首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nuclear reactions induced during high-energy radiotherapy produce secondary neutrons that, due to their carcinogenic potential, constitute an important risk for the development of iatrogenic cancer. Experimental and epidemiological findings indicate a marked energy dependence of neutron relative biological effectiveness (RBE) for carcinogenesis, but little is reported on its physical basis. While the exact mechanism of radiation carcinogenesis is yet to be fully elucidated, numerical microdosimetry can be used to predict the biological consequences of a given irradiation based on its microscopic pattern of energy depositions. Building on recent studies, this work investigated the physics underlying neutron RBE by using the microdosimetric quantity dose-mean lineal energy (yD) as a proxy. A simulation pipeline was constructed to explicitly calculate the yD of radiation fields that consisted of (i) the open source Monte Carlo toolkit Geant4, (ii) its radiobiological extension Geant4-DNA, and (iii) a weighted track-sampling algorithm. This approach was used to study mono-energetic neutrons with initial kinetic energies between 1 eV and 10 MeV at multiple depths in a tissue-equivalent phantom. Spherical sampling volumes with diameters between 2 nm and 1 μm were considered. To obtain a measure of RBE, the neutron yD values were divided by those of 250 keV X-rays that were calculated in the same way. Qualitative agreement was found with published radiation protection factors and simulation data, allowing for the dependencies of neutron RBE on depth and energy to be discussed in the context of the neutron interaction cross sections and secondary particle distributions in human tissue.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
Purpose: Stereotactic body radiation therapy allows for a precise dose delivery. Organ motion bears the risk of undetected high dose healthy tissue exposure. An organ very susceptible to high dose is the oesophagus. Its low contrast on CT and the oblong shape render motion estimation difficult. We tackle this issue by modern algorithms to measure oesophageal motion voxel-wise and estimate motion related dosimetric impacts.Methods: Oesophageal motion was measured using deformable image registration and 4DCT of 11 internal and 5 public datasets. Current clinical practice of contouring the organ on 3DCT was compared to timely resolved 4DCT contours. Dosimetric impacts of the motion were estimated by analysing the trajectory of each voxel in the 4D dose distribution. Finally an organ motion model for patient-wise comparisons was built.Results: Motion analysis showed mean absolute maximal motion amplitudes of 4.55 ± 1.81 mm left-right, 5.29 ± 2.67 mm anterior-posterior and 10.78 ± 5.30 mm superior-inferior. Motion between cohorts differed significantly. In around 50% of the cases the dosimetric passing criteria was violated. Contours created on 3DCT did not cover 14% of the organ for 50% of the respiratory cycle and were around 38% smaller than the union of all 4D contours. The motion model revealed that the maximal motion is not limited to the lower part of the organ. Our results showed motion amplitudes higher than most reported values in the literature and that motion is very heterogeneous across patients.Conclusions: Individual motion information should be considered in contouring and planning.  相似文献   

12.
13.
PurposeTo quantify B0- and B1-induced imaging artifacts of braided venous stents and to compare the artifacts to a set of laser-cut stents used in venous interventions.MethodsThree prototypes of braided venous stents with different geometries were tested in vitro. B0 field distortion maps were measured via the frequency shift Δf using multi-echo imaging. B1 distortions were quantified using the double angle method. The relative amplitudes B1rel were calculated to compare the intraluminal alteration of B1. Measurements were repeated with the stents in three different orientations: parallel, diagonal and orthogonal to B0.ResultsAt 1.5 T, the braided stents induced a maximum frequency shift of Δfx<100Hz. Signal voids were limited to a distance of 2 mm to the stent walls at an echo time of 3 ms. No substantial difference in the B0 field distortions was seen between laser-cut and braided venous stents. B1rel maps showed strongly varying distortion patterns in the braided stents with the mean intraluminal B1rel ranging from 63±18% in prototype 1 to 98±38% in prototype 2. Compared to laser-cut stents the braided stents showed a 5 to 9 times higher coefficient of variation of the intraluminal B1rel.ConclusionBraided venous stent prototypes allow for MR imaging of the intraluminal area without substantial signal voids due to B0-induced artifacts. Whereas B1 is attenuated homogeneously in laser-cut stents, the B1 distortion in braided stents is more inhomogeneous and shows areas with enhanced amplitude. This could potentially be used in braided stent designs for intraluminal signal amplification.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号