首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At PSI (Paul Scherrer Institute), Switzerland, a superconducting cyclotron called “COMET” delivers proton beam of 250 MeV pulsed at 72.85 MHz for proton radiation therapy. Measuring proton beam currents (0.1–10nA) is of crucial importance for the treatment safety and is usually performed with invasive monitors such as ionisation chambers (ICs) which degrade the beam quality. A new non-invasive beam current monitor working on the principle of electromagnetic resonance is built to replace ICs in order to preserve the beam quality delivered. The fundamental resonance frequency of the resonator is tuned to 145.7 MHz, which is the second harmonic of the pulse rate, so it provides signals proportional to beam current. The cavity resonator installed in the beamline of the COMET is designed to measure beam currents for the energy range 238–70 MeV. Good agreement is reached between expected and measured resonator response over the energy range of interest. The resonator can deliver beam current information down to 0.15 nA for a measurement integration time of 1 s. The cavity resonator might be applied serving as a safety monitor to trigger interlocks within the existing domain of proton radiation therapy. Low beam currents limit the abilities to detect sufficiently, however, with the potential implementation of FLASH proton therapy, the application of cavity resonator as an online beam-monitoring device is feasible.  相似文献   

2.
UHDpulse – Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates is a recently started European Joint Research Project with the aim to develop and improve dosimetry standards for FLASH radiotherapy, very high energy electron (VHEE) radiotherapy and laser-driven medical accelerators. This paper gives a short overview about the current state of developments of radiotherapy with FLASH electrons and protons, very high energy electrons as well as laser-driven particles and the related challenges in dosimetry due to the ultra-high dose rate during the short radiation pulses. We summarize the objectives and plans of the UHDpulse project and present the 16 participating partners.  相似文献   

3.
The lack of mailed dosimetry audits of proton therapy centres in Europe has encouraged researchers of EURADOS Working Group 9 (WG9) to compare response of several existing passive detector systems in therapeutic pencil beam scanning.Alanine Electron Paramagnetic Resonance dosimetry systems from 3 different institutes (ISS, Italy; UH, Belgium and IFJ PAN, Poland), natLiF:Mg, Ti (MTS-N) and natLiF:Mg, Cu, P (MCP-N) thermoluminescent dosimeters (TLDs), GD-352M radiophotoluminescent glass dosimeters (RPLGDs) and Al2O3:C optically stimulated dosimeters (OSLDs) were evaluate. Dosimeter repeatability, batch reproducibility and response in therapeutic Pencil Beam Scanning were verified for implementation as mail auditing system.Alanine detectors demonstrated the lowest linear energy transfer (LET) dependence with an agreement between measured and treatment planning system (TPS) dose below 1%. The OSLDs measured on average a 6.3% lower dose compared to TPS calculation, with no significant difference between varying modulations and ranges. Both GD-352M and MCP-N measured a lower dose than the TPS and luminescent response was dependent on the LET of the therapeutic proton beam. Thermoluminescent response of MTS-N was also found to be dependent on the LET and a higher dose than TPS was measured with the most pronounced increase of 11%.As alanine detectors are characterized by the lowest energy dependence for different parameters of therapeutic pencil beam scanning they are suitable candidates for mail auditing in proton therapy. The response of luminescence detector systems have shown promises even though more careful calibration and corrections are needed for its implementation as part of a mailed dosimetry audit system.  相似文献   

4.
PurposeThe aim of the presented study was to complement existing literature on benchmarking proton dose by comparing dose calculations with experimental measurements in heterogeneous phantom. Points of interest inside and outside the target were considered to quantify the magnitude of calculation uncertainties in current and previous proton therapy practice that might especially have an impact on the dose in organs at risk (OARs).MethodsThe RayStation treatment planning system (RaySearch Laboratories), offering two dose calculation algorithms for pencil beam scanning in proton therapy, i.e., Pencil Beam (PB) and Monte Carlo (MC), was utilized. Treatment plans for a target located behind the interface of the heterogeneous tissues were generated. Dose measurements within and behind the target were performed in a water phantom with embedded slabs of various tissue equivalent materials and 24 PinPoint ionization chambers (PTW). In total 12 test configurations encompassing two different target depths, oblique beam incidence of 30 degrees and range shifter, were considered.ResultsPB and MC calculated doses agreed equally well with the measurements for all test geometries within the target, including the range shifter (mean dose differences ± 3%). Outside the target, the maximum dose difference of 9% (19%) was observed for MC (PB) for the oblique beam incidence and inserted range shifter.ConclusionThe accuracy of MC dose algorithm was superior compared to the PB algorithm, especially outside the target volumes. MC based dose calculation should therefore be preferred in treatment scenarios with heterogeneities, especially to reduce clinically relevant uncertainties for OARs.  相似文献   

5.
In this work, we used the Monte Carlo-based Geant4 simulation toolkit to calculate the ambient dose equivalents due to the secondary neutron field produced in a new projected proton therapy facility. In particular the facility geometry was modeled in Geant4 based on the CAD design. Proton beams were originated with an energy of 250 MeV in the gantry rooms with different angles with respect to the patient; a fixed 250 MeV proton beam was also modeled. The ambient dose equivalent was calculated in several locations of interest inside and outside the facility, for different scenarios. The simulation results were compared qualitatively to previous work on an existing facility bearing some similarities with the design under study, showing that the ambient dose equivalent ranges obtained are reasonable. The ambient dose equivalents, calculated by means of the Geant4 simulation, were compared to the Australian regulatory limits and showed that the new facility will not pose health risks for the public or staff, with a maximum equivalent dose rate equal to 7.9 mSv/y in the control rooms and maze exit areas and 1.3·10−1 mSv/y close to the walls, outside the facility, under very conservative assumptions. This work represents the first neutron shielding verification analysis of a new projected proton therapy facility and, as such, it may serve as a new source of comparison and validation for the international community, besides confirming the viability of the project from a radioprotection point of view.  相似文献   

6.
Introduction: Cyclotron-based proton therapy facilities use an energy degrader of variable thickness to deliver beams of the different energies required by a patient treatment plan; scattering and straggling in the degrader give rise to an inherent emittance increase and subsequent particle loss in the downstream energy-selection system (ESS). Here we study alternative graphite degrader geometries and examine with Monte-Carlo simulations the induced emittance growth and consequent particle transmission.Methods: We examined the conventional multiple-wedge degrader used in the Paul Scherrer Institute PROSCAN proton therapy system, the equivalent parallel-sided degrader, and a single block degrader of equivalent thickness. G4Beamline Monte-Carlo tracking of protons was benchmarked against measurements of the existing degrader for proton energies from 75 to 230 MeV, and used to validate simulations of the alternative geometries.Results: Using a careful calculation of the beam emittance growth, we determined that a single-block degrader placed close to the collimators of the ESS is expected to deliver significantly larger transmission, up to 17% larger at 150 MeV. At the lowest deliverable of 75 MeV there is still a clear improvement in beam transmission.Conclusions: Whilst dose rates are not presently limited on the PROSCAN system at higher energies, a single-block degrader offers the ability to access either lower energies for treatment or a larger dose rate at 75 MeV in case transmission optimisation is desired. Single-block degraders should be considered for the delivery of low-energy protons from a cyclotron-based particle therapy system.  相似文献   

7.
One of the big challenges for proton therapy is the development of tools for online monitoring of the beam range, which are suited to operate in clinical conditions and can be included in the clinical practice. A Compton camera based on stacks of heavy scintillating fibers used for prompt-gamma imaging is a promising approach for this task. It provides full, three-dimensional information on the deposited dose distribution while showing a high detection efficiency and rate capability due to its high granularity. The investigation of the rate capability and detection efficiency of such a camera under clinical conditions by means of Geant4 simulations is presented along with the event construction algorithm. The results hint towards a very low pile-up rate in the detector and a relatively high detection efficiency, so that imaging of a single proton beam spot appears to be an achievable goal.  相似文献   

8.
Irradiation, delivered by a synchrotron facility, using a set of highly collimated, narrow and parallel photon beams spaced by 1 mm or less, has been termed Microbeam Radiation Therapy (MRT). The tolerance of healthy tissue after MRT was found to be better than after standard broad X-ray beams, together with a more pronounced response of malignant tissue. The microbeam spacing and transverse peak-to-valley dose ratio (PVDR) are considered to be relevant biological MRT parameters. We investigated the MRT concept for proton microbeams, where we expected different depth-dose profiles and PVDR dependences, resulting in skin sparing and homogeneous dose distributions at larger beam depths, due to differences between interactions of proton and photon beams in tissue. Using the FLUKA Monte Carlo code we simulated PVDR distributions for differently spaced 0.1 mm (sigma) pencil-beams of entrance energies 60, 80, 100 and 120 MeV irradiating a cylindrical water phantom with and without a bone layer, representing human head. We calculated PVDR distributions and evaluated uniformity of target irradiation at distal beam ranges of 60–120 MeV microbeams. We also calculated PVDR distributions for a 60 MeV spread-out Bragg peak microbeam configuration. Application of optimised proton MRT in terms of spot size, pencil-beam distribution, entrance beam energy, multiport irradiation, combined with relevant radiobiological investigations, could pave the way for hypofractionation scenarios where tissue sparing at the entrance, better malignant tissue response and better dose conformity of target volume irradiation could be achieved, compared with present proton beam radiotherapy configurations.  相似文献   

9.
Since many years proton therapy is an effective treatment solution against deep-seated tumors. A precise quantification of sources of uncertainty in each proton therapy aspect (e.g. accelerator, beam lines, patient positioning, treatment planning) is of profound importance to increase the accuracy of the dose delivered to the patient. Together with Monte Carlo techniques, a new research field called Uncertainty Quantification (UQ) has been recently introduced to verify the robustness of the treatment planning. In this work we present the first application of UQ as a method to identify typical errors in the transport lines of a cyclotron-based proton therapy facility and analyze their impact on the properties of the therapeutic beams. We also demonstrate the potential of UQ methods in developing optimized beam optics solutions for high-dimensional problems. Sensitivity analysis and surrogate models offer a fast way to exclude unimportant parameters frcomplex optimization problems such as the design of a superconducting gantry performed at Paul Scherrer Institute in Switzerland.  相似文献   

10.
AimThe feasibility of using 230 MeV proton cyclotrons in proton therapy centers as a spallation neutron source for Boron Neutron Capture Therapy (BNCT) was investigated.BackgroundBNCT is based on the neutron irradiation of a 10B-containing compound located selectively in tumor cells. Among various types of neutron generators, the spallation neutron source is a unique way to generate high-energy and high-flux neutrons.Materials and MethodsNeutron beam was generated by a proton accelerator via spallation reactions and then the produced neutron beam was shaped to be appropriate for BNCT. The proposed Beam Shaping Assembly (BSA) consists of different moderators, a reflector, a collimator, as well as thermal and gamma filters. In addition, the simulated Snyder head phantom was utilized to evaluate the dose distribution in tumor and normal tissue due to the irradiation by the designed beam. MCNPX2.6 Monte Carlo code was used to optimize BSA as well as evaluate dose evaluation.ResultsA BSA was designed. With the BSA configuration and a beam current of 104 nA, epithermal neutron flux of 3.94 × 106 [n/cm2] can be achieved, which is very low. Provided that we use the beam current of 5.75 μA, epithermal neutron flux of 2.18 × 108 [n/cm2] can be obtained and the maximum dose of 38.2 Gy-eq can be delivered to tumor tissue at 1.4 cm from the phantom surface.ConclusionsResults for 230 MeV protons show that with proposed BSA, proton beam current about 5.75 μA is required for this purpose.  相似文献   

11.
IntroductionWe present a beam model for Monte Carlo simulations of the IBA pencil beam scanning dedicated nozzle installed at the Skandion Clinic. Within the nozzle, apart from entrance and exit windows and the two ion chambers, the beam traverses vacuum, allowing for a beam that is convergent downstream of the nozzle exit.Materials and methodsWe model the angular, spatial and energy distributions of the beam phase space at the nozzle exit with single Gaussians, controlled by seven energy dependent parameters. The parameters were determined from measured profiles and depth dose distributions. Verification of the beam model was done by comparing measured and GATE acquired relative dose distributions, using plan specific log files from the machine to specify beam spot positions and energy.ResultsGATE-based simulations with the acquired beam model could accurately reproduce the measured data. The gamma index analysis comparing simulated and measured dose distributions resulted in >95% global gamma index pass rates (3%/2 mm) for all depths.ConclusionThe developed beam model was found to be sufficiently accurate for use with GATE e.g. for applications in quality assurance (QA) or patient motion studies with the IBA pencil beam scanning dedicated nozzles.  相似文献   

12.

Aim

To present the results obtained using radiochromic films EBT and RTQA 1010P for the reconstruction the dose distributions for targets irradiated by proton beam and modified by wax boluses.

Background

In Medico-Technical Complex at the Joint Institute for Nuclear Research in Dubna implemented technology of wax boluses.

Materials and methods

Wax boluses are easier to make and they give better dose distributions than boluses made from modeling clay previously used at our center. We irradiated two imaginary targets, one shaped as a cylinder and the other one as two cuboids. The evaluated calibration curve was used for calculation of the dose distributions measured by the EBT and RTQA radiochromic film. In both cases, the measured dose distributions were compared to the dose distributions calculated by the treatment planning system (TPS). We also compared dose distributions using three different conformity indices at a 95% isodose.

Results

Better target coverage and better compliance of measurements (semiconductor detectors and radiochromic films) with calculated doses was obtained for cylindrical target than for cuboidal target. The 95% isodose covered well the tumor for both target shapes, while for cuboidal target larger volume around the target received therapeutic dose, due to the complicated target shape. The use wax boluses provided to be effective tool in modifying proton beam to achieve appropriate shape of isodose distribution.

Conclusion

EBT film yielded the best visual matching. Both EBT and RTQA films confirmed good conformity between calculated and measured doses, thus confirming that wax boluses used to modify the proton beam resulted in good dose distributions.  相似文献   

13.
PurposeInterlaced beams have previously been proposed for delivering proton grid therapy. This study aims to assess dose-averaged LET (LETd) and RBE-weighted dose (DRBE) distributions of such beam geometries, and compare them with conventional intensity modulated proton therapy (IMPT).MethodsIMPT plans and four different interlaced proton grid therapy plans were generated for five patient cases (esophagus, lung, liver, prostate, anus). The constant RBE = 1.1 was assumed for optimization. The LETd was subsequently Monte Carlo calculated for each plan and used as input for two LET-dependent variable RBE models. The fulfilment of clinical goals, along with DVH and spatial distribution evaluations, were then assessed and compared.ResultsAll plans fulfilled the clinical target goals assuming RBE = 1.1. The target coverage was slightly compromised for some grid plans when assuming the variable RBE models. All IMPT plans, and 18 of 20 grid plans, fulfilled all clinical goals for the organs at risk when assuming RBE = 1.1, whereas most plans failed at least one goal when assuming the variable RBE models. Compared with the IMPT plans, the grid plans demonstrated substantially different LETd distributions due to the fundamentally different beam geometries. However, DRBE distributions in the target were similar.ConclusionsDespite the unconventional beam geometries of interlaced proton grid plans, with resulting alternating dose and LETd patterns, the fulfillment of realistic clinical goals seems to be comparable to regular IMPT plans, both assuming RBE = 1.1 and variable RBE models. In addition, the alternating grid patterns do not seem to give rise to unexpected DRBE hot-spots.  相似文献   

14.
AimEvaluation of energy deposition of protons in human brain and calculation of the secondary neutrons and photons produced by protons in proton therapy.BackgroundRadiation therapy is one of the main methods of treating localized cancer tumors. The use of high energy proton beam in radiotherapy was proposed almost 60 years ago. In recent years, there has been a revival of interest in this subject in the context of radiation therapy. High energy protons suffer little angular deflection and have a well-defined penetration range, with a sharp increase in the energy loss at the end of their trajectories, namely the Bragg peak.Materials and methodsA slab head phantom was used for the purpose of simulating proton therapy in brain tissue. In this study simulation was carried out using the Monte Carlo MCNPX code.ResultsBy using mono energetic proton pencil beams, energy depositions in tissues, especially inside the brain, as well as estimating the neutron and photon production as a result of proton interactions in the body, together with their energy spectra, were calculated or obtained. The amount of energy escaped from the head by secondary neutrons and photons was determined.ConclusionsIt was found that for high energy proton beams the amount of escaped energy by neutrons is almost 10 times larger than that by photons. We estimated that at 110 MeV beam energy, the overall proton energy “leaked” from the head by secondary photons and neutrons to be around 1%.  相似文献   

15.
Precision radiotherapy, which accurately delivers the dose on a tumor and confers little or no irradiation to the surrounding normal tissue and organs, results in maximum tumor control and decreases the toxicity to the utmost extent. Proton beam therapy (PBT) provides superior dose distributions and has a dosimetric advantage over photon beam therapy. Initially, the clinical practice and study of proton beam therapy focused on ocular tumor, skull base, paraspinal tumors (chondrosarcoma and chordoma), and unresectable sarcomas, which responded poorly when treated with photon radiotherapy. Then, it is widely regarded as an ideal mode for reirradiation and pediatrics due to reducing unwanted side effects by lessening the dose to normal tissue. During the past decade, the application of PBT has been rapidly increasing worldwide and gradually expanding for the treatment of various malignancies. However, to date, the role of PBT in clinical settings is still controversial, and there are considerable challenges in its application. We systematically review the latest advances of PBT and the challenges for patient treatment in the era of precision medicine.  相似文献   

16.
In proton therapy, secondary fragments are created in nuclear interactions of the beam with the target nuclei. The secondary fragments have low kinetic energies and high atomic numbers as compared to primary protons. Fragments have a high LET and deposit all their energy close to the generation point. For their characteristics, secondary fragments can alter the dose distribution and lead to an increase of RBE for the same delivered physical dose. Moreover, the radiobiological impact of target fragmentation is significant mostly in the region before the Bragg peak, where generally healthy tissues are present, and immediately after Bragg peak. Considering the high biological impact of those particles, especially in the case of healthy tissues or organs at risk, the inclusion of target fragmentation processes in the dose calculation of a treatment planning system can be relevant to improve the treatment accuracy and for this reason it is one of the major tasks of the MoVe IT project.In this study, Monte Carlo simulations were employed to fully characterize the mixed radiation field generated by target fragmentation in proton therapy. The dose averaged LET has been evaluated in case of a Spread Out Bragg Peak (SOBP). Starting from LET distribution, RBE has been evaluated with two different phenomenological models. In order to characterize the mixed radiation field, the production cross section has been evaluated by means of the FLUKA code. The future development of present work is to generate a MC database of fragments fluence to be included in TPS.  相似文献   

17.
18.
Kilovoltage (kV) x-rays are most commonly used for diagnostic imaging due to their sensitivity to tissue composition. In radiation therapy (RT), due to their fast attenuation, kV x-rays are typically only used for superficial irradiation of skin cancer and for intra-operative RT (IORT). Recently, however, a number of kV RT techniques have emerged. In this review article, we provide a brief overview of the use of kV x-rays for RT.Various kV x-ray source technologies suitable for RT, such as conventional x-ray tubes as well as novel x-ray sources, are first described. This x-ray source section is then followed by a section on their implementation in terms of clinical, veterinary and preclinical applications. Specifically, IORT, superficial RT and dose enhancement with iodine and gold nanoparticles, as well as microbeam RT and FLASH RT are discussed in this context. Then, a number of kV x-ray RT applications in modeling and proof-of-principle stages, such as breast external beam RT with rotational sources, kilovoltage arc therapy and the BriXS Compton pulsed x-ray sources, are reviewed. Finally, some clinical and economic considerations for the development of kV RT techniques are discussed.  相似文献   

19.
PurposeSpot-scanning proton beam therapy (PBT) can create good dose distribution for static targets. However, there exists larger uncertainty for tumors that move due to respiration, bowel gas or other internal circumstances within the patients. We have developed a real-time tumor-tracking radiation therapy (RTRT) system that uses an X-ray linear accelerator gated to the motion of internal fiducial markers introduced in the late 1990s. Relying on more than 10 years of clinical experience and big log data, we established a real-time image gated proton beam therapy system dedicated to spot scanning.Materials and methodsUsing log data and clinical outcomes derived from the clinical usage of the RTRT system since 1999, we have established a library to be used for in-house simulation for tumor targeting and evaluation. Factors considered to be the dominant causes of the interplay effects related to the spot scanning dedicated proton therapy system are listed and discussed.Results/conclusionsTotal facility design, synchrotron operation cycle, and gating windows were listed as the important factors causing the interplay effects contributing to the irradiation time and motion-induced dose error. Fiducial markers that we have developed and used for the RTRT in X-ray therapy were suggested to have the capacity to improve dose distribution. Accumulated internal motion data in the RTRT system enable us to improve the operation and function of a Spot-scanning proton beam therapy (SSPT) system. A real-time-image gated SSPT system can increase accuracy for treating moving tumors. The system will start clinical service in early 2014.  相似文献   

20.
AimThe aim of this study is simulation of the proton depth-dose distribution and dose evaluation of secondary particles in proton therapy of brain tumor using the GEANT4 and FLUKA Monte Carlo codes.BackgroundProton therapy is a treatment method for variety of tumors such as brain tumor. The most important feature of high energy proton beams is the energy deposition as a Bragg curve and the possibility of creating the spread out Bragg peak (SOBP) for full coverage of the tumor.Materials and methodsA spherical tumor with the radius of 1 cm in the brain is considered. A SNYDER head phantom has been irradiated with 30−130 MeV proton beam energy. A PMMA modulator wheel is used for covering the tumor. The simulations are performed using the GEANT4 and FLUKA codes.ResultsUsing a modulator wheel, the Spread Out Bragg Peak longitudinally and laterally covers the tumor. Flux and absorbed dose of secondary particles produced by nuclear interactions of protons with elements in the head are considerably small compared to protons.ConclusionsUsing 76.85 MeV proton beam and a modulator wheel, the tumor can be treated accurately in the 3-D, so that the distribution of proton dose in the surrounding tissues is very low. The results show that more than 99% of the total dose of secondary particles and protons is absorbed in the tumor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号