首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial ghosts are empty cell envelopes of Gram-negative bacteria that can be used as vehicles for antigen delivery. Ghosts are generated by releasing the bacterial cytoplasmic contents through a channel in the cell envelope that is created by the controlled production of the bacteriophage ϕX174 lysis protein E. While ghosts possess all the immunostimulatory surface properties of the original host strain, they do not pose any of the infectious threats associated with live vaccines. Recently, we have engineered the Escherichia coli autotransporter hemoglobin protease (Hbp) into a platform for the efficient surface display of heterologous proteins in Gram-negative bacteria, HbpD. Using the Mycobacterium tuberculosis vaccine target ESAT6 (early secreted antigenic target of 6 kDa), we have explored the application of HbpD to decorate E. coli and Salmonella ghosts with antigens. The use of different promoter systems enabled the concerted production of HbpD-ESAT6 and lysis protein E. Ghost formation was monitored by determining lysis efficiency based on CFU, the localization of a set of cellular markers, fluorescence microscopy, flow cytometry, and electron microscopy. Hbp-mediated surface display of ESAT6 was monitored using a combination of a protease accessibility assay, fluorescence microscopy, flow cytometry and (immuno-)electron microscopy. Here, we show that the concerted production of HbpD and lysis protein E in E. coli and Salmonella can be used to produce ghosts that efficiently display antigens on their surface. This system holds promise for the development of safe and cost-effective vaccines with optimal intrinsic adjuvant activity and exposure of heterologous antigens to the immune system.  相似文献   

2.
Bacterial plasmids and phages encode the synthesis of toxic molecules that inhibit protozoan predation. One such toxic molecule is violacein, a purple pigmented, anti-tumour antibiotic produced by the Gram-negative soil bacterium Chromobacterium violaceum. In the current experiments a range of Escherichia coli K12 strains were genetically engineered to produce violacein and a number of its coloured, biosynthetic intermediates. A bactivorous predatory protozoan isolate, Colpoda sp.A4, was isolated from soil and tested for its ability to ‘graze’ on various violacein producing strains of E. coli K12. A grazing assay was developed based on protozoan “plaque” formation. Using this assay, E. coli K12 strains producing violacein were highly resistant to protozoan predation. However E. coli K12 strains producing violacein intermediates, showed low or no resistance to predation. In separate experiments, when either erythromycin or pentachlorophenol were added to the plaque assay medium, protozoan predation of E. coli K12 was markedly reduced. The inhibitory effects of these two molecules were removed if E. coli K12 strains were genetically engineered to inactivate the toxic molecules. In the case of erythromycin, the E. coli K12 assay strain was engineered to produce an erythromycin inactivating esterase, PlpA. For pentachlorophenol, the E. coli K12 assay strain was engineered to produce a PCP inactivating enzyme pentachlorophenol-4-monooxygenase (PcpB). This study indicates that in environments containing large numbers of protozoa, bacteria which use efflux pumps to remove toxins unchanged from the cell may have an evolutionary advantage over bacteria which enzymatically inactivate toxins.  相似文献   

3.
Lipid A is the active center of lipopolysaccharide which also known as endotoxin. Monophosphoryl-lipid A (MPLA) has less toxicity but retains potent immunoadjuvant activity; therefore, it can be developed as adjuvant for improving the strength and duration of the immune response to antigens. However, MPLA cannot be chemically synthesized and can only be obtained by hydrolyzing lipopolysaccharide (LPS) purified from Gram-negative bacteria. Purifying LPS is difficult and time-consuming and can damage the structure of MPLA. In this study, Escherichia coli mutant strains HWB01 and HWB02 were constructed by deleting several genes and integrating Francisella novicida gene lpxE into the chromosome of E. coli wild type strain W3110. Compared with W3110, HWB01 and HWB02 synthesized very short LPS, Kdo2-monophosphoryl-lipid A (Kdo2-MPLA) and Kdo2-pentaacyl-monophosphoryl-lipid A (Kdo2-pentaacyl-MPLA), respectively. Structural changes of LPS in the outer membranes of HWB01 and HWB02 increased their membrane permeability, surface hydrophobicity, auto-aggregation ability and sensitivity to some antibiotics, but the abilities of these strains to activate the TLR4/MD-2 receptor of HKE-Blue hTLR4 cells were deceased. Importantly, purified Kdo2-MPLA and Kdo2-pentaacyl-MPLA differed from wild type LPS in their ability to stimulate the mammalian cell lines THP-1 and RAW264.7. The purification of Kdo2-MPLA and Kdo2-pentaacyl-MPLA from HWB01 and HWB02, respectively, is much easier than the purification of LPS from W3110, and these lipid A derivatives could be important tools for developing future vaccine adjuvants.  相似文献   

4.
Escherichia coli is by far the most widely used bacterial host for the production of membrane proteins. Usually, different strains, culture conditions and production regimes are screened for to design the optimal production process. However, these E. coli-based screening approaches often do not result in satisfactory membrane protein production yields. Recently, it has been shown that (i) E. coli strains with strongly improved membrane protein production characteristics can be engineered or selected for, (ii) many membrane proteins can be efficiently produced in E. coli-based cell-free systems, (iii) bacteria other than E. coli can be used for the efficient production of membrane proteins, and, (iv) membrane protein variants that retain functionality but are produced at higher yields than the wild-type protein can be engineered or selected for. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   

5.
Gram-negative bacteria, including Escherichia coli, release outer membrane vesicles (OMVs) that are derived from the bacterial outer membrane. OMVs contribute to bacterial cell–cell communications and host–microbe interactions by delivering components to locations outside the bacterial cell. In order to explore the molecular machinery involved in OMV biogenesis, the role of a major OMV protein was examined in the production of OMVs from E. coli W3110, which is a widely used standard E. coli K-12 strain. In addition to OmpC and OmpA, which are used as marker proteins for OMVs, an analysis of E. coli W3110 OMVs revealed that they also contain abundant levels of FliC, which is also known as flagellin. A membrane-impermeable biotin-labeling reagent did not label FliC in intact OMVs, but labeled FliC in sonically disrupted OMVs, suggesting that FliC is localized in the lumen of OMV. Compared to the parental strain expressing wild-type fliC, an E. coli strain with a fliC-null mutation produced reduced amounts of OMVs based on both protein and phosphate levels. In addition, an E. coli W3110-derived strain with a null-mutation in flgK, which encodes flagellar hook-associated protein that is essential along with FliC for flagella synthesis, also produced fewer OMVs than the parental strain. Taken together, these results indicate that the ability to form flagella, including the synthesis of flagella proteins, affects the production of E. coli W3110 OMVs.  相似文献   

6.
In order to decrease carbon emissions and negative environmental impacts of various pollutants, more bulk and/or fine chemicals are produced by bioprocesses, replacing the traditional energy and fossil based intensive route. The Gram-negative rod-shaped bacterium, Escherichia coli has been studied extensively on a fundamental and applied level and has become a predominant host microorganism for industrial applications. Furthermore, metabolic engineering of E. coli for the enhanced biochemical production has been significantly promoted by the integrated use of recent developments in systems biology, synthetic biology and evolutionary engineering. In this review, we focus on recent efforts devoted to the use of genetically engineered E. coli as a sustainable platform for the production of industrially important biochemicals such as biofuels, organic acids, amino acids, sugar alcohols and biopolymers. In addition, representative secondary metabolites produced by E. coli will be systematically discussed and the successful strategies for strain improvements will be highlighted. Moreover, this review presents guidelines for future developments in the bio-based chemical production using E. coli as an industrial platform.  相似文献   

7.
Branched-chain fatty acids (BCFAs) are key precursors of branched-chain fuels, which have cold-flow properties superior to straight chain fuels. BCFA production in Gram-negative bacterial hosts is inherently challenging because it competes directly with essential and efficient straight-chain fatty acid (SCFA) biosynthesis. Previously, Escherichia coli strains engineered for BCFA production also co-produced a large percentage of SCFA, complicating efficient isolation of BCFA. Here, we identified a key bottleneck in BCFA production: incomplete lipoylation of 2-oxoacid dehydrogenases. We engineered two protein lipoylation pathways that not only restored 2-oxoacid dehydrogenase lipoylation, but also increased BCFA production dramatically. E. coli expressing an optimized lipoylation pathway produced 276 mg/L BCFA, comprising 85% of the total free fatty acids (FFAs). Furthermore, we fine-tuned BCFA branch positions, yielding strains specifically producing ante-iso or odd-chain iso BCFA as 77% of total FFA, separately. When coupled with an engineered branched-chain amino acid pathway to enrich the branched-chain α-ketoacid pool, BCFA can be produced from glucose at 181 mg/L and 72% of total FFA. While E. coli can metabolize BCFAs, we demonstrated that they are not incorporated into the cell membrane, allowing our system to produce a high percentage of BCFA without affecting membrane fluidity. Overall, this work establishes a platform for high percentage BCFA production, providing the basis for efficient and specific production of a variety of branched-chain hydrocarbons in engineered bacterial hosts.  相似文献   

8.
Bacteriophage endolysin is one of the most promising antibiotic substitutes, but in Gram-negative bacteria, the outer membrane prevents the lysin from hydrolyzing peptidoglycans and blocks the development of lysin applications. The prime strategy for new antibiotic substitutes is allowing lysin to access the peptidoglycan from outside of the bacteria by reformation of the lysin. In this study, the novel Escherichia coli (E. coli) phage lyase lysep3, which lacks outside-in catalytic ability, was fused with the N-terminal region of the Bacillus amyloliquefaciens lysin including its cell wall binding domain D8 through the best manner of protein fusion based on the predicted tertiary structure of lysep3-D8 to obtain an engineered lysin that can lyse bacteria from the outside. Our results showed that lysep3-D8 could lyse both Gramnegative and Gram-positive bacteria, whereas lysep3 and D8 have no impact on bacterial growth. The MIC of lysep3-D8 on E. coli CVCC1418 is 60 μg/ml; lysep3-D8 can inhibit the growth of bacteria up to 12 h at this concentration. The bactericidal spectrum of lysep3-D8 is broad, as it can lyse of all of 14 E. coli strains, 3 P. aeruginosa strains, 1 Acinetobacter baumannii strain, and 1 Streptococcus strain. Lysep3-D8 has sufficient bactericidal effects on the 14 E. coli strains tested at the concentration of 100 μg/ml. The cell wall binding domain of the engineered lysin can destroy the integrity of the outer membrane of bacteria, thus allowing the catalytic domain to reach its target, peptidoglycan, to lyse the bacteria. Lysep3-D8 can be used as a preservative in fodder to benefit the health of animals. The method we used here proved to be a successful exploration of the reformation of phage lysin.  相似文献   

9.
Xylonate is a valuable chemical for versatile applications. Although the chemical synthesis route and microbial conversion pathway were established decades ago, no commercial production of xylonate has been obtained so far. In this study, the industrially important microorganism Escherichia coli was engineered to produce xylonate from xylose. Through the coexpression of a xylose dehydrogenase (xdh) and a xylonolactonase (xylC) from Caulobacter crescentus, the recombinant strain could convert 1 g/L xylose to 0.84 g/L xylonate and 0.10 g/L xylonolactone after being induced for 12 h. Furthermore, the competitive pathway for xylose catabolism in E. coli was blocked by disrupting two genes (xylA and xylB) encoding xylose isomerase and xylulose kinase. Under fed-batch conditions, the finally engineered strain produced up to 27.3 g/L xylonate and 1.7 g/L xylonolactone from 30 g/L xylose, about 88% of the theoretical yield. These results suggest that the engineered E. coli strain has a promising perspective for large-scale production of xylonate.  相似文献   

10.
Salvianic acid A, a valuable derivative from L-tyrosine biosynthetic pathway of the herbal plant Salvia miltiorrhiza, is well known for its antioxidant activities and efficacious therapeutic potential on cardiovascular diseases. Salvianic acid A was traditionally isolated from plant root or synthesized by chemical methods, both of which had low efficiency. Herein, we developed an unprecedented artificial biosynthetic pathway of salvianic acid A in E. coli, enabling its production from glucose directly. In this pathway, 4-hydroxyphenylpyruvate was converted to salvianic acid A via D-lactate dehydrogenase (encoding by d-ldh from Lactobacillus pentosus) and hydroxylase complex (encoding by hpaBC from E. coli). Furthermore, we optimized the pathway by a modular engineering approach and deleting genes involved in the regulatory and competing pathways. The metabolically engineered E. coli strain achieved high productivity of salvianic acid A (7.1 g/L) with a yield of 0.47 mol/mol glucose.  相似文献   

11.
Escherichia coli only maintains a small amount of cellular malonyl-CoA, impeding its utility for overproducing natural products such as polyketides and flavonoids. Here, we report the use of various metabolic engineering strategies to redirect the carbon flux inside E. coli to pathways responsible for the generation of malonyl-CoA. Overexpression of acetyl-CoA carboxylase (Acc) resulted in 3-fold increase in cellular malonyl-CoA concentration. More importantly, overexpression of Acc showed a synergistic effect with increased acetyl-CoA availability, which was achieved by deletion of competing pathways leading to the byproducts acetate and ethanol as well as overexpression of an acetate assimilation enzyme. These engineering efforts led to the creation of an E. coli strain with 15-fold elevated cellular malonyl-CoA level. To demonstrate its utility, this engineered E. coli strain was used to produce an important polyketide, phloroglucinol, and showed near 4-fold higher titer compared with wild-type E. coli, despite the toxicity of phloroglucinol to cell growth. This engineered E. coli strain with elevated cellular malonyl-CoA level should be highly useful for improved production of important natural products where the cellular malonyl-CoA level is rate-limiting.  相似文献   

12.
Infections with Gram-negative bacteria form an increasing risk for human health due to antibiotic resistance. Our immune system contains various antimicrobial proteins that can degrade the bacterial cell envelope. However, many of these proteins do not function on Gram-negative bacteria, because the impermeable outer membrane of these bacteria prevents such components from reaching their targets. Here we show that complement-dependent formation of Membrane Attack Complex (MAC) pores permeabilizes this barrier, allowing antimicrobial proteins to cross the outer membrane and exert their antimicrobial function. Specifically, we demonstrate that MAC-dependent outer membrane damage enables human lysozyme to degrade the cell wall of E. coli. Using flow cytometry and confocal microscopy, we show that the combination of MAC pores and lysozyme triggers effective E. coli cell wall degradation in human serum, thereby altering the bacterial cell morphology from rod-shaped to spherical. Completely assembled MAC pores are required to sensitize E. coli to the antimicrobial actions of lysozyme and other immune factors, such as Human Group IIA-secreted Phospholipase A2. Next to these effects in a serum environment, we observed that the MAC also sensitizes E. coli to more efficient degradation and killing inside human neutrophils. Altogether, this study serves as a proof of principle on how different players of the human immune system can work together to degrade the complex cell envelope of Gram-negative bacteria. This knowledge may facilitate the development of new antimicrobials that could stimulate or work synergistically with the immune system.  相似文献   

13.
《Gene》1997,186(2):167-173
A 12-kb PstI fragment including the entire E. coli lactose operon (lacIPOZYA) was inserted in one copy into the chromosome of Pseudomonas putida, Pseudomonas fluorescens and an E. coli strain with lac phenotype. This was made possible by improvements of an already existing mini-Tn5 transposon delivery system (de Lorenzo et al., 1990; Herrero et al., 1990), which integrates cloned DNA fragments at random sites on the chromosome of the recipient bacteria in single copies. This has resulted in: (a) the making of two useful low copy-number cloning vectors both with extensive multi-cloning regions flanked by NotI sites needed in the mini-Tn5 delivery system; (b) the generation of E. coli nonlysogenic strains expressing the π protein thus being capable of maintaining and delivering R6K-based mini-Tn5 vectors to other E. coli strains; (c) the successful insertion of the E. coli lactose operon into the P. fluorescens chromosome giving P. fluorescens the ability to grow on lactose; (d) evidence from Southern blotting that contradicts the assumption that the mini-Tn5 delivery system always creates one-copy inserts. These improvements allow insertion of large DNA fragments encoding highly expressed proteins into the chromosome of a large variety of Gram-negative bacteria including E. coli.  相似文献   

14.
Chondroitin sulfates (CSs) are linear glycosaminoglycans that have important applications in the medical and food industries. Engineering bacteria for the microbial production of CS will facilitate a one‐step, scalable production with good control over sulfation levels and positions in contrast to extraction from animal sources. To achieve this goal, Escherichia coli (E. coli) is engineered in this study using traditional metabolic engineering approaches to accumulate 3′‐phosphoadenosine‐5′‐phosphosulfate (PAPS), the universal sulfate donor. PAPS is one of the least‐explored components required for the biosynthesis of CS. The resulting engineered E. coli strain shows an ≈1000‐fold increase in intracellular PAPS concentrations. This study also reports, for the first time, in vitro biotransformation of CS using PAPS, chondroitin, and chondroitin‐4‐sulfotransferase (C4ST), all synthesized from different engineered E. coli strains. A 10.4‐fold increase is observed in the amount of CS produced by biotransformation by employing PAPS from the engineered PAPS‐accumulating strain. The data from the biotransformation experiments also help evaluate the reaction components that need improved production to achieve a one‐step microbial synthesis of CS. This will provide a new platform to produce CS.  相似文献   

15.
We report the development of a robust user-friendly Escherichia coli (E. coli) expression system, derived from the BL21(DE3) strain, for site-specifically incorporating unnatural amino acids (UAAs) into proteins using engineered E. coli tryptophanyl-tRNA synthetase (EcTrpRS)-tRNATrp pairs. This was made possible by functionally replacing the endogenous EcTrpRS-tRNATrp pair in BL21(DE3) E. coli with an orthogonal counterpart from Saccharomyces cerevisiae, and reintroducing it into the resulting altered translational machinery tryptophanyl (ATMW-BL21) E. coli strain as an orthogonal nonsense suppressor. The resulting expression system benefits from the favorable characteristics of BL21(DE3) as an expression host, and is compatible with the broadly used T7-driven recombinant expression system. Furthermore, the vector expressing the nonsense-suppressing engineered EcTrpRS-tRNATrp pair was systematically optimized to significantly enhance the incorporation efficiency of various tryptophan analogs. Together, the improved strain and the optimized suppressor plasmids enable efficient UAA incorporation (up to 65% of wild-type levels) into several different proteins. This robust and user-friendly platform will significantly expand the scope of the genetically encoded tryptophan-derived UAAs.  相似文献   

16.
A heightened immune response, in which immune responses are primed by repeated exposure to a pathogen, is an important characteristic of vertebrate adaptive immunity. In the present study, we examined whether invertebrate animals also exhibit a primed immune response. The LD50 of Gram-negative enterohemorrhagic Escherichia coli O157:H7 Sakai in silkworms was increased 100-fold by pre-injection of heat-killed Sakai cells. Silkworms pre-injected with heat-killed cells of a Gram-positive bacterium, Staphylococcus aureus, did not have resistance to Sakai. Silkworms preinjected with enterohemorrhagic E. coli peptidoglycans, cell surface components of bacteria, were resistant to Sakai infection. Silkworms preinjected with S. aureus peptidoglycans, however, were not resistant to Sakai. Silkworms preinjected with heat-killed Sakai cells showed persistent resistance to Sakai infection even after pupation. Repeated injection of heat-killed Sakai cells into the silkworms induced earlier and greater production of antimicrobial peptides than a single injection of heat-killed Sakai cells. These findings suggest that silkworm recognition of Gram-negative peptidoglycans leads to a primed immune reaction and increased resistance to a second round of bacterial infection.  相似文献   

17.
The effects of Freund’s adjuvants on antibody production in chickens against E. coli whole cells were examined. The levels of anti-E. coli IgG antibodies in serum were higher when Freund’s complete (FCA) or incomplete adjuvant (FIA) was administered than that without adjuvant. Production of antibodies recognizing E. coli cells and their lipopolysaccharide was enhanced by FIA, while both FIA and FCA enhanced production of antibodies recognizing outer membrane components. In contrast, serum IgM antibody levels were higher when no adjuvant was used. Anti-E. coli IgG antibodies in serum were efficiently transferred to egg yolk, giving antibody activity in egg yolk similar to that in serum. However, anti-E. coli IgM antibodies were not detected in the egg, suggesting that egg (white) IgM was not influenced by antigenic stimulation of the humoral immune system. Antimicrobial activity of the egg yolk IgG was highest when the bacteria antigen was injected with FIA.  相似文献   

18.
Controlling metabolism of engineered microbes is important to modulate cell growth and production during a bioprocess. For example, external parameters such as light, chemical inducers, or temperature can act on metabolism of production strains by changing the abundance or activity of enzymes. Here, we created temperature-sensitive variants of an essential enzyme in arginine biosynthesis of Escherichia coli (argininosuccinate synthetase, ArgG) and used them to dynamically control citrulline overproduction and growth of E. coli. We show a method for high-throughput enrichment of temperature-sensitive ArgG variants with a fluorescent TIMER protein and flow cytometry. With 90 of the thus derived ArgG variants, we complemented an ArgG deletion strain showing that 90% of the strains exhibit temperature-sensitive growth and 69% of the strains are auxotrophic for arginine at 42 °C and prototrophic at 30 °C. The best temperature-sensitive ArgG variant enabled precise and tunable control of cell growth by temperature changes. Expressing this variant in a feedback-dysregulated E. coli strain allowed us to realize a two-stage bioprocess: a 33 °C growth-phase for biomass accumulation and a 39 °C stationary-phase for citrulline production. With this two-stage strategy, we produced 3 g/L citrulline during 45 h cultivation in a 1-L bioreactor. These results show that temperature-sensitive enzymes can be created en masse and that they may function as metabolic valves in engineered bacteria.  相似文献   

19.
Plantaricins are small bioactive peptides produced by Lactobacillus plantarum strains that exhibit significant antimicrobial activity against closely-related Gram-positive bacteria, including food spoilage organisms. In comparison, bacteriocins including plantaricins, are usually less effective against Gram-negative organisms. In this study, we demonstrate that heterologously expressed and purified plantaricins, Pln E, -F, -J, and -K when tested against Gram negative model organism Escherichia coli K-12 were highly effective under certain conditions. The apparent tolerance of Gram-negative members to these peptides has been explained on the basis of the presence of the outer membrane (OM) that acts as a protective barrier. We have shown that agents and/or conditions that destabilize OM of E. coli K-12, make it susceptible to plantaricin peptides. In order to further strengthen this conclusion, an OM lipoprotein-defective lpp mutant strain of E. coli K-12 was also studied and compared. A significant loss of cell viability both in terms of CFU/ml as well as with live–dead dual staining combined with flow cytometry, could be demonstrated with the lpp mutant in comparison to the wild type strain. The results indicate that plantaricins can inhibit Gram-negative bacteria if the outer-membrane is weakened and it can be used in preservation of food with the help of some food-grade chelating agents.  相似文献   

20.
Intracellular proteins have a great potential as targets for therapeutic antibodies (Abs) but the plasma membrane prevents access to these antigens. Ab fragments and IgGs are selected and engineered in E. coli and this microorganism may be also an ideal vector for their intracellular delivery. In this work we demonstrate that single-domain Ab (sdAbs) can be engineered to be injected into human cells by E. coli bacteria carrying molecular syringes assembled by a type III protein secretion system (T3SS). The injected sdAbs accumulate in the cytoplasm of HeLa cells at levels ca. 105–106 molecules per cell and their functionality is shown by the isolation of sdAb-antigen complexes. Injection of sdAbs does not require bacterial invasion or the transfer of genetic material. These results are proof-of-principle for the capacity of E. coli bacteria to directly deliver intracellular sdAbs (intrabodies) into human cells for analytical and therapeutic purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号