首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dyba M  Jakobs S  Hell SW 《Nature biotechnology》2003,21(11):1303-1304
We report immunofluorescence imaging with a spatial resolution well beyond the diffraction limit. An axial resolution of approximately 50 nm, corresponding to 1/16 of the irradiation wavelength of 793 nm, is achieved by stimulated emission depletion through opposing lenses. We have demonstrated not only that an antibody-tagged label is stable enough to be recorded in this microscopy mode, but also that subdiffraction resolution can be obtained using a standard immunofluorescence preparation.  相似文献   

2.
3.
The concept of the tripartite synapse reflects the important role that astrocytic processes are thought to play in the function and regulation of neuronal synapses in the mammalian nervous system. However, many basic aspects regarding the dynamic interplay between pre- and postsynaptic neuronal structures and their astrocytic partners remain to be explored. A major experimental hurdle has been the small physical size of the relevant glial and synaptic structures, leaving them largely out of reach for conventional light microscopic approaches such as confocal and two-photon microscopy. Hence, most of what we know about the organization of the tripartite synapse is based on electron microscopy, which does not lend itself to investigating dynamic events and which cannot be carried out in parallel with functional assays. The development and application of superresolution microscopy for neuron–glia research is opening up exciting experimental opportunities in this regard. In this paper, we provide a basic explanation of the theory and operation of stimulated emission depletion (STED) microscopy, outlining the potential of this recent superresolution imaging modality for advancing our understanding of the morpho-functional interactions between astrocytes and neurons that regulate synaptic physiology.  相似文献   

4.
超高分辨率显微镜推进纳米生物学研究   总被引:1,自引:0,他引:1  
任煜轩  于洋  王艳 《生命科学》2014,(12):1255-1265
超高分辨率显微镜是近年来生命科学领域重要的研究手段之一。2014年诺贝尔化学奖颁发给超高分辨率显微技术领域的三位科学家,以表彰他们在该领域所作出的杰出贡献。超高分辨率技术的典型代表有受激损耗、结构光照明以及单分子定位等。这些技术的出现使得传统光学显微镜难以分辨的细胞器、分子等细节信息可以被观察到,帮助科学家从纳米尺度认识细胞内分子结构、定位以及相互作用。  相似文献   

5.
Stimulated emission depletion (STED) microscopy is a prominent approach of super‐resolution optical microscopy, which allows cellular imaging with so far unprecedented unlimited spatial resolution. The introduction of time‐gated detection in STED microscopy significantly reduces the (instantaneous) intensity required to obtain sub‐diffraction spatial resolution. If the time‐gating is combined with a STED beam operating in continuous wave (CW), a cheap and low labour demand implementation is obtained, the so called gated CW‐STED microscope. However, time‐gating also reduces the fluorescence signal which forms the image. Thereby, background sources such as fluorescence emission excited by the STED laser (anti‐Stokes fluorescence) can reduce the effective resolution of the system. We propose a straightforward method for subtraction of anti‐Stokes background. The method hinges on the uncorrelated nature of the anti‐Stokes emission background with respect to the wanted fluorescence signal. The specific importance of the method towards the combination of two‐photon‐excitation with gated CW‐STED microscopy is demonstrated. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
7.
The lateral resolution of continuous wave (CW) stimulated emission depletion (STED) microscopy is enhanced about 12% by applying annular‐shaped amplitude modulation to the radially polarized excitation beam. A focused annularly filtered radially polarized excitation beam provides a more condensed point spread function (PSF), which contributes to enhance effective STED resolution of CW STED microscopy. Theoretical analysis shows that the FWHM of the effective PSF on the detection plane is smaller than for conventional CW STED. Simulation shows the donut‐shaped PSF of the depletion beam and confocal optics suppress undesired PSF sidelobes. Imaging experiments agree with the simulated resolution improvement.   相似文献   

8.
随机光学重建显微镜(stochastic optical reconstruction microscopy,STORM)技术和受激发射损耗(stimulated emission depletion,STED)显微镜技术是近年来发展迅速的两种超分辨率荧光显微镜技术。这两种技术均提供超越传统荧光显微镜分辨率成像的功能,具有多色显像,三维成像以及活细胞内成像的潜力。在这篇综述中,我们关注两种技术荧光控制、激光强度等技术参数设定,同时结合样品制备、图像采集与处理等流程优化对比两者在分辨率、图像采集时间及具体应用中的优劣。STORM可获得更高的三维分辨率,但可能需要更长的图像采集时间。STED需要较高损耗光强度,却能在图像采集后立即生成超分辨率图像,不需要额外图像数据处理。最终,选择STORM和STED不仅取决于技术的具体应用,还取决于操作者优化各环节技术参数的能力,从而决定图像质量。  相似文献   

9.
Stimulated Raman scattering (SRS) microscopy is a nonlinear optical imaging method for visualizing chemical content based on molecular vibrational bonds. However, the imaging speed and sensitivity are currently limited by the noise of the light beam probing the Raman process. In this paper, we present a fast non-average denoising and high-precision Raman shift extraction method, based on a self-reinforcing signal-to-noise ratio (SNR) enhancement algorithm, for SRS spectroscopy and microscopy. We compare the results of this method with the filtering methods and the reported experimental methods to demonstrate its high efficiency and high precision in spectral denoising, Raman peak extraction and image quality improvement. We demonstrate a maximum SNR enhancement of 10.3 dB in fixed tissue imaging and 11.9 dB in vivo imaging. This method reduces the cost and complexity of the SRS system and allows for high-quality SRS imaging without use of special laser, complicated system design and Raman tags.  相似文献   

10.
Super‐resolution microscopy (SRM) has had a substantial impact on the biological sciences due to its ability to observe tiny objects less than 200 nm in size. Stimulated emission depletion (STED) microscopy represents a major category of these SRM techniques that can achieve diffraction‐unlimited resolution based on a purely optical modulation of fluorescence behaviors. Here, we investigated how the laser beams affect fluorescence lifetime in both confocal and STED imaging modes. The results showed that with increasing illumination time, the fluorescence lifetime in two kinds of fluorescent microspheres had an obvious change in STED imaging mode, compared with that in confocal imaging mode. As a result, the reduction of saturation intensity induced by the increase of fluorescence lifetime can improve the STED imaging resolution at the same depletion power. The phenomenon was also observed in Star635P‐labeled human Nup153 in fixed HeLa cells, which can be treated as a reference for the synthesis of fluorescent labels with the sensitivity to the surrounding environment for resolution improvement in STED nanoscopy.   相似文献   

11.
Since stimulated emission depletion (STED) nanoscopy was invented in 1994, this technique has been widely used in the fields of biomedicine and materials science. According to the imaging principle of STED technology, increasing the power of the depletion laser within a certain threshold can improve the resolution. However, it will cause not only severe photo-damage to the samples and photo-bleaching to the fluorophores but also serious background noise, leading to the degeneration of the quality of STED images. Here we propose a new processing method based on frequency spectrum modulation to improve the quality of STED images, abbreviated as FM-STED. We have demonstrated the performance of FM-STED in improving the signal-to-noise ratio and the resolution using fluorescent beads and biological cells as samples.  相似文献   

12.
The phenomenon of ultraweak photon emission from living systems was further investigated in order to elucidate the physical properties of this radiation and its possible source. We obtained evidence that the light has a high degree of coherence because of (1) its photon count statistics, (2) its spectral distribution, (3) its decay behavior after exposure to light illumination, and (4) its transparency through optically thick materials. Moroever, DNA is apparently at least an important source, since conformational changes induced with ethidium bromide in vivo are clearly reflected by changes of the photon emission of cells. The physical properties of the radiation are described, taking DNA as an exciplex laser system, where a stable state can be reached far from thermal equilibrium at threshold.  相似文献   

13.
Expansion microscopy is a super‐resolution method that allows expanding uniformly biological samples, by increasing the relative distances among fluorescent molecules labeling specific components. One of the main concerns in this approach regards the isotropic behavior at the nanoscale. The present study aims to determine the robustness of such a technique, quantifying the expansion parameters i.e. scale factor, isotropy, uniformity. Our focus is on the nuclear pore complex (NPC), as well‐known nanoscale component endowed of a preserved and symmetrical structure localized on the nuclear envelope. Here, we show that Nup153 is a good reporter to quantitatively address the isotropy of the expansion process. The quantitative analysis carried out on NPCs, at different spatial scales, allows concluding that expansion microscopy can be used at the nanoscale to measure subcellular features with an accuracy from 10 to 5 nm. Therefore, it is an excellent method for structural studies of macromolecular complexes.  相似文献   

14.
Summary Two basic specimen preparation protocols that allow field emission scanning electron microscope imaging of intracellular structures in a wide range of plants are described. Both protocols depend on freeze fracturing to reveal areas of interest and selective removal of cytosol. Removal of cytosol was achieved either by macerating fixed tissues in a dilute solution of osmium tetroxide after freeze fracturing or by permeabilizing the membranes in saponin before fixation and subsequent freeze fracturing. Images of a variety of intracellular structures including all the main organelles as well as cytoskeletal components are presented. The permeabilization protocol can be combined with immunogold labelling to identify specific components such as microtubules. High-resolution three-dimensional imaging was combined with immunogold labelling of microtubules and actin cables in cell-free systems. This approach should be especially valuable for the study of dynamic cellular processes (such as cytoplasmic streaming) in live cells when used in conjunction with modern fluorescence microscopical techniques.Abbreviations DMSO dimethylsulfoxide - FESEM field emission scanning electron microscope (-scopy) - MTSB microtubule-stabilizing buffer - PBS phosphate-buffered saline - SEM scanning electron microscope (-scopy) - TEM transmission electron microscope (-scopy)  相似文献   

15.
STED microscopy is a tool that enables superresolution fluorescence imaging by overcoming the diffraction limitation, and has become more useful in various fields such as biology and material science. STED resolution enhancement can be useful in resolving and visualizing sophisticated details of structures of a sample. For this, the excitation focal spot reduction of CW STED microscopy is achieved by PSF engineering using radial polarization and annular aperture, and improved lateral resolution is obtained by STED effect. This leads to a performance improvement that can lower the depletion beam power required to achieve the same superresolution Further details can be found in the article by Geon Lim, Wan‐Chin Kim, Seunghee Oh, Hyungsuk Lee, No‐Cheol Parket ( e201900060 ).

  相似文献   


16.
超分辨显微成像技术(super-resolution microscopy,SRM)可以绕过光学衍射极限对成像分辨率的限制,让以前观察不到的纳米级结构实现可视化,这一重大研究进展推动了现代生命科学和生物医学研究的进步与发展.细胞是生物体的基本组成单位,对活细胞内部的细微结构和动力学过程进行研究是掌握生命本质必不可少的途...  相似文献   

17.
18.
燃煤烟气中汞排放对周边环境影响   总被引:3,自引:0,他引:3  
研究了上海市内2个燃煤电厂所排放烟气中的汞对周边环境的影响,并利用高架连续点源大气污染模型分析了电厂烟气排放汞对周边大气汞浓度的影响.结果表明,G电厂周边大气汞浓度范围为9.7~15.6 ng·m-3,J电厂为15.2~22.9 ng·m-3.利用高架连续点源大气污染模型,估算出G电厂和J电厂所排放的烟气下风向3 km处元素态汞的落地浓度分别为0.218和3.034 ng·m-3,颗粒态汞的落地浓度分别为0.038和1.199ng·m-3.G电厂周边表层土壤汞浓度为36.3~136.5 ng·g-1,J电厂为44.3~115.9ng·g-1.G电厂周边植物叶片中汞浓度为215.3~342.3 ng·g-1,J电厂为223.4~396.9 ng·g-1.现场监测数据和模型估算均表明:燃煤电厂所排放的烟气对周边环境中汞的分布和积累有贡献.  相似文献   

19.
Coating of stainless steel with diamond-like carbon or certain fluoropolymers reduced or almost eliminated adhesion and biofilm growth of Staphylococcus epidermidis, Deinococcus geothermalis, Meiothermus silvanus and Pseudoxanthomonas taiwanensis. These species are known to be pertinent biofilm formers on medical implants or in the wet-end of paper machines. Field emission scanning electron microscopic analysis showed that Staph. epidermidis, D. geothermalis and M. silvanus grew on stainless steel using thread-like organelles for adhesion and biofilm formation. The adhesion threads were fewer in number on fluoropolymer-coated steel than on plain steel and absent when the same strains were grown in liquid culture. Psx. taiwanensis adhered to the same surfaces by a mechanism involving cell ghosts on which the biofilm of live cells grew. Hydrophilic (diamond-like carbon) or hydrophobic (fluoropolymer) coatings reduced the adherence of the four test bacteria on different steels. Selected topographic parameters, including root-mean-square roughness (S (q)), skewness (S (sk)) and surface kurtosis (S (ku)), were analysed by atomic force microscopy. The surfaces that best repelled microbial adhesion of the tested bacteria had higher skewness values than those only slightly repelling. Water contact angle, measured (theta (m)) or roughness corrected (theta (y)), affected the tendency for biofilm growth in a different manner for the four test bacteria.  相似文献   

20.
基于生命周期的风电场碳排放核算   总被引:2,自引:0,他引:2  
戢时雨  高超  陈彬  李胜男 《生态学报》2016,36(4):915-923
风电是实现低碳战略的主力能源技术之一。为全面分析其对环境的影响,将自然植被纳入系统边界,计量风电场建设前后植被破坏及恢复带来的影响。在清单分析中,重点考虑对碳排影响较大的配件生产及运输、建设期工程车耗油排放,更加合理地核算风电场碳排放和量化其环境影响。核算结果表明:案例风电场全生命周期排碳量为2.97×104t C;运营期由于电能损耗造成的CO2排放量远大于其它阶段,占全过程的57.74%;整个过程中,能源消耗造成的碳排放远大于资源损耗排放。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号