首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The advent of superresolution microscopy has opened up new research opportunities into dynamic processes at the nanoscale inside living biological specimens. This is particularly true for synapses, which are very small, highly dynamic, and embedded in brain tissue. Stimulated emission depletion (STED) microscopy, a recently developed laser-scanning technique, has been shown to be well suited for imaging living synapses in brain slices using yellow fluorescent protein as a single label. However, it would be highly desirable to be able to image presynaptic boutons and postsynaptic spines, which together form synapses, using two different fluorophores. As STED microscopy uses separate laser beams for fluorescence excitation and quenching, incorporation of multicolor imaging for STED is more difficult than for conventional light microscopy. Although two-color schemes exist for STED microscopy, these approaches have several drawbacks due to their complexity, cost, and incompatibility with common labeling strategies and fluorophores. Therefore, we set out to develop a straightforward method for two-color STED microscopy that permits the use of popular green-yellow fluorescent labels such as green fluorescent protein, yellow fluorescent protein, Alexa Fluor 488, and calcein green. Our new (to our knowledge) method is based on a single-excitation/STED laser-beam pair to simultaneously excite and quench pairs of these fluorophores, whose signals can be separated by spectral detection and linear unmixing. We illustrate the potential of this approach by two-color superresolution time-lapse imaging of axonal boutons and dendritic spines in living organotypic brain slices.  相似文献   

2.
Two-photon laser scanning microscopy (2PLSM) allows fluorescence imaging in thick biological samples where absorption and scattering typically degrade resolution and signal collection of one-photon imaging approaches. The spatial resolution of conventional 2PLSM is limited by diffraction, and the near-infrared wavelengths used for excitation in 2PLSM preclude the accurate imaging of many small subcellular compartments of neurons. Stimulated emission depletion (STED) microscopy is a superresolution imaging modality that overcomes the resolution limit imposed by diffraction and allows fluorescence imaging of nanoscale features. Here, we describe the design and operation of a superresolution two-photon microscope using pulsed excitation and STED lasers. We examine the depth dependence of STED imaging in acute tissue slices and find enhancement of 2P resolution ranging from approximately fivefold at 20 μm to approximately twofold at 90-μm deep. The depth dependence of resolution is found to be consistent with the depth dependence of depletion efficiency, suggesting resolution is limited by STED laser propagation through turbid tissue. Finally, we achieve live imaging of dendritic spines with 60-nm resolution and demonstrate that our technique allows accurate quantification of neuronal morphology up to 30-μm deep in living brain tissue.  相似文献   

3.
STED (stimulated emission depletion) microscopy is one of the most promising super‐resolution fluorescence microscopies,due to its fast imaging and ultra‐high resolution. In this paper, we present a dual‐color STED microscope with a single laser source. Polarization beam splitters are used to separate the output from a supercontinuum laser source into four laser beams, including two excitation beams (488, 635 nm) and two depletion beams (592, 775 nm). These four laser beams are then used to build a low cost dual‐color STED system to achieve a spatial resolution of 75 nm in cell samples.  相似文献   

4.
STED microscopy is a tool that enables superresolution fluorescence imaging by overcoming the diffraction limitation, and has become more useful in various fields such as biology and material science. STED resolution enhancement can be useful in resolving and visualizing sophisticated details of structures of a sample. For this, the excitation focal spot reduction of CW STED microscopy is achieved by PSF engineering using radial polarization and annular aperture, and improved lateral resolution is obtained by STED effect. This leads to a performance improvement that can lower the depletion beam power required to achieve the same superresolution Further details can be found in the article by Geon Lim, Wan‐Chin Kim, Seunghee Oh, Hyungsuk Lee, No‐Cheol Parket ( e201900060 ).

  相似文献   


5.
Since stimulated emission depletion (STED) nanoscopy was invented in 1994, this technique has been widely used in the fields of biomedicine and materials science. According to the imaging principle of STED technology, increasing the power of the depletion laser within a certain threshold can improve the resolution. However, it will cause not only severe photo-damage to the samples and photo-bleaching to the fluorophores but also serious background noise, leading to the degeneration of the quality of STED images. Here we propose a new processing method based on frequency spectrum modulation to improve the quality of STED images, abbreviated as FM-STED. We have demonstrated the performance of FM-STED in improving the signal-to-noise ratio and the resolution using fluorescent beads and biological cells as samples.  相似文献   

6.
In a stimulated emission depletion (STED) microscope the region in which fluorescence markers can emit spontaneously shrinks with continued STED beam action after a singular excitation event. This fact has been recently used to substantially improve the effective spatial resolution in STED nanoscopy using time-gated detection, pulsed excitation and continuous wave (CW) STED beams. We present a theoretical framework and experimental data that characterize the time evolution of the effective point-spread-function of a STED microscope and illustrate the physical basis, the benefits, and the limitations of time-gated detection both for CW and pulsed STED lasers. While gating hardly improves the effective resolution in the all-pulsed modality, in the CW-STED modality gating strongly suppresses low spatial frequencies in the image. Gated CW-STED nanoscopy is in essence limited (only) by the reduction of the signal that is associated with gating. Time-gated detection also reduces/suppresses the influence of local variations of the fluorescence lifetime on STED microscopy resolution.  相似文献   

7.
We report superresolution fluorescence microscopy in an intact living organism, namely Caenorhabditis elegans nematodes expressing green fluorescent protein (GFP)-fusion proteins. We also superresolve, by stimulated emission depletion (STED) microscopy, living cultured cells, demonstrating that STED microscopy with GFP can be widely applied. STED with GFP can be performed with both pulsed and continuous-wave lasers spanning a wide wavelength range from at least 556–592 nm. Acquiring subdiffraction resolution images within seconds enables the recording of movies revealing structural dynamics. These results demonstrate that numerous microscopy studies of live samples employing GFP as the marker can be performed at subdiffraction resolution.  相似文献   

8.
Stimulated emission depletion (STED) nanoscopy is a promising super-resolution imaging technique for microstructure imaging; however, the performance of super-resolution techniques critically depends on the properties of the fluorophores (photostable fluorophores) used. In this study, a suitable probe for improving the resolution of STED nanoscopy was investigated. Quantum dots (QDs) typically exhibit good photobleaching resistance characteristics. In comparison with CdSe@ZnS QDs and CsPbBr3 QDs, Cd-free InP/ZnSeS QDs have a smaller size and exhibit an improved photobleaching resistance. Through imaging using InP/ZnSeS QDs, we achieved an ultrahigh resolution of 26.1 nm. Furthermore, we achieved a 31 nm resolution in cell experiments involving InP/ZnSeS QDs. These results indicate that Cd-free InP/ZnSeS QDs have significant potential for application in fluorescent probes for STED nanoscopy.  相似文献   

9.
Super‐resolution microscopy (SRM) has had a substantial impact on the biological sciences due to its ability to observe tiny objects less than 200 nm in size. Stimulated emission depletion (STED) microscopy represents a major category of these SRM techniques that can achieve diffraction‐unlimited resolution based on a purely optical modulation of fluorescence behaviors. Here, we investigated how the laser beams affect fluorescence lifetime in both confocal and STED imaging modes. The results showed that with increasing illumination time, the fluorescence lifetime in two kinds of fluorescent microspheres had an obvious change in STED imaging mode, compared with that in confocal imaging mode. As a result, the reduction of saturation intensity induced by the increase of fluorescence lifetime can improve the STED imaging resolution at the same depletion power. The phenomenon was also observed in Star635P‐labeled human Nup153 in fixed HeLa cells, which can be treated as a reference for the synthesis of fluorescent labels with the sensitivity to the surrounding environment for resolution improvement in STED nanoscopy.   相似文献   

10.
Super‐resolution microscopy techniques can provide answers to still pending questions on prokaryotic organisms but are yet to be used at their full potential for this purpose. To address this, we evaluate the ability of the rhodamine‐like KK114 dye to label various types of bacteria, to enable imaging of fine structural details with stimulated emission depletion microscopy (STED). We assessed fluorescent labeling with KK114 for eleven Gram‐positive and Gram‐negative bacterial species and observed that this contrast agent binds to their cell membranes. Significant differences in the labeling outputs were noticed across the tested bacterial species, but importantly, KK114‐staining allowed the observation of subtle nanometric cell details in some cases. For example, a helix pattern resembling a cytoskeleton arrangement was detected in Bacillus subtilis. Furthermore, we found that KK114 easily penetrates the membrane of bacterial microorganism that lost their viability, which can be useful to discriminate between living and dead cells.  相似文献   

11.
Many cellular structures and organelles are too small to be properly resolved by conventional light microscopy. This is particularly true for dendritic spines and glial processes, which are very small, dynamic, and embedded in dense tissue, making it difficult to image them under realistic experimental conditions. Two-photon microscopy is currently the method of choice for imaging in thick living tissue preparations, both in acute brain slices and in vivo. However, the spatial resolution of a two-photon microscope, which is limited to ∼350 nm by the diffraction of light, is not sufficient for resolving many important details of neural morphology, such as the width of spine necks or thin glial processes. Recently developed superresolution approaches, such as stimulated emission depletion microscopy, have set new standards of optical resolution in imaging living tissue. However, the important goal of superresolution imaging with significant subdiffraction resolution has not yet been accomplished in acute brain slices. To overcome this limitation, we have developed a new microscope based on two-photon excitation and pulsed stimulated emission depletion microscopy, which provides unprecedented spatial resolution and excellent experimental access in acute brain slices using a long-working distance objective. The new microscope improves on the spatial resolution of a regular two-photon microscope by a factor of four to six, and it is compatible with time-lapse and simultaneous two-color superresolution imaging in living cells. We demonstrate the potential of this nanoscopy approach for brain slice physiology by imaging the morphology of dendritic spines and microglial cells well below the surface of acute brain slices.  相似文献   

12.
This review provides a practical introduction to superresolution microscopy from the perspective of microbiological research. Because of the small sizes of bacterial cells, superresolution methods are particularly powerful and suitable for revealing details of cellular structures that are not resolvable under conventional fluorescence light microscopy. Here we describe the methodological concepts behind three major categories of superresolution light microscopy: photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), structured illumination microscopy (SIM) and stimulated emission‐depletion (STED) microscopy. We then present recent applications of each of these techniques to microbial systems, which have revealed novel conformations of cellular structures and described new properties of in vivo protein function and interactions. Finally, we discuss the unique issues related to implementing each of these superresolution techniques with bacterial specimens and suggest avenues for future development. The goal of this review is to provide the necessary technical background for interested microbiologists to choose the appropriate superresolution method for their biological systems, and to introduce the practical considerations required for designing and analysing superresolution imaging experiments.  相似文献   

13.
Fluorescence microscopy, especially confocal microscopy, has revolutionized the field of biological imaging. Breaking the optical diffraction barrier of conventional light microscopy, through the advent of super-resolution microscopy, has ushered in the potential for a second revolution through unprecedented insight into nanoscale structure and dynamics in biological systems. Stimulated emission depletion (STED) microscopy is one such super-resolution microscopy technique which provides real-time enhanced-resolution imaging capabilities. In addition, it can be easily integrated with well-established fluorescence-based techniques such as fluorescence correlation spectroscopy (FCS) in order to capture the structure of cellular membranes at the nanoscale with high temporal resolution. In this review, we discuss the theory of STED and different modalities of operation in order to achieve the best resolution. Various applications of this technique in cell imaging, especially that of neuronal cell imaging, are discussed as well as examples of application of STED imaging in unravelling structure formation on biological membranes. Finally, we have discussed examples from some of our recent studies on nanoscale structure and dynamics of lipids in model membranes, due to interaction with proteins, as revealed by combination of STED and FCS techniques.  相似文献   

14.
We demonstrate the first, to our knowledge, integration of stimulated emission depletion (STED) with selective plane illumination microscopy (SPIM). Using this method, we were able to obtain up to 60% improvements in axial resolution with lateral resolution enhancements in control samples and zebrafish embryos. The integrated STED-SPIM method combines the advantages of SPIM with the resolution enhancement of STED, and thus provides a method for fast, high-resolution imaging with >100 μm deep penetration into biological tissue.  相似文献   

15.
Stimulated emission depletion (STED) microscopy is a prominent approach of super‐resolution optical microscopy, which allows cellular imaging with so far unprecedented unlimited spatial resolution. The introduction of time‐gated detection in STED microscopy significantly reduces the (instantaneous) intensity required to obtain sub‐diffraction spatial resolution. If the time‐gating is combined with a STED beam operating in continuous wave (CW), a cheap and low labour demand implementation is obtained, the so called gated CW‐STED microscope. However, time‐gating also reduces the fluorescence signal which forms the image. Thereby, background sources such as fluorescence emission excited by the STED laser (anti‐Stokes fluorescence) can reduce the effective resolution of the system. We propose a straightforward method for subtraction of anti‐Stokes background. The method hinges on the uncorrelated nature of the anti‐Stokes emission background with respect to the wanted fluorescence signal. The specific importance of the method towards the combination of two‐photon‐excitation with gated CW‐STED microscopy is demonstrated. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Applying pulsed excitation together with time-gated detection improves the fluorescence on-off contrast in continuous-wave stimulated emission depletion (CW-STED) microscopy, thus revealing finer details in fixed and living cells using moderate light intensities. This method also enables super-resolution fluorescence correlation spectroscopy with CW-STED beams, as demonstrated by quantifying the dynamics of labeled lipid molecules in the plasma membrane of living cells.  相似文献   

17.
Liu Y  Ding Y  Alonas E  Zhao W  Santangelo PJ  Jin D  Piper JA  Teng J  Ren Q  Xi P 《PloS one》2012,7(6):e40003
In this report, a Ti:Sapphire oscillator was utilized to realize synchronization-free stimulated emission depletion (STED) microscopy. With pump power of 4.6 W and sample irradiance of 310 mW, we achieved super-resolution as high as 71 nm. With synchronization-free STED, we imaged 200 nm nanospheres as well as all three cytoskeletal elements (microtubules, intermediate filaments, and actin filaments), clearly demonstrating the resolving power of synchronization-free STED over conventional diffraction limited imaging. It also allowed us to discover that, Dylight 650, exhibits improved performance over ATTO647N, a fluorophore frequently used in STED. Furthermore, we applied synchronization-free STED to image fluorescently-labeled intracellular viral RNA granules, which otherwise cannot be differentiated by confocal microscopy. Thanks to the widely available Ti:Sapphire oscillators in multiphoton imaging system, this work suggests easier access to setup super-resolution microscope via the synchronization-free STED.  相似文献   

18.
The concept of the tripartite synapse reflects the important role that astrocytic processes are thought to play in the function and regulation of neuronal synapses in the mammalian nervous system. However, many basic aspects regarding the dynamic interplay between pre- and postsynaptic neuronal structures and their astrocytic partners remain to be explored. A major experimental hurdle has been the small physical size of the relevant glial and synaptic structures, leaving them largely out of reach for conventional light microscopic approaches such as confocal and two-photon microscopy. Hence, most of what we know about the organization of the tripartite synapse is based on electron microscopy, which does not lend itself to investigating dynamic events and which cannot be carried out in parallel with functional assays. The development and application of superresolution microscopy for neuron–glia research is opening up exciting experimental opportunities in this regard. In this paper, we provide a basic explanation of the theory and operation of stimulated emission depletion (STED) microscopy, outlining the potential of this recent superresolution imaging modality for advancing our understanding of the morpho-functional interactions between astrocytes and neurons that regulate synaptic physiology.  相似文献   

19.
A STED‐FLIM system is developed to observe the changes of fluorescence lifetime. The pictures show increased lifetime of fluorescent microspheres samples with laser illumination time in both confocal and STED imaging modes. Due to the saturation power of fluorophores is correlated with fluorescence lifetime, the lifetime increase is beneficial for the reduction of the saturation power, indicating the same imaging resolution can be achieved in a lower depletion power. Further details can be found in the article by Lu‐Wei Wang, Yue Chen, Wei Yan, et al. ( e201800315 ).

  相似文献   


20.
The lateral resolution of continuous wave (CW) stimulated emission depletion (STED) microscopy is enhanced about 12% by applying annular‐shaped amplitude modulation to the radially polarized excitation beam. A focused annularly filtered radially polarized excitation beam provides a more condensed point spread function (PSF), which contributes to enhance effective STED resolution of CW STED microscopy. Theoretical analysis shows that the FWHM of the effective PSF on the detection plane is smaller than for conventional CW STED. Simulation shows the donut‐shaped PSF of the depletion beam and confocal optics suppress undesired PSF sidelobes. Imaging experiments agree with the simulated resolution improvement.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号