首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PurposeTo correlate radiation dose to the risk of severe radiologically-evident radiation-induced lung injury (RRLI) using voxel-by-voxel analysis of the follow-up computed tomography (CT) of patients treated for lung cancer with hypofractionated helical Tomotherapy.Methods and materialsThe follow-up CT scans from 32 lung cancer patients treated with various regimens (5, 8, and 25 fractions) were registered to pre-treatment CT using deformable image registration (DIR). The change in density was calculated for each voxel within the combined lungs minus the planning target volume (PTV). Parameters of a Probit formula were derived by fitting the occurrences of changes of density in voxels greater than 0.361 g cm−3 to the radiation dose. The model’s predictive capability was assessed using the area under receiver operating characteristic curve (AUC), the Kolmogorov-Smirnov test for goodness-of-fit, and the permutation test (Ptest).ResultsThe best-fit parameters for prediction of RRLI 6 months post RT were D50 of 73.0 (95% CI 59.2.4–85.3.7) Gy, and m of 0.41 (0.39–0.46) for hypofractionated (5 and 8 fractions) and D50 of 96.8 (76.9–123.9) Gy, and m of 0.36 (0.34–0.39) for 25 fractions RT. According to the goodness-of-fit test the null hypothesis of modeled and observed occurrence of RRLI coming from the same distribution could not be rejected. The AUC was 0.581 (0.575–0.583) for fractionated and 0.579 (0.577–0.581) for hypofractionated patients. The predictive models had AUC>upper 95% band of the Ptest.ConclusionsThe correlation of voxel-by-voxel density increase with dose can be used as a support tool for differential diagnosis of tumor from benign changes in the follow-up of lung IMRT patients.  相似文献   

2.
PurposeTo increase the superficial dose and reduce the brain dose for radiotherapy of scalp angiosarcoma, we propose a novel irradiation technique of tangential irradiation volumetric modulated arc therapy (TI-VMAT).MethodsTI-VMAT and the conventional VMAT treatment plans for thirteen scalp angiosarcoma patients were created with a prescribed dose of 70 Gy. Each treatment was normalized to cover 95% of the planning target volume (PTV) with its prescribed dose. To realize TI-VMAT, an avoidance structure (AS) function was applied. AS was defined as a contour subtracted PTV by a certain space from the brain contour. TI-VMAT treatment plans for six different spaces between PTV and AS were developed and compared with the conventional VMAT treatment plan with respect to the following dosimetric parameters: homogeneity index (HI) and conformity index (CI) of the PTV, mean brain dose, and brain volume irradiated with 20% (V20% [cc]), 40% (V40% [cc]), 60% (V60% [cc]), 80% (V80% [cc]), and 100% (V100% [cc]) of the prescribed dose.ResultsHI and CI were comparable between TI-VMAT and the conventional VMAT, the mean brain dose for TI-VMAT with AS defined by a space of 2.0 cm and jaw tracking was 14.27 Gy, which was significantly lower than that for the conventional VMAT (21.20 Gy). In addition, dosimetric parameters such as V20% [cc] were significantly suppressed compared to those for high doses.ConclusionOur proposed irradiation technique TI-VMAT shows the potential to reduce radiation doses in the brain with maintaining higher dose coverage on the PTV.  相似文献   

3.
AimThe aim is a dosimetric comparison of dynamic conformal arc integrated with the segment shape optimization and variable dose rate (DCA_SSO_VDR) versus VMAT for liver SBRT and interaction of various treatment plan quality indices with PTV and degree of modulation (DoM) for both techniques.BackgroundThe DCA is the state-of-the-art technique but overall inferior to VMAT, and the DCA_SSO_VDR technique was not studied for liver SBRT.Materials and methodsTwenty-five patients of liver SBRT treated using the VMAT technique were selected. DCA_SSO_VDR treatment plans were also generated for all patients in Monaco TPS using the same objective constraint template and treatment planning parameters as used for the VMAT technique. For comparison purpose, organs at risk (OARs) doses and treatment plans quality indices, such as maximum dose of PTV (Dmax%), mean dose of PTV (Dmean%), maximum dose at 2 cm in any direction from the PTV (D2cm%), total monitor units (MU’s), gradient index R50%, degree of modulation (DoM), conformity index (CI), homogeneity index (HI), and healthy tissue mean dose (HTMD) were compared.ResultsSignificant dosimetric differences were observed in several OARs doses and lowered in VMAT plans. The D2cm%, R50%, CI, HI and HTMD are dosimetrically inferior in DCA_SSO_VDR plans. The higher DoM results in poor dose gradient and better dose gradient for DCA_SSO_VDR and VMAT treatment plans, respectively.ConclusionsFor liver SBRT, DCA_SSO_VDR treatment plans are neither dosimetrically superior nor better alternative to the VMAT delivery technique. A reduction of 69.75% MU was observed in DCA_SSO_VDR treatment plans. For the large size of PTV and high DoM, DCA_SSO_VDR treatment plans result in poorer quality.  相似文献   

4.
BackgroundThis study aimed to verify the dosimetric impact of Acuros XB (AXB) (AXB, Varian Medical Systems Palo Alto CA, USA), a two model-based algorithm, in comparison with Anisotropic Analytical Algorithm (AAA ) calculations for prostate, head and neck and lung cancer treatment by volumetric modulated arc therapy (VMAT ), without primary modification to AA. At present, the well-known and validated AA algorithm is clinically used in our department for VMAT treatments of different pathologies. AXB could replace it without extra measurements. The treatment result and accuracy of the dose delivered depend on the dose calculation algorithm.Materials and methodNinety-five complex VMAT plans for different pathologies were generated using the Eclipse version 15.0.4 treatment planning system (TPS). The dose distributions were calculated using AA and AXB (dose-to-water, AXBw and dose-to-medium, AXBm), with the same plan parameters for all VMAT plans. The dosimetric parameters were calculated for each planning target volume (PTV) and involved organs at risk (OA R). The patient specific quality assurance of all VMAT plans has been verified by Octavius®-4D phantom for different algorithms.ResultsThe relative differences among AA, AXBw and AXBm, with respect to prostate, head and neck were less than 1% for PTV D95%. However, PTV D95% calculated by AA tended to be overestimated, with a relative dose difference of 3.23% in the case of lung treatment. The absolute mean values of the relative differences were 1.1 ± 1.2% and 2.0 ± 1.2%, when comparing between AXBw and AA, AXBm and AA, respectively. The gamma pass rate was observed to exceed 97.4% and 99.4% for the measured and calculated doses in most cases of the volumetric 3D analysis for AA and AXBm, respectively.ConclusionThis study suggests that the dose calculated to medium using AXBm algorithm is better than AAA and it could be used clinically. Switching the dose calculation algorithm from AA to AXB does not require extra measurements.  相似文献   

5.
PurposeTo investigate the sensitivity of Monte Carlo (MC) calculated lung dose distributions to lung tissue characterization in external beam radiotherapy of breast cancer under Deep Inspiration Breath Hold (DIBH).MethodsEGSnrc based MC software was employed. Mean lung densities for one hundred patients were analysed. CT number frequency and clinical dose distributions were calculated for 15 patients with mean lung density below 0.14 g/cm3. Lung volume with a pre-defined CT numbers was also considered. Lung tissue was characterized by applying different CT calibrations in the low-density region and air-lung tissue thresholds. Dose impact was estimated by Dose Volume Histogram (DVH) parameters.ResultsMean lung densities below 0.14 g/cm3 were found in 10% of the patients. CT numbers below −960 HU dominated the CT frequency distributions with a high rate of CT numbers at −990 HU. Mass density conversion approach influenced the DVH shape. V4Gy and V8Gy varied by 7% and 5% for the selected patients and by 9% and 3.5% for the pre-defined lung volume. V16Gy and V20Gy, were within 2.5%. Regions above 20 Gy were affected. Variations in air- lung tissue differentiation resulted in DVH parameters within 1%. Threshold at −990 HU was confirmed by the CT number frequency distributions.ConclusionsLung dose distributions were more sensitive to variations in the CT calibration curve below lung (inhale) density than to air-lung tissue differentiation. Low dose regions were mostly affected. The dosimetry effects were found to be potentially important to 10% of the patients treated under DIBH.  相似文献   

6.
PurposeThis study aims to investigate the impact of the cavity on the sinus wall dose by comparing dose distributions with and without the sinus under magnetic fields using Monte Carlo calculations.MethodsA water phantom containing a sinus cavity (Empty) was created, and dose distributions were calculated for 1, 2, and 4 irradiation fields with 6 MV photons. The sinus in the phantom was then filled with water (Full), and the dose distributions were calculated again. The sinus was set to cubes of 2 cm and 4 cm. The magnetic field was applied to the transverse and inline direction under the magnetic flux densities of 0 T, 0.35 T, 0.5 T, 1.0 T, and 1.5 T. The dose distributions were analyzed by the dose difference, dose volume histogram, and D2 with sinus wall thicknesses of 1 and 5 mm.ResultsD2 in the “Empty” sinus wall under transverse magnetic fields for the 1-field and 4-field cases was 51.9% higher and 3.7% lower than that in the “Full” sinus wall at 1.5 T, respectively. Meanwhile, D2 in the Empty sinus wall under inline magnetic fields for 1-field and 4-fields was 2.3% and 2.6% lower than that in the “Full” sinus at B = 0 T, respectively, whereas D2 was 0.9% and 0.7% larger at 1.0 T, respectively.ConclusionsThe impact of the cavity on the sinus wall dose depends on the magnetic flux density, direction of the magnetic field and irradiation beam, and number of irradiation fields.  相似文献   

7.
PurposeDue to limited field size of Magnetic Resonance Linear Accelerators (MR-Linac), some treatments could require a dual-isocenter planning approach to achieve a complete target coverage and thus exploit the benefits of the online adaptation. This study evaluates the dosimetric accuracy of the dual-isocenter intensity modulated radiation therapy (IMRT) delivery technique for MR-Linac.Material and MethodsDual-isocenter multi leaf collimator (MLC) and couch accuracy tests have been performed to evaluate the delivery accuracy of the system. A mono-isocenter plan delivered in clinical practice has then been retrospectively re-planned with dual-isocenter technique. The dual-isocenter plan has been re-calculated and delivered on a 3-dimensional (3D) ArcCHECK phantom and 2-dimensional (2D) films to assess its dosimetric accuracy in terms of gamma analysis. Clinical and planning target volume (CTV and PTV respectively) coverage robustness was then investigated after the introduction of ± 2 mm and ± 5 mm positioning errors by shifting the couch.ResultsMLC and couch accuracy tests confirmed the system accuracy in delivering a dual-isocenter irradiation.2D/3D gamma analysis results occurred always to be above 95% if considered a gamma criteria 1%/2 mm and 1%/1 mm respectively for the 2D and 3D analysis.The mean variations for CTV D98% and PTV V95% were 0.2% and 1.1% respectively when positioning error was introduced separately in each direction, while the maximum observed variations were 0.9% (CTV) and 3.7% (PTV).ConclusionThe dosimetric accuracy of dual-isocenter irradiation has been verified for MR-Linac, achieving accurate and robust treatment strategy and improving dose conformality also in presence of targets whose extension exceeds the nominal maximum field size.  相似文献   

8.
The aim of this study is to evaluate the dosimetric impact of gadolinium contrast medium (Gadovist) in a transverse MR-Linac system using Monte Carlo methods. The dose distributions were calculated using two heterogeneous multi-layer phantoms consisting of Gadovist, water, bone, and lung. The photon beam was irradiated with a filed size of 5 × 5 cm2, and a transverse magnetic field of 0–3.0 T was applied perpendicular to the incident photon beam. Next, dose distributions for brain, head and neck (H&N), and lung cancer patients were calculated using a patient voxel-based phantom with and without replacing the patient’s GTV with Gadovist. The dose at the water-Gadovist interface increased by 8% without a magnetic field. A similar dose increment was observed at 0.35 T. In contrast, the dose increment at the water-Gadovist interface was small at 1.5 T and a dose decrement of 5% was observed at 3.0 T. The dose variation at the lung-Gadovist interface was larger than that at the water-Gadovist interface. The mass collision stopping power ratio for Gadovist was 7% lower than that for water, whereas, the electron fluence spectra at the water-Gadovist interface increased by 17.5%. In a patient study, Gadovist increased the Dmean for brain, H&N, and lung cancer patients by 0.65–8.9%. The dose variation due to Gadovist grew large in the low-dose region in H&N and lung cancer. The GTV dose variation due to Gadovist in all treatment site was below 2% at 0–3 T if the Gadovist concentration was lower than 0.2 mmol/ml−1.  相似文献   

9.
BackgroundUtilization of stereotactic radiosurgery (SRS) for brain metastases (BM) has become the technique of choice as opposed to whole brain radiation therapy (WBRT). The aim of this work is to evaluate the feasibility and potential benefits in terms of normal tissue (NT) and dose escalation of volumetric modulated arc therapy (VMAT) in SRS metastasis treatment. A VMAT optimization procedure has therefore been developed for internal dose scaling which minimizes planner dependence.Materials and methodsFive patient-plans incorporating treatment with frame-based SRS with dynamic conformal arc technique (DA) were re-planned for VMAT. The lesions selected were between 4–6 cm3. The same geometry used in the DA plans was maintained for the VMAT cases. A VMAT planning procedure was performed attempting to scale the dose in inner auxiliary volumes, and to explore the potential for dose scaling with this technique. Comparison of dose-volume histogram (DVH) parameters were obtained.ResultsVMAT allows a superior NT sparing plus conformity and dose scaling using the auxiliary volumes. The VMAT results were significantly superior in NT sparing, improving both the V10 and V12 values in all cases, with a 2–3 cm3 saving. In addition, VMAT improves the dose coverage D95 by about 0.5 Gy. The objective of dose escalation was achieved with VMAT with an increment of the Dmean and the Dmedian of about 2 Gy.ConclusionsThis work shows a benefit of VMAT in SRS treatment with significant NT sparing. A VMAT optimization procedure, based on auxiliary inner volumes, has been developed, enabling internal dose escalation.  相似文献   

10.
PurposeTo assess the potential of cone beam CT (CBCT) derived adaptive RapidArc treatment for esophageal cancers in reducing the dose to organs at risk (OAR).Methods and materialsTen patients with esophageal cancer were CT scanned in free breathing pattern. The PTV is generated by adding a 3D margin of 1 cm to the CTV as per ICRU 62 recommendations. The double arc RapidArc plan (Clin_RA) was generated for the PTV. Patients were setup using kV orthogonal images and kV-CBCT scan was acquired daily during first week of therapy, then weekly. These images were exported to the Eclipse TPS. The adaptive CTV which includes tumor and involved nodes was delineated in each CBCT image set for the length of the PTV. The composite CTV from first week CBCT was generated using Boolean union operator and 5 mm margin was added circumferentially to generate adaptive PTV (PTV1). Adaptive RapidArc plan (Adap_RA) was generated. NTCP and DVH of the OARs of the two plans were compared. Similarly, PTV2 was generated from weekly CBCT. PTV2 was evaluated for the coverage of 95% isodose of Adap_RA plan.ResultsThe PTV1 and PTV2 volumes covered by 95% isodose in adaptive plans were 93.51 ± 1.17% and 94.59 ± 1.43% respectively. The lung V10Gy, V20Gy and mean dose in Adap_RA plan was reduced by 17.43% (p = 0.0012), 34.64% (p = 0.0019) and 16.50% (p = 0.0002) respectively compared to Clin_RA. The Adap_RA plan reduces the heart D35% and mean dose by 17.35% (p = 0.0011) and 17.16% (p = 0.0012). No significant reduction in spinal cord and liver doses were observed. NTCP for the lung (0.42% vs. 0.08%) and heart (1.39% vs. 0.090%) was reduced significantly in adaptive plans.ConclusionThe adaptive re-planning strategy based on the first week CBCT dataset significantly reduces the doses and NTCP to OARs.  相似文献   

11.
PurposeTo evaluate the planning feasibility of dose-escalated total marrow irradiation (TMI) with simultaneous integrated boost (SIB) to the active bone marrow (ABM) using volumetric modulated arc therapy (VMAT), and to assess the impact of using planning organs at risk (OAR) volumes (PRV) accounting for breathing motion in the optimization.MethodsFive patients underwent whole-body CT and thoraco-abdominal 4DCT. A planning target volume (PTV) including all bones and ABM was contoured on each whole-body CT. PRV of selected OAR (liver, heart, kidneys, lungs, spleen, stomach) were determined with 4DCT. Planning consisted of 9–10 full 6 MV photon VMAT arcs. Four plans were created for each patient with 12 Gy prescribed to the PTV, with or without an additional 4 Gy SIB to the ABM. Planning dose constraints were set on the OAR or on the PRV. Planning objective was a PTV Dmean < 110% of the prescribed dose, a PTV V110% < 50%, and OAR Dmean ≤ 50–60%.ResultsPTV Dmean < 110% was accomplished for most plans (n = 18/20), while all achieved V110%<50%. SIB plans succeeded to optimally cover the boost volume (median ABM Dmean = 16.3 Gy) and resulted in similar OAR sparing compared to plans without SIB (median OAR Dmean = 40–54% of the ABM prescribed dose). No statistically significant differences between plans optimized with constraints on OAR or PRV were found.ConclusionsAdding a 4 Gy SIB to the ABM for TMI is feasible with VMAT technique, and results in OAR sparing similar to plans without SIB. Setting dose constraints on PRV does not impair PTV dosimetric parameters.  相似文献   

12.
AimTo compare the radiotherapy technique used in a randomised trial with VMAT and an in-house technique for prostate cancer.BackgroundTechniques are evolving with volumetric modulated arc therapy (VMAT) commonly used. The CHHiP trial used a 3 PTV forward planned IMRT technique (FP_CH). Our centre has adopted a simpler two PTV technique with locally calculated margins.Materials and methods25 patients treated with FP_CH to 60 Gy in 20 fractions were re-planned with VMAT (VMAT_CH) and a two PTV protocol (VMAT_60/52 and VMAT_60/48). Target coverage, conformity index (CI), homogeneity index (HI), monitor units (MU) and dose to the rectum, bladder, hips and penile bulb were compared.ResultsPTV coverage was high for all techniques. VMAT_CH plans had better CI than FP_CH (p   0.05). VMAT_60/52/48 plans had better CI than VMAT_CH. FP_CH had better HI and fewer MU than VMAT (p   0.05). More favourable rectum doses were found for VMAT _CH than FP_CH (V48.6, V52.8, V57, p   0.05) with less difference for bladder (p   0.05). Comparing VMAT_CH to VMAT_60/52/48 showed little differences for the bladder and rectum but VMAT_CH had larger penile bulb doses (V40.8, V48.6, mean, D2, p   0.05). Femoral head doses (V40.8) were similarly low for all techniques (p = ≥ 0.05).ConclusionVMAT produced more conformal plans with smaller rectum doses compared to FP_CH albeit worse HI and more MU. VMAT_60/52 and VMAT_60/48 plans had similar rectal and bladder doses to VMAT_CH but better CI and penile bulb doses which may reduce toxicity.  相似文献   

13.
PurposeTo investigate the dosimetric accuracy of synthetic computed tomography (sCT) images generated by a clinically-ready voxel-based MRI simulation package, and to develop a simple and feasible method to improve the accuracy.Methods20 patients with brain tumor were selected to undergo CT and MRI simulation. sCT images were generated by a clinical MRI simulation package. The discrepancy between planning CT and sCT in CT number and body contour were evaluated. To resolve the discrepancies, an sCT specific CT-relative electron density (RED) calibration curve was used, and a layer of pseudo-skin was created on the sCT. The dosimetric impact of these discrepancies, and the improvement brought about by the modifications, were evaluated by a planning study. Volumetric modulated arc therapy (VMAT) treatment plans for each patient were created and optimized on the planning CT, which were then transferred to the original sCT and the modified-sCT for dose re-calculation. Dosimetric comparisons and gamma analysis between the calculated doses in different images were performed.ResultsThe average gamma passing rate with 1%/1 mm criteria was only 70.8% for the comparison of dose distribution between planning CT and original sCT. The mean dose difference between the planning CT and the original sCT were −1.2% for PTV D95 and −1.7% for PTV Dmax, while the mean dose difference was within 0.7 Gy for all relevant OARs. After applying the modifications on the sCT, the average gamma passing rate was increased to 92.2%. Mean dose difference in PTV D95 and Dmax were reduced to −0.1% and −0.3% respectively. The mean dose difference was within 0.2 Gy for all OAR structures and no statistically significant difference were found.ConclusionsThe modified-sCT demonstrated improved dosimetric agreement with the planning CT. These results indicated the overall dosimetric accuracy and practicality of this improved MR-based treatment planning method.  相似文献   

14.
PurposePlanning target volume (PTV) definition based on Mid-Position (Mid-P) strategy typically integrates breathing motion from tumor positions variances along the conventional axes of the DICOM coordinate system. Tumor motion directionality is thus neglected even though it is one of its stable characteristics in time. We therefore propose the directional MidP approach (MidP dir), which allows motion directionality to be incorporated into PTV margins. A second objective consists in assessing the ability of the proposed method to better take care of respiratory motion uncertainty.Methods11 lung tumors from 10 patients with supra-centimetric motion were included. PTV were generated according to the MidP and MidP dir strategies starting from planning 4D CT.ResultsPTVMidP dir volume didn’t differ from the PTVMidP volume: 31351 mm3 IC95% [17242–45459] vs. 31003 mm3 IC95% [ 17347–44659], p = 0.477 respectively. PTVMidP dir morphology was different and appeared more oblong along the main motion axis. The relative difference between 3D and 4D doses was on average 1.09%, p = 0.011 and 0.74%, p = 0.032 improved with directional MidP for D99% and D95%. D2% was not significantly different between both approaches. The improvement in dosimetric coverage fluctuated substantially from one lesion to another and was all the more important as motion showed a large amplitude, some obliquity with respect to conventional axes and small hysteresis.ConclusionsDirectional MidP method allows tumor motion to be taken into account more tightly as a geometrical uncertainty without increasing the irradiation volume.  相似文献   

15.
PurposeTo evaluate eXaSkin, a novel high-density bolus alternative to commercial tissue-equivalent Superflab, for 6MV photon-beam radiotherapy.Materials and methodsWe delivered a 10 × 10 cm2 open field at 90° and head-and-neck clinical plan, generated with the volumetric modulated arc therapy (VMAT) technique, to an anthropomorphic phantom in three scenarios: with no bolus on the phantom’s surface, with Superflab, and with eXaSkin. In each scenario, we measured dose to a central planning target volume (PTV) in the nasopharynx region with an ionization chamber, and we measured dose to the skin, at three different positions within the vicinity of a neck lymph node PTV, with MOSkin™, a semiconductor dosimeter. Measurements were compared against calculations with the treatment planning system (TPS).ResultsFor the static field, MOSkin results underneath the eXaSkin were in agreement with calculations to within 1.22%; for VMAT, to within 5.68%. Underneath Superflab, those values were 3.36% and 11.66%. The inferior agreement can be explained by suboptimal adherence of Superflab to the phantom’s surface as well as difficulties in accurately reproducing its placement between imaging and treatment session. In all scenarios, dose measured at the central target agreed to within 1% with calculations.ConclusionseXaSkin was shown to have superior adaptation to the phantom’s surface, producing minimal air gaps between the skin surface and bolus, allowing for accurate positioning and reproducibility of set-up conditions. eXaSkin with its high density material provides sufficient build-up to achieve full skin dose with less material thickness than Superflab.  相似文献   

16.
PurposeIn the current era of MRI-linac radiotherapy, dose optimization with arbitrary dose distributions is a reality. For the first time, we present new and targeted experiments and modeling to aid in evaluating the potential dose improvements offered with an electron beam mode during MRI-linac radiotherapy.MethodsSmall collimated (1 cm diameter and 1.5 × 1.5 cm2 square) electron beams (6, 12 and 20 MeV) from a clinical linear accelerator (Varian Clinac 2100C) are incident perpendicular and parallel to the strong and localized magnetic fields (0–0.7 T) generated by a permanent magnet device. Gafchromic EBT3 film is placed inside a slab phantom to measure two-dimensional dose distributions. A benchmarked and comprehensive Monte Carlo model (Geant4) is established to directly compare with experiments.ResultsWith perpendicular fields a 5% narrowing of the beam FWHM and a 10 mm reduction in the 15% isodose penetration is seen for the 20 MeV beam. In the inline setup the penumbral width is reduced by up to 20%, and a local central dose enhancement of 100% is observed. Monte Carlo simulations are in agreement with the measured dose distributions (2% or 2 mm).ConclusionA new range of experiments have been performed to offer insight into how an electron beam mode could offer additional choices in MRI-linac radiotherapy. The work extends on historic studies to bring a successful unified experimental and Monte Carlo modeling approach for studying small field electron beam dosimetry inside magnetic fields. The results suggest further work, particularly on the inline magnetic field scenario.  相似文献   

17.
PurposeTo evaluate the dosimetric impact of uncorrected rotations on the planning target volume (PTV) coverage for early stage non-small cell lung cancer patients treated with stereotactic body radiotherapy using Brainlab ExacTrac image guidance.MethodsTwenty-two patients were retrospectively selected. Two scenarios of uncorrected rotations were simulated with magnitude of 1°, 2°, 3° and 5°: (1) rotation around the treatment isocenter; and (2) roll and yaw rotations around a setup isocenter. The D95 of PTV from recalculated dose on the rotated CT was compared to that from the clinical plan. A logistic regression model was used to predict the probability of dose differences between recalculated and original plans that are less than 2% based on the rotation angle, PTV volume, and distance between the treatment and setup isocenter.ResultsLogistic regression model showed the uncorrected isocentric rotations of up to 2.5° in all directions have negligible dosimetric impact. For non-isocentric rotations, a rotational error of 2° may cause significant under-dose of the PTV. Statistically significant (p < 0.05) parameters in the logistic regression model were angle for isocentric rotations, angle and distance for non-isocentric roll rotations, and angle, distance and the PTV volume for non-isocentric yaw rotations.ConclusionsThe severity of the dose deviations due to uncorrected rotations depends on the type and magnitude of the rotation, the volume of the PTV, and the distance between the treatment and setup isocenter, which should be taken into consideration when making clinical judgment of whether the rotational error could be ignored.  相似文献   

18.
PurposeEvaluating performance of modern dose calculation algorithms in SBRT and locally advanced lung cancer radiotherapy in free breathing (FB) and deep inspiration breath hold (DIBH).MethodsFor 17 patients with early stage and 17 with locally advanced lung cancer, a plan in FB and in DIBH were generated with Anisotropic Analytical Algorithm (AAA). Plans for early stage were 3D-conformal SBRT, 45 Gy in 3 fractions, prescribed to 95% isodose covering 95% of PTV and aiming for 140% dose centrally in the tumour. Locally advanced plans were volumetric modulated arc therapy, 66 Gy in 33 fractions, prescribed to mean PTV dose. Calculation grid size was 1 mm for SBRT and 2.5 mm for locally advanced plans. All plans were recalculated with AcurosXB with same MU as in AAA, for comparison on target coverage and dose to risk organs.ResultsLung volume increased in DIBH, resulting in decreased lung density (6% for early and 13% for locally-advanced group).In SBRT, AAA overestimated mean and near-minimum PTV dose (p-values < 0.01) compared to AcurosXB, with largest impact in DIBH (differences of up to 11 Gy). These clinically relevant differences may be a combination of small targets and large dose gradients within the PTV.In locally advanced group, AAA overestimated mean GTV, CTV and PTV doses by median less than 0.8 Gy and near-minimum doses by median 0.4–2.7 Gy.No clinically meaningful difference was observed for lung and heart dose metrics between the algorithms, for both FB and DIBH.ConclusionsAAA overestimated target coverage compared to AcurosXB, especially in DIBH for SBRT.  相似文献   

19.
20.
BackgroundThe aim of the study was to individualize accelerated partial breast irradiation based on optimal dose distribution, protect risk organ and predict most advantageous technique.Materials and methods138 breast cancer patients receiving postoperative APBI were enrolled. APBI plans were generated using 3D-conformal (3D-CRT), sliding window intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT). In the case of superficial tumours, additional plans were developed by adding electron beam. To planning target volume (PTV) 37.5 Gy/10 fractions, 1 fraction/day was prescribed. A novel plan quality index (PQI) served as the basis for comparisons.ResultsIMRT was the most advantageous technique regarding homogeneity. VMAT provided best conformity, 3D-CR T — the lowest lung and heart exposure. PQI was the best in 45 (32.61%) VMAT, 13 (9.42%) IMRT, 9 (6.52%) 3D-CRT plans. In 71 cases (51.45%) no difference was detected. In patients with large PTV, 3D-CRT was the most favourable. Additional electron beam improved PQI of 3D-CRT plans but had no meaningful effect on IMRT or VMAT. IMRT was superior to VMAT if the tumour was superficial (p < 0.001), situated in the medial (p = 0.032) or upper quadrant (p = 0.046).ConclusionsIn half of all cases, individually selected teletherapy techniques provide superior results over others; relevance of a certain technique may be predicted by volume and PTV localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号