首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张悦  徐硕  王楠  池萍  张馨月  程海荣 《微生物学报》2022,62(11):4165-4175
微生物发酵过程中泡沫的产生是发酵领域遇到的共性问题。在不影响发酵性能的前提下抑制菌株的产泡,对简化操作以及降低发酵成本具有较为重要的意义。解脂耶氏酵母(Yarrowia lipolytica,之前称为Candida lipolytica)是一种常用的合成生物学底盘,也是合成赤藓糖醇等功能糖醇的生产菌株。但在发酵合成赤藓糖醇的过程中会产生大量的泡沫,需要添加消泡剂以消除泡沫。【目的】本研究旨在开发一种产泡能力显著降低的解脂耶氏酵母新菌株,以减少赤藓糖醇发酵过程中消泡剂的添加。【方法】本研究利用解脂耶氏酵母中非同源靶向重组占支配地位的原理,采用一段外源DNA随机插入基因组的手段,随机突变基因组,改变菌株的发酵产泡性能,使突变株在发酵过程中不产泡或者降低其产泡的能力。【结果】通过筛选,获得一株在发酵过程中产泡性能显著降低的工程菌株,该菌株在保留高效合成赤藓糖醇性能的同时,显著降低了泡沫的产生。【结论】所获得的菌株对工业发酵合成赤藓糖醇具有较为重要的意义,也为控制其他微生物发酵过程中泡沫的生成提供了思路。  相似文献   

2.
Erythritol is a natural sweetener commonly used in the food and pharmaceutical industries. Produced by microorganisms as an osmoprotectant, it is an ideal sucrose substitute for diabetics or overweight persons due to its almost zero calorie content. Currently, erythritol is produced on an industrial scale through the fermentation of sugars by some yeasts, such as Moniliella sp. However, the popularity of erythritol as a sweetener is still small because of its high retail price. This creates an opportunity for further process improvement. Recent years have brought the rapid development of erythritol biosynthesis methods from the low-cost substrates, and a better understanding of the metabolic pathways leading to erythritol synthesis. The yeast Yarrowia lipolytica emerges as an organism effectively producing erythritol from pure or crude glycerol. Moreover, novel erythritol producing organisms and substrates may be taken into considerations due to metabolic engineering. This review focuses on the modification of erythritol production to use low-cost substrates and metabolic engineering of the microorganisms in order to improve yield and productivity.  相似文献   

3.
To improve the erythritol productivity ofPenicillium sp. KJ81, mutants were obtained using UV irradiation and NTG treatment. Among these mutants,Penicillium sp. KJ-UV29 revealed no morphological changes, yet was superior to the wild strain in the following three points: (1)Penicillium sp. KJ-UV29 produced more erythritol than the wild strain under the same conditions, (2) no foam was produced during cultivation, unlike the wild strain, and (3) the mutant produced a significantly lower amount of glycerol.Penicillium sp KJ-UV29 produced as much as 15.1 g/L of erythritol, whereas the wild-typePenicillium sp. KJ-UV29 produced as much as 15.1 g/L of erythritol, whereas the wild-typePenicillium sp. KJ81 only produced 11.7 g/L.Penicillium sp. KJ-UV29 only generated 6.1 g/L of glycerol, compared to 19.4 g/L produced by the wild strain. When investigating the optimal culture conditions for erythritol production by the mutant strainPenicillium sp. KJ-UV29, sucrose was idetified as the most effective carbon source, and the mutant was even able to produce erythritol in a 70% sucrose-containing medium, although a 30% sucrose medium exhibited the highest productivity. The production of erythritol byPenicillium sp. KJ-UV29 was also significantly increased by the addition of ammonium carbonate, potassium nitrate, and sodium nitrate. Accordingly, under optimal conditions,Penicillium sp. KJ-UV29 produced 45.2 g/L of erythritol in a medium containing 30% sucrose, 0.5% yeast extract, 0.5% (NH4)2C2O4 0.1% NaNO3, and 0.01% FeSO4 with 1 vvm aeration and 200 rpm agitation at 37°C for 7 days in a 5-L jar fermentor.  相似文献   

4.
吡咯喹啉醌(PQQ)是一种细菌脱氢酶的辅酶,具有促进机体生长、调节机体自由基水平等功能,应用于食品、医药等领域。由于化学合成法成本较高,微生物发酵法生产PQQ受到关注。目前,发酵法生产PQQ产量较低,限制了其工业应用。然而,由于对PQQ菌株的合成与调控机制尚缺乏深入理解,以及对野生型菌株缺乏必要的基因工程改造手段,目前采用代谢工程强化PQQ合成菌株还缺乏相关基础。因此,本研究以扭脱甲基杆菌Methylobacterium extorquens I-F2为研究对象,整合常压室温等离子体诱变、流式细胞术分选和高通量筛选策略,对样品制备和流式分选过程进行优化,最终筛选出一株PQQ高产突变菌株1-C6,PQQ产量比出发菌株I-F2提高98.02%。本文所述的流式细胞术结合高通量筛选方法能简单、快速地获得高产突变菌株,相比于基因工程改造和传统筛选方法,具有提升效果明显且易于实施等优势。  相似文献   

5.
Erythritol is a four-carbon sugar alcohol synthesized by osmophilic yeasts, such as Yarrowia lipolytica, in response to osmotic stress. This metabolite has application as food additive due to its sweetening properties. Although Y. lipolytica can produce erythritol at a high level from glycerol, it is also able to consume it as carbon source. This ability negatively affects erythritol productivity and represents a serious drawback for the development of an efficient erythritol production process. In this study, we have isolated by insertion mutagenesis a Y. lipolytica mutant unable to grow on erythritol. Genomic characterization of the latter highlighted that the mutant phenotype is directly related to the disruption of the YALI0F01606g gene. Several experimental evidences suggested that the identified gene, renamed EYK1, encodes an erythrulose kinase. The mutant strain showed an enhanced capacity to produce erythritol as compared to the wild-type strain. Moreover, in specific experimental conditions, it is also able to convert erythritol to erythrulose, another compound of biotechnological interest.  相似文献   

6.
二十二碳六烯酸(DHA)具有促进婴幼儿大脑和视网膜发育等多种生理功能,被广泛应用于食品、医药和养殖等行业。为了获得适合于工业化生产的高产油、高产DHA的裂殖壶菌工程株,文中建立了一套操作简单、快速准确的基于尼罗红染色的高通量筛选方案。首先利用紫外线(UVC)诱变的方式快速构建裂殖壶菌的随机突变体库。然后采用优化后的筛选条件如裂殖壶菌的最佳尼罗红染色条件(二甲基亚砜浓度为20%,尼罗红终浓度为2.0μg/mL,孵育时间为10 min,孵育温度为40℃)和更合理的筛选依据(多功能酶标仪实现高通量测量的单位细胞密度油脂量)等,对3 648株突变体进行筛选,得到了3株高产油突变体(D03432、D05106和D01521)。摇瓶发酵实验表明,这3株突变体在生物量、油脂含量和DHA产量上均高于野生型菌株,其中突变体D03432和D05106的油脂量分别达到了干重的64.74%和63.13%,远高于野生型菌株的43.19%。而且这两株突变体的DHA产量分别是野生型菌株的2.26倍和2.37倍。最后,对突变体D03432和D05106进行了5 L发酵罐发酵培养,相较于野生型菌株,这两株突变体不仅生物量和油脂含量有所增加,而且DHA产量更是分别增加了45.5 1%和66.46%,展现出较好的工业应用潜力。此外,本筛选方案对其他产油微生物高产油突变体的高通量筛选具有借鉴作用。  相似文献   

7.
Erythritol (1,2,3,4-butanetetrol) is a four-carbon sugar alcohol with sweetening properties that is used by the agrofood industry as a food additive. In this study, we demonstrated that metabolic engineering can be used to improve the production of erythritol from glycerol in the yeast Yarrowia lipolytica. The best results were obtained using a mutant that overexpressed GUT1 and TKL1, which encode a glycerol kinase and a transketolase, respectively, and in which EYK1, which encodes erythrulose kinase, was disrupted; the latter enzyme is involved in an early step of erythritol catabolism. In this strain, erythritol productivity was 75% higher than in the wild type; furthermore, the culturing time needed to achieve maximum concentration was reduced by 40%. An additional advantage is that the strain was unable to consume the erythritol it had created, further increasing the process's efficiency. The erythritol productivity values we obtained here are among the highest reported thus far.  相似文献   

8.
Rapamycin is a triene macrolide antibiotic produced by Streptomyces hygroscopicus. Besides its wide application as an effective immunosuppressive agent, other important bioactivities have made rapamycin a potential drug lead for novel pharmaceutical development. However, the low titer of rapamycin in the original producer strain limits further industrialization efforts and restricts its use for other applications. Predicated on knowledge of the metabolic pathways related to rapamycin biosynthesis in S. hygroscopicus, we have rationally designed approaches to generate a rapamycin high producer strain of S. hygroscopicus HD‐04‐S. These have included alleviation of glucose repression, improved tolerance towards lysine and shikimic acid, and auxotrophy of tryptophan and phenylalanine through the application of stepwise UV mutagenesis. The resultant strain produced rapamycin at 450 mg/L in the shake flask scale. These fermentations were further scaled up in 120 and 20,000 L fermentors, respectively, at the pilot plant. Selected fermentation factors including agitation speed, pH, and on‐line supplementation were systematically evaluated. A fed‐batch strategy was established to maximize rapamycin production. With these efforts, an optimized fermentation process in the larger scale fermentor was developed. The final titer of rapamycin was 812 mg/L in the 120 L fermentor and 783 mg/L in the 20,000 L fermentor. This work highlights a high rapamycin producing strain derived by mutagenesis and subsequent screening, fermentation optimization of which has now made it feasible to produce rapamycin on an industrial scale by fermentation. The strategies developed here should also be applicable to titer improvement of other important microbial natural products on an industrial scale. Biotechnol. Bioeng. 2010;107: 506–515. © 2010 Wiley Periodicals, Inc.  相似文献   

9.
Metabolic engineering has been defined as the purposeful modification of intermediary metabolism using recombinant DNA techniques. With this definition metabolic engineering includes: (1) inserting new pathways in microorganisms with the aim of producing novel metabolites, e.g., production of polyketides by Streptomyces; (2) production of heterologous peptides, e.g., production of human insulin, erythropoitin, and tPA; and (3) improvement of both new and existing processes, e.g., production of antibiotics and industrial enzymes. Metabolic engineering is a multidisciplinary approach, which involves input from chemical engineers, molecular biologists, biochemists, physiologists, and analytical chemists. Obviously, molecular biology is central in the production of novel products, as well as in the improvement of existing processes. However, in the latter case, input from other disciplines is pivotal in order to target the genetic modifications; with the rapid developments in molecular biology, progress in the field is likely to be limited by procedures to identify the optimal genetic changes. Identification of the optimal genetic changes often requires a meticulous mapping of the cellular metabolism at different operating conditions, and the application of metabolic engineering to process optimization is, therefore, expected mainly to have an impact on the improvement of processes where yield, productivity, and titer are important design factors, i.e., in the production of metabolites and industrial enzymes. Despite the prospect of obtaining major improvement through metabolic engineering, this approach is, however, not expected to completely replace the classical approach to strain improvement-random mutagenesis followed by screening. Identification of the optimal genetic changes for improvement of a given process requires analysis of the underlying mechanisms, at best, at the molecular level. To reveal these mechanisms a number of different techniques may be applied: (1) detailed physiological studies, (2) metabolic flux analysis (MFA), (3) metabolic control analysis (MCA), (4) thermodynamic analysis of pathways, and (5) kinetic modeling. In this article, these different techniques are discussed and their applications to the analysis of different processes are illustrated.  相似文献   

10.
Yu L  Pei X  Lei T  Wang Y  Feng Y 《Journal of biotechnology》2008,134(1-2):154-159
Genome shuffling is a powerful strategy for rapid engineering of microbial strains for desirable industrial phenotypes. Here we applied the genome shuffling to improve the glucose tolerance of Lactobacillus rhamnosus ATCC 11443 while simultaneously enhancing the L-lactic acid production. The starting population was generated by ultraviolet irradiation and nitrosoguanidine mutagenesis and then subjected for the recursive protoplast fusion. The positive colonies from library created by fusing the inactivated protoplasts were more likely to be screened on plates containing different concentrations of high glucose and 2% CaCO(3). Characterization of all mutants and wild-type strain in the shake flask indicated the compatibility of two optimal phenotypes of glucose tolerance and lactic acid enhancement. The lactic acid production, cell growth and glucose consumption of the best performing strain from the second round genome shuffled populations were 71.4%, 44.9% and 62.2% higher than those of the wild type at the initial glucose concentration of 150 g/l in the 16l bioreactor. Furthermore, the higher lactic acid concentrations were obtained when the initial glucose concentrations increased to 160 and 200 g/l in batch fermentation.  相似文献   

11.
12.
Biotechnological production of erythritol and its applications   总被引:1,自引:0,他引:1  
Erythritol, a four-carbon polyol, is a biological sweetener with applications in food and pharmaceutical industries. It is also used as a functional sugar substitute in special foods for people with diabetes and obesity because of its unique nutritional properties. Erythritol is produced by microbial methods using mostly osmophilic yeasts and has been produced commercially using mutant strains of Aureobasidium sp. and Pseudozyma tsukubaensis. Due to the high yield and productivity in the industrial scale of production, erythritol serves as an inexpensive starting material for the production of other sugars. This review focuses on the approaches for the efficient erythritol production, strategies used to enhance erythritol productivity in microbes, and the potential biotechnological applications of erythritol.  相似文献   

13.
14.
The yeast Saccharomyces cerevisiae is an important industrial platform for the production of grain and cellulosic ethanol, isobutanol, butanediol, isoprenoids, and other chemicals. The construction of a successful production strain usually involves multiple gene knockouts and chromosomal integration of expression cassettes to redirect the metabolic fluxes for the conversion of sugars and other feed stocks into the desired product. RNA-guided Cas9 based genome editing has been demonstrated in many prokaryotic and eukaryotic hosts including S. cerevisiae, in which it has been additionally exploited as a tool for metabolic engineering. To extend the utilization of RNA-guided Cas9 as a metabolic pathway building tool, we demonstrated the direct assembly and chromosomal integration of up to 17 overlapping DNA fragments encoding the beta-carotene biosynthetic pathway. Furthermore, we generated a combinatorial strain library for the beta-carotene biosynthetic pathway, directly integrated into the yeast genome to create a diverse library of strains. This enabled the screening of combinatorial libraries in stable chromosomally integrated strains for rapid improvements of product titers. This combinatorial approach for pathway assembly will significantly accelerate the current speed of metabolic engineering for S. cerevisiae as an industrial platform, and increase the number of strains that can be simultaneously evaluated for enzyme screening, expression optimization and protein engineering to achieve the titer, rate and yield necessary for the commercialization of new industrial fermentation products.  相似文献   

15.
Zhong Y  Yu H  Wang X  Lu Y  Wang T 《Molecular biology reports》2011,38(6):4145-4151
Agrobacterium-mediated T-DNA transfer has been proven to be an efficient strategy for insertional mutagenesis and elucidation of gene function in filamentous fungi. The implementation of large-scale T-DNA insertional mutagenesis requires the development of high-efficient transformation and high-throughput screening procedures. Here, using green fluorescent protein (GFP) as a vital marker, a highly efficient T-DNA-based mutagenesis and screening system was developed in Trichoderma reesei. The uridine auxotrophic T. reesei M23 as the host was transformed with A. tumefaciens EH105 strain harboring a binary vector pC-OEP, which beared the pyrG gene for primary selection on minimal medium without uridine and the egfp gene for fluorescence-based rapid screening of the mitotically stable transformants. The efficiency of transformation was up to 10–20 transformants per 105 target conidia. Microscopic examination revealed strong GFP expression and fluorescence emission in conidia, growing hyphae and mycelia. An effective and convenient screening procedure using 96-well plates and multilabel counter for fluorescence intensity counting was developed to rapidly identify the T-DNA tagged T. reesei mutants. Furthermore, the presence of T-DNA integration at random sites in the genome was confirmed by Southern blot analysis. This report of the T-DNA-based mutagenesis and rapid screening system using GFP as a vital reporter provides a promising strategy to speeding up the genome-scale T-DNA insertional mutagenesis and functional genomics analysis of this cellulolytic fungus T. reesei.  相似文献   

16.
Significant achievements in polyketide gene expression have made Escherichia coli one of the most promising hosts for the heterologous production of pharmacologically important polyketides. However, attempts to produce glycosylated polyketides, by the expression of heterologous sugar pathways, have been hampered until now by the low levels of glycosylated compounds produced by the recombinant hosts. By carrying out metabolic engineering of three endogenous pathways that lead to the synthesis of TDP sugars in E. coli, we have greatly improved the intracellular levels of the common deoxysugar intermediate TDP‐4‐keto‐6‐deoxyglucose resulting in increased production of the heterologous sugars TDP‐L‐mycarose and TDP‐d ‐desosamine, both components of medically important polyketides. Bioconversion experiments carried out by feeding 6‐deoxyerythronolide B (6‐dEB) or 3‐α‐mycarosylerythronolide B (MEB) demonstrated that the genetically modified E. coli B strain was able to produce 60‐ and 25‐fold more erythromycin D (EryD) than the original strain K207‐3, respectively. Moreover, the additional knockout of the multidrug efflux pump AcrAB further improved the ability of the engineered strain to produce these glycosylated compounds. These results open the possibility of using E. coli as a generic host for the industrial scale production of glycosylated polyketides, and to combine the polyketide and deoxysugar combinatorial approaches with suitable glycosyltransferases to yield massive libraries of novel compounds with variations in both the aglycone and the tailoring sugars.  相似文献   

17.
Microbial alkaline proteases: from a bioindustrial viewpoint   总被引:30,自引:0,他引:30  
Alkaline proteases are of considerable interest in view of their activity and stability at alkaline pH. This review describes the proteases that can resist extreme alkaline environments produced by a wide range of alkalophilic microorganisms. Different isolation methods are discussed which enable the screening and selection of promising organisms for industrial production. Further, strain improvement using mutagenesis and/or recombinant DNA technology can be applied to augment the efficiency of the producer strain to a commercial status. The various nutritional and environmental parameters affecting the production of alkaline proteases are delineated. The purification and properties of these proteases is discussed, and the use of alkaline proteases in diverse industrial applications is highlighted.  相似文献   

18.
Polyols such as mannitol, erythritol, sorbitol, and xylitol are naturally found in fruits and vegetables and are produced by certain bacteria, fungi, yeasts, and algae. These sugar alcohols are widely used in food and pharmaceutical industries and in medicine because of their interesting physicochemical properties. In the food industry, polyols are employed as natural sweeteners applicable in light and diabetic food products. In the last decade, biotechnological production of polyols by lactic acid bacteria (LAB) has been investigated as an alternative to their current industrial production. While heterofermentative LAB may naturally produce mannitol and erythritol under certain culture conditions, sorbitol and xylitol have been only synthesized through metabolic engineering processes. This review deals with the spontaneous formation of mannitol and erythritol in fermented foods and their biotechnological production by heterofermentative LAB and briefly presented the metabolic engineering processes applied for polyol formation.  相似文献   

19.
20.
Xylanases constitute an important industrial enzyme, which hydrolyzes the polysaccharide xylan. In this work, a novel Streptomyces strain producing cellulase-free xylanase was isolated from the soil samples collected from the mangrove forest of Kadalundi, Kerala, India. The strain produced unique enzyme, which exhibited optimal activity at pH 9.0 and tolerance up to pH 12.0. Media engineering was carried out to improve the enzyme production, which showed best enzyme production at 30°C, medium pH 9.0 and incubation time of 48 h. Enzyme was highly thermo-tolerant up to 70°C and alkaline tolerant. Partial gene amplification as well as partial purification of enzyme was carried out to characterize the enzyme. The unique features of the enzyme make it an ideal candidate for industrial application for paper and pulp industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号