-contouring (AC) structures. A robust feature-set was identified from correctly contoured CT datasets. Features variation was analyzed over a MC/AC dataset. A supervised-learning approach was used to train an Artificial-Intelligence (AI) classifier; incorrect contouring cases were generated from the gold-standard MC datasets with translations, expansions and contractions. ROC curves and confusion matrices were used to evaluate the AI-classifier performance.ResultsTwenty radiomics features, were found to be robust across structures, showing a good/excellent intra-class correlation coefficient (ICC) index comparing MC/AC. A significant correlation was obtained with quantitative indexes (Dice-Index, Hausdorff-distance). The trained AI-classifier detected correct contours (CC) and not correct contours (NCC) with an accuracy of 82.6% and AUC of 0.91. True positive rate (TPR) was 85.1% and 81.3% for CC and NCC. Detection of NCC at this point of the development still depended strongly on degree of contouring imperfection.ConclusionsA set of radiomics features, robust on “gold-standard” contour and sensitive to incorrect contouring was identified and implemented in an AI-workflow to quantify segmentation accuracy. This workflow permits an automatic assessment of segmentation quality and may accelerate expansion of an existing autocontouring atlas database as well as improve dosimetric analyses of large treatment plan databases.  相似文献   

2.
PurposeNoticing the fast growing translation of artificial intelligence (AI) technologies to medical image analysis this paper emphasizes the future role of the medical physicist in this evolving field. Specific challenges are addressed when implementing big data concepts with high-throughput image data processing like radiomics and machine learning in a radiooncology environment to support clinical decisions.MethodsBased on the experience of our interdisciplinary radiomics working group, techniques for processing minable data, extracting radiomics features and associating this information with clinical, physical and biological data for the development of prediction models are described. A special emphasis was placed on the potential clinical significance of such an approach.ResultsClinical studies demonstrate the role of radiomics analysis as an additional independent source of information with the potential to influence the radiooncology practice, i.e. to predict patient prognosis, treatment response and underlying genetic changes. Extending the radiomics approach to integrate imaging, clinical, genetic and dosimetric data (‘panomics’) challenges the medical physicist as member of the radiooncology team.ConclusionsThe new field of big data processing in radiooncology offers opportunities to support clinical decisions, to improve predicting treatment outcome and to stimulate fundamental research on radiation response both of tumor and normal tissue. The integration of physical data (e.g. treatment planning, dosimetric, image guidance data) demands an involvement of the medical physicist in the radiomics approach of radiooncology. To cope with this challenge national and international organizations for medical physics should organize more training opportunities in artificial intelligence technologies in radiooncology.  相似文献   

3.
BackgroundPrevious epidemiological studies have examined the prevalence and risk factors for a variety of parasitic illnesses, including protozoan and soil-transmitted helminth (STH, e.g., hookworms and roundworms) infections. Despite advancements in machine learning for data analysis, the majority of these studies use traditional logistic regression to identify significant risk factors.MethodsIn this study, we used data from a survey of 54 risk factors for intestinal parasitosis in 954 Ethiopian school children. We investigated whether machine learning approaches can supplement traditional logistic regression in identifying intestinal parasite infection risk factors. We used feature selection methods such as InfoGain (IG), ReliefF (ReF), Joint Mutual Information (JMI), and Minimum Redundancy Maximum Relevance (MRMR). Additionally, we predicted children’s parasitic infection status using classifiers such as Logistic Regression (LR), Support Vector Machines (SVM), Random Forests (RF) and XGBoost (XGB), and compared their accuracy and area under the receiver operating characteristic curve (AUROC) scores. For optimal model training, we performed tenfold cross-validation and tuned the classifier hyperparameters. We balanced our dataset using the Synthetic Minority Oversampling (SMOTE) method. Additionally, we used association rule learning to establish a link between risk factors and parasitic infections.Key findingsOur study demonstrated that machine learning could be used in conjunction with logistic regression. Using machine learning, we developed models that accurately predicted four parasitic infections: any parasitic infection at 79.9% accuracy, helminth infection at 84.9%, any STH infection at 95.9%, and protozoan infection at 94.2%. The Random Forests (RF) and Support Vector Machines (SVM) classifiers achieved the highest accuracy when top 20 risk factors were considered using Joint Mutual Information (JMI) or all features were used. The best predictors of infection were socioeconomic, demographic, and hematological characteristics.ConclusionsWe demonstrated that feature selection and association rule learning are useful strategies for detecting risk factors for parasite infection. Additionally, we showed that advanced classifiers might be utilized to predict children’s parasitic infection status. When combined with standard logistic regression models, machine learning techniques can identify novel risk factors and predict infection risk.  相似文献   

4.
BackgroundThe purpose of this study was to characterize pre-treatment non-contrast computed tomography (CT) and 18F-fluorodeoxyglucose positron emission tomography (PET) based radiomics signatures predictive of pathological response and clinical outcomes in rectal cancer patients treated with neoadjuvant chemoradiotherapy (NACR T).Materials and methodsAn exploratory analysis was performed using pre-treatment non-contrast CT and PET imaging dataset. The association of tumor regression grade (TRG) and neoadjuvant rectal (NAR) score with pre-treatment CT and PET features was assessed using machine learning algorithms. Three separate predictive models were built for composite features from CT + PET.ResultsThe patterns of pathological response were TRG 0 (n = 13; 19.7%), 1 (n = 34; 51.5%), 2 (n = 16; 24.2%), and 3 (n = 3; 4.5%). There were 20 (30.3%) patients with low, 22 (33.3%) with intermediate and 24 (36.4%) with high NAR scores. Three separate predictive models were built for composite features from CT + PET and analyzed separately for clinical endpoints. Composite features with α = 0.2 resulted in the best predictive power using logistic regression. For pathological response prediction, the signature resulted in 88.1% accuracy in predicting TRG 0 vs. TRG 1–3; 91% accuracy in predicting TRG 0–1 vs. TRG 2–3. For the surrogate of DFS and OS, it resulted in 67.7% accuracy in predicting low vs. intermediate vs. high NAR scores.ConclusionThe pre-treatment composite radiomics signatures were highly predictive of pathological response in rectal cancer treated with NACR T. A larger cohort is warranted for further validation.  相似文献   

5.
《Translational oncology》2020,13(10):100820
To evaluate the clinical features and radiomics nomograms of tumors and peritumoral regions for the preoperative prediction of the presence of spread through air spaces (STAS) in patients with lung adenocarcinoma. A total of 107 STAS-positive lung adenocarcinomas were selected and matched to 105 STAS-negative lung adenocarcinomas. Thin-slice CT imaging annotation and region of interest (ROI) segmentation were performed with semi-automatic in-house software. Radiomics features were extracted from all nodules and incremental distances of 5, 10, and 15 mm outside the lesion segmentation. A radiomics nomogram was established with multivariable logistic regression based on clinical and radiomics features. The maximum diameter of the solid component and mediastinal lymphadenectasis were selected as independent predictors of STAS. The radiomics nomogram of lung nodules showed especially good prediction in the training set [area under the curve (AUC), 0.98; 95% confidence interval (CI), 0.97–1.00] and test set (AUC, 0.99; 95% CI, 0.97–1.00). The radiomics nomogram of peritumoral regions also showed good prediction, but the fitting degrees of the calibration curves were not good. Our study may provide guidance for surgical methods in patients with lung adenocarcinoma.  相似文献   

6.
PurposeIt is difficult to make a clear differential diagnosis of pancreatic carcinoma (PC) and mass-forming chronic pancreatitis (MFCP) via conventional examinations. We aimed to develop a novel model incorporating an MRI-based radiomics signature with clinical biomarkers for distinguishing the two lesions.MethodsA total of 102 patients were retrospectively enrolled and randomly divided into the training and validation cohorts. Radiomics features were extracted from four different sequences. Individual imaging modality radiomics signature, multiparametric MRI (mp-MRI) radiomics signature, and a final mixed model based on mp-MRI and clinically independent risk factors were established to discriminate between PC and MFCP. The diagnostic performance of each model and model discrimination were assessed in both the training and validation cohorts.ResultsADC had the best predictive performance among the four individual radiomics models, but there were no significant differences between the pairs of models (all p > 0.05). Six potential radiomics features were finally selected from the 960 texture features to formulate the radiomics score (rad-score) of the mp-MRI model. In addition, the boxplot results of the distributions of rad-scores identified the rad-score as an independent predictive factor for the differentiation of PC and MFCP (p< 0.001). Notably, the nomogram integrating rad-score and clinically independent risk factors had a better diagnostic performance than the mp-MRI and clinical models. These results were further confirmed by the validation group.ConclusionThe mixed model was developed and preliminarily validated to distinguish PC from MFCP, which may benefit the formulation of treatment strategies and nonsurgical procedures.  相似文献   

7.
BackgroundIntravoxel incoherent motion (IVIM) plays an important role in predicting treatment responses in patient with nasopharyngeal carcinoma (NPC). The goal of this study was to develop and validate a radiomics nomogram based on IVIM parametric maps and clinical data for the prediction of treatment responses in NPC patients.MethodsEighty patients with biopsy-proven NPC were enrolled in this study. Sixty-two patients had complete responses and 18 patients had incomplete responses to treatment. Each patient received a multiple b-value diffusion-weighted imaging (DWI) examination before treatment. Radiomics features were extracted from IVIM parametric maps derived from DWI image. Feature selection was performed by the least absolute shrinkage and selection operator method. Radiomics signature was generated by support vector machine based on the selected features. Receiver operating characteristic (ROC) curves and area under the ROC curve (AUC) values were used to evaluate the diagnostic performance of radiomics signature. A radiomics nomogram was established by integrating the radiomics signature and clinical data.ResultsThe radiomics signature showed good prognostic performance to predict treatment response in both training (AUC = 0.906, P<0.001) and testing (AUC = 0.850, P<0.001) cohorts. The radiomic nomogram established by integrating the radiomic signature with clinical data significantly outperformed clinical data alone (C-index, 0.929 vs 0.724; P<0.0001).ConclusionsThe IVIM-based radiomics nomogram provided high prognostic ability to treatment responses in patients with NPC. The IVIM-based radiomics signature has the potential to be a new biomarker in prediction of the treatment responses and may affect treatment strategies in patients with NPC.  相似文献   

8.
PurposeTo evaluate the potential of 2D texture features extracted from magnetic resonance (MR) images for differentiating brain metastasis (BM) and glioblastomas (GBM) following a radiomics approach.MethodsThis retrospective study included 50 patients with BM and 50 with GBM who underwent T1-weighted MRI between December 2010 and January 2017. Eighty-eight rotation-invariant texture features were computed for each segmented lesion using six texture analysis methods. These features were also extracted from the four images obtained after applying the discrete wavelet transform (88 features × 4 images). Three feature selection methods and five predictive models were evaluated. A 5-fold cross-validation scheme was used to randomly split the study group into training (80 patients) and testing (20 patients), repeating the process ten times. Classification was evaluated computing the average area under the receiver operating characteristic curve. Sensibility, specificity and accuracy were also computed. The whole process was tested quantizing the images with different gray-level values to evaluate their influence in the final results.ResultsHighest classification accuracy was obtained using the original images quantized with 128 gray-levels and a feature selection method based on the p-value. The best overall performance was achieved using a support vector machine model with a subset of 32 features (AUC = 0.896 ± 0.067, sensitivity of 82% and specificity of 80%). Naïve Bayes and k-nearest neighbors models showed also valuable results (AUC ≈ 0.8) with a lower number of features (<13), thus suggesting that these models may be more generalizable when using external validations.ConclusionThe proposed radiomics MRI approach is able to discriminate between GBM and BM with high accuracy employing a set of 2D texture features, thus helping in the diagnosis of brain lesions in a fast and non-invasive way.  相似文献   

9.
PurposeTo establish a model for assessing the overall survival (OS) of the hepatocellular carcinoma (HCC) patients after hepatectomy based on the clinical and radiomics features.MethodsThis study recruited a total of 267 patients with HCC, which were randomly divided into the training (N = 188) and validation (N = 79) cohorts. In the training cohort, radiomic features were selected with the intra-reader and inter-reader correlation coefficient (ICC), Spearman's correlation coefficient, and the least absolute shrinkage and selection operator (LASSO). The radiomics signatures were built by COX regression analysis and compared the predictive potential in the different phases (arterial, portal, and double-phase) and regions of interest (tumor, peritumor 3 mm, peritumor 5 mm). A clinical-radiomics model (CR model) was established by combining the radiomics signatures and clinical risk factors. The validation cohort was used to validate the proposed models.ResultsA total of 267 patients 86 (45.74%) and 37 (46.84%) patients died in the training and validation cohorts, respectively. Among all the radiomics signatures, those based on the tumor and peritumor (5 mm) (AP-TP5-Signature) showed the best prognostic potential (training cohort 1–3 years AUC:0.774–0.837; validation cohort 1–3 years AUC:0.754–0.810). The CR model showed better discrimination, calibration, and clinical applicability as compared to the clinical model and radiomics features. In addition, the CR model could perform risk-stratification and also allowed for significant discrimination between the Kaplan-Meier curves in most of the subgroups.ConclusionsThe CR model could predict the OS of the HCC patients after hepatectomy.  相似文献   

10.
《IRBM》2022,43(5):333-339
1) ObjectivesPreterm birth caused by preterm labor is one of the major health problems in the world. In this article, we present a new framework for dealing with this problem through the processing of electrohysterographic signals (EHG) that are recorded during labor and pregnancy. The objective in this research is to improve the classification between labor and pregnancy contractions by using a new approach that focuses on the connectivity analysis based on graph parameters, representative of uterine synchronization, and comparing neural network and machine learning methods in order to classify between labor and pregnancy.2) Material and methodsafter denoising of the 16 EHG signals recorded from pregnant women abdomen, we applied different connectivity methods to obtain connectivity matrices; then by using the graph theory, we extracted some graph parameters from the connectivity matrices; finally, we tested different neural network and machine learning methods on the features obtained from both graph and connectivity methods in order to classify between labor and pregnancy.3) ResultsThe best results were obtained by using the logistic regression method. We also evidence the power of graph parameters extracted from the connectivity matrices to improve the classification results.4) ConclusionThe use of graph analysis associated with machine learning methods can be a powerful tool to improve labor and pregnancy classification based on the analysis of EHG signals.  相似文献   

11.
BackgroundThis study aimed to identify a series of prognostically relevant immune features by immunophenoscore. Immune features were explored using MRI radiomics features to prediction the overall survival (OS) of lower-grade glioma (LGG) patients and their response to immune checkpoints.MethodLGG data were retrieved from TCGA and categorized into training and internal validation datasets. Patients attending the First Affiliated Hospital of Harbin Medical University were included in an external validation cohort. An immunophenoscore-based signature was built to predict malignant potential and response to immune checkpoint inhibitors in LGG patients. In addition, a deep learning neural network prediction model was built for validation of the immunophenoscore-based signature.ResultsImmunophenotype-associated mRNA signatures (IMriskScore) for outcome prediction and ICB therapeutic effects in LGG patients were constructed. Deep learning of neural networks based on radiomics showed that MRI radiomic features determined IMriskScore. Enrichment analysis and ssGSEA correlation analysis were performed. Mutations in CIC significantly improved the prognosis of patients in the high IMriskScore group. Therefore, CIC is a potential therapeutic target for patients in the high IMriskScore group. Moreover, IMriskScore is an independent risk factor that can be used clinically to predict LGG patient outcomes.ConclusionsThe IMriskScore model consisting of a sets of biomarkers, can independently predict the prognosis of LGG patients and provides a basis for the development of personalized immunotherapy strategies. In addition, IMriskScore features were predicted by MRI radiomics using a deep learning approach using neural networks. Therefore, they can be used for the prognosis of LGG patients.  相似文献   

12.
This work aims to identify a new radiomics signature using imaging phenotypes and clinical variables for risk prediction of overall survival (OS) in hepatocellular carcinoma (HCC) patients treated with stereotactic body radiation therapy (SBRT). 167 patients were retrospectively analyzed with repeated nested cross-validation to mitigate overfitting issues. 56 radiomic features were extracted from pre-treatment contrast-enhanced (CE) CT images. 37 clinical factors were obtained from patients' electronic records. Variational autoencoders (VAE) based survival models were designed for radiomics and clinical features and a convolutional neural network (CNN) survival model was used for the CECT. Finally, radiomics, clinical and raw image deep learning network (DNN) models were combined to predict the risk probability for OS. The final models yielded c-indices of 0.579 (95%CI: 0.544–0.621), 0.629 (95%CI: 0.601–0.643), 0.581 (95%CI: 0.553–0.613) and 0.650 (95%CI: 0.635–0.683) for radiomics, clinical, image input and combined models on nested cross validation scheme, respectively. Integrated gradients method was used to interpret the trained models. Our interpretability analysis of the DNN showed that the top ranked features were clinical liver function and liver exclusive of tumor radiomics features, which suggests a prominent role of side effects and toxicities in liver outside the tumor region in determining the survival rate of these patients. In summary, novel deep radiomic analysis provides improved performance for risk assessment of HCC prognosis compared with Cox survival models and may facilitate stratification of HCC patients and personalization of their treatment strategies. Liver function was found to contribute most to the OS for these HCC patients and radiomics can aid in their management.  相似文献   

13.
PURPOSE: To build and validate a radiomics-based nomogram for the prediction of pre-operation lymph node (LN) metastasis in esophageal cancer. PATIENTS AND METHODS: A total of 197 esophageal cancer patients were enrolled in this study, and their LN metastases have been pathologically confirmed. The data were collected from January 2016 to May 2016; patients in the first three months were set in the training cohort, and patients in April 2016 were set in the validation cohort. About 788 radiomics features were extracted from computed tomography (CT) images of the patients. The elastic-net approach was exploited for dimension reduction and selection of the feature space. The multivariable logistic regression analysis was adopted to build the radiomics signature and another predictive nomogram model. The predictive nomogram model was composed of three factors with the radiomics signature, where CT reported the LN number and position risk level. The performance and usefulness of the built model were assessed by the calibration and decision curve analysis. RESULTS: Thirteen radiomics features were selected to build the radiomics signature. The radiomics signature was significantly associated with the LN metastasis (P<0.001). The area under the curve (AUC) of the radiomics signature performance in the training cohort was 0.806 (95% CI: 0.732-0.881), and in the validation cohort it was 0.771 (95% CI: 0.632-0.910). The model showed good discrimination, with a Harrell’s Concordance Index of 0.768 (0.672 to 0.864, 95% CI) in the training cohort and 0.754 (0.603 to 0.895, 95% CI) in the validation cohort. Decision curve analysis showed our model will receive benefit when the threshold probability was larger than 0.15. CONCLUSION: The present study proposed a radiomics-based nomogram involving the radiomics signature, so the CT reported the status of the suspected LN and the dummy variable of the tumor position. It can be potentially applied in the individual preoperative prediction of the LN metastasis status in esophageal cancer patients.  相似文献   

14.
ObjectiveTo construct an MR-radiomics nomogram to predict minimal hepatic encephalopathy (MHE) in patients with chronic hepatic schistosomiasis (CHS).MethodsFrom July 2017 to July 2020, 236 CHS patients with non-HE (n = 140) and MHE (n = 96) were retrospective collected and randomly divided into training group and testing group. Radiomics features were extracted from substantia nigra-striatum system of a brain diffusion weighted images (DWI) and combined with clinical predictors to build a radiomics nomogram for predicting MHE in CHS patients. The ROC curve was used to evaluate the predicting performance in training group and testing group. The clinical decisive curve (CDC) was used to assess the clinical net benefit of using radiomics nomogram in predicting MHE.ResultsLow seralbumin (P < 0.05), low platelet count (P < 0.05) and high plasma ammonia (P < 0.05) was the significant clinical predictors for MHE in CHS patients. The AUC, specificity and sensitivity of the radiomics nomogram were 0.89, 0.90 and 0.86 in the training group, and were 0.83, 0.85 and 0.75 in the training group. The CDC analysis showed clinical net benefits for the radiomics nomogram in predicting MHE.ConclusionsThe radiomics nomogram combining DWI radiomics features and clinical predictors could be useful tool to predict MHE in CHS patients.  相似文献   

15.
BackgroundThe aim of the study was to evaluate the management, toxicity and treatment responses of patients treated with neoadjuvant radiotherapy (NART) for soft tissue sarcomas (STS) and to analyse the potential of radiomic features extracted from computed tomography (CT) scans.Materials and methodsThis is a retrospective and exploratory study with patients treated between 2006 and 2019. Acute and chronic toxicities are evaluated. Local progression free survival (LPFS), distant progression free survival (DPFS) and overall survival (OS) are analysed. Radiomic features are obtained.ResultsA total of 25 patients were included. Median follow-up is 24 months. Complications in surgical wound healing were observed in 20% of patients, chronic fibrosis was documented as grade 1 (12%) and grade 2 (12%) without grade 3 events and chronic lymphedema as grade 1 (8%) and grade 2 (20%) without grade 3 events. Survival variables were LPFS 76%, DPFS 62% and OS 67.2% at 2-year follow-up. CT radiomics features were associated significantly with local control (GLCM-correlation), systemic control (HUmin, HUpeak, volume, GLCM-correlation and GLZLM-GLNU) and OS (GLZLM-SZE).ConclusionsSTS treated with NART in our centre associate with an OS and toxicity comparable to other series. CT radiomic features have a prognosis potential in STS risk stratification. The results of our study may serve as a motivation for future prospective studies with a greater number of patients.  相似文献   

16.
Biomarkers which can identify Diffuse Large B-Cell Lymphoma (DLBCL) likely to be refractory to first-line therapy are essential for selecting this population prior to therapy initiation to offer alternate therapeutic options that can improve prognosis. We tested the ability of a CT-based radiomics approach with machine learning to predict Primary Treatment Failure (PTF)-DLBCL from initial imaging evaluation. Twenty-six refractory patients were matched to 26 non-refractory patients, yielding 180 lymph nodes for analysis. Manual 3D delineation of the total node volume was performed by two independent readers to test the reproducibility. Then, 1218 hand-crafted radiomic features were extracted. The Random Forests machine learning approach was used as a classifier for constructing the prediction models. Seventy percent of the nodes were randomly assigned to a training set and the remaining 30% were assigned to an independent test set. The final model was tested on the dataset from the 2 readers, showing a mean accuracy, sensitivity and specificity of 73%, 62% and 82%, respectively, for distinguishing between refractory and non-refractory patients. The area under the receiver operating characteristic curve (AUC) was 0.83 and 0.79 for the two readers. We conclude that machine learning CT-based radiomics analysis is able to identify a priori PTF-DLBCL with a good accuracy.  相似文献   

17.
18.
PurposeTo establish and validate a nomogram model incorporating both liver imaging reporting and data system (LI-RADS) features and contrast enhanced magnetic resonance imaging (CEMRI)-based radiomics for predicting microvascular invasion (MVI) in hepatocellular carcinoma (HCC) falling the Milan criteria.MethodsIn total, 161 patients with 165 HCCs diagnosed with MVI (n = 99) or without MVI (n = 66) were assigned to a training and a test group. MRI LI-RADS characteristics and radiomics features selected by the LASSO algorithm were used to establish the MRI and Rad-score models, respectively, and the independent features were integrated to develop the nomogram model. The predictive ability of the nomogram was evaluated with receiver operating characteristic (ROC) curves.ResultsThe risk factors associated with MVI (P<0.05) were related to larger tumor size, nonsmooth margin, mosaic architecture, corona enhancement and higher Rad-score. The areas under the ROC curve (AUCs) of the MRI feature model for predicting MVI were 0.85 (95% CI: 0.78–0.92) and 0.85 (95% CI: 0.74–0.95), and those for the Rad-score were 0.82 (95% CI: 0.73–0.90) and 0.80 (95% CI: 0.67–0.93) in the training and test groups, respectively. The nomogram presented improved AUC values of 0.87 (95% CI: 0.81–0.94) in the training group and 0.89 (95% CI: 0.81–0.98) in the test group (P<0.05) for predicting MVI. The calibration curve and decision curve analysis demonstrated that the nomogram model had high goodness-of-fit and clinical benefits.ConclusionsThe nomogram model can effectively predict MVI in patients with HCC falling within the Milan criteria and serves as a valuable imaging biomarker for facilitating individualized decision-making.  相似文献   

19.
PurposeElectronic portal imaging detector (EPID)-based patient positioning verification is an important component of safe radiotherapy treatment delivery. In computer simulation studies, learning-based approaches have proven to be superior to conventional gamma analysis in the detection of positioning errors. To approximate a clinical scenario, the detectability of positioning errors via EPID measurements was assessed using radiomics analysis for patients with thyroid-associated ophthalmopathy.MethodsTreatment plans of 40 patients with thyroid-associated ophthalmopathy were delivered to a solid anthropomorphic head phantom. To simulate positioning errors, combinations of 0-, 2-, and 4-mm translation errors in the left–right (LR), superior-inferior (SI), and anterior-posterior (AP) directions were introduced to the phantom. The positioning errors-induced dose differences between measured portal dose images were used to predict the magnitude and direction of positioning errors. The detectability of positioning errors was assessed via radiomics analysis of the dose differences. Three classification models—support vector machine (SVM), k-nearest neighbors (KNN), and XGBoost—were used for the detection of positioning errors (positioning errors larger or smaller than 3 mm in an arbitrary direction) and direction classification (positioning errors larger or smaller than 3 mm in a specific direction). The receiver operating characteristic curve and the area under the ROC curve (AUC) were used to evaluate the performance of classification models.ResultsFor the detection of positioning errors, the AUC values of SVM, KNN, and XGBoost models were all above 0.90. For LR, SI, and AP direction classification, the highest AUC values were 0.76, 0.91, and 0.80, respectively.ConclusionsCombined radiomics and machine learning approaches are capable of detecting the magnitude and direction of positioning errors from EPID measurements. This study is a further step toward machine learning-based positioning error detection during treatment delivery with EPID measurements.  相似文献   

20.
We compared the ability of a radiomics model, morphological imaging model, and clinicopathological risk model to predict 3-year overall survival (OS) in 206 patients with rectal cancer who underwent radical surgery and had magnetic resonance imaging, clinicopathological, and OS data available. The patients were randomized to a training cohort (n = 146) and a verification cohort (n = 60). Radiomics features were extracted from preoperative T2-weighted images, and a radiomics score model was constructed. Factors that were significant in the Cox multivariate analysis were used to construct the final morphological tumor model and clinicopathological model. A comprehensive model in the form of a line chart was established by combining the three models. Ten radiomics features significantly related to OS were selected to construct the radiomics feature model and calculate the radiomics score. In the morphological model, mesorectal extension depth and distance between the lower tumor margin and the anal margin were significant prognostic factors. N stage was the only significant clinicopathological factor. The comprehensive model combined with the above factors had the best prediction performance for OS. The C-index had a predictive performance of 0.872 (95% confidence interval [CI]: 0.832–0.912) in the training cohort and 0.944 (95% CI: 0.890–0.990) in the verification cohort, which was better than for any single model. The comprehensive model was divided into high-risk and low-risk groups. Kaplan-Meier curve analysis showed that all factors were significantly correlated with poor OS in the high-risk group. A comprehensive nomogram based on multi-model radiomics features can predict 3-year OS after rectal cancer surgery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号