首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, Escherichia coli MG1655 was engineered to produce ethanol and evolved in a laboratory process to obtain an acetate tolerant strain called MS04 (E. coli MG1655: ΔpflB, ΔadhE, ΔfrdA, ΔxylFGH, ΔldhA, PpflB::pdc Zm -adhB Zm , evolved). The growth and ethanol production kinetics of strain MS04 were determined in mineral medium, mainly under non-aerated conditions, supplemented with glucose in the presence of different concentrations of sodium acetate at pH?7.0 and at different values of acid pH and a constant concentration of sodium acetate (2?g/l). Results revealed an increase in the specific growth rate, cell mass formation, and ethanol volumetric productivity at moderate concentrations of sodium acetate (2–10?g/l), in addition to a high tolerance to acetate because it was able to grow and produce a high yield of ethanol in the presence of up to 40?g/l of sodium acetate. Genomic analysis of the ΔpflB evolved strain identified that a chromosomal deletion of 27.3?kb generates the improved growth and acetate tolerance in MG1655 ΔpflB derivative strains. This deletion comprises genes related to the respiration of nitrate, repair of alkylated DNA and synthesis of the ompC gene coding for porin C, cytochromes C, thiamine, and colonic acid. Strain MS04 is advantageous for the production of ethanol from hemicellulosic hydrolysates that contain acetate.  相似文献   

2.
3.
Non-growing cells of Escherichia coli O157:H7 and K-12 that were incubated anaerobically in sodium phosphate buffer at pH 6.5 consumed glucose at a rate of approximately 8 μmol·(mg protein)−1·h−1 and had intracellular pH values of 7.3 and 7.5, respectively. The uncoupler, carbonylcyanide-m-chlorophenylhydrazone (CCCP), caused a marked decrease in intracellular pH, ATP and potassium of both strains. Low concentrations of CCCP stimulated glucose consumption rate, but higher concentrations were inhibitory. Acetate also caused a decrease in intracellular pH, but it never caused a large decrease in glucose consumption rate. Acetate decreased the intracellular ATP of E. coli K-12, but it had no effect on the ATP of O157:H7. Acetate had no effect on the intracellular potassium of E. coli O157:H7, and acetate-treated K-12 cells had even more potassium than untreated controls. Based on these results, acetate and CCCP appear to have different effects on E. coli. The comparison of E. coli O157:H7 and K-12 indicated that intracellular pH, acetate accumulation and intracellular potassium were related. E. coli K-12 maintained a higher intracellular pH than O157:H7, accumulated more acetate and had a greater intracellular potassium.  相似文献   

4.
Economic bioconversion of plant cell wall hydrolysates into fuels and chemicals has been hampered mainly due to the inability of microorganisms to efficiently co-ferment pentose and hexose sugars, especially glucose and xylose, which are the most abundant sugars in cellulosic hydrolysates. Saccharomyces cerevisiae cannot metabolize xylose due to a lack of xylose-metabolizing enzymes. We developed a rapid and efficient xylose-fermenting S. cerevisiae through rational and inverse metabolic engineering strategies, comprising the optimization of a heterologous xylose-assimilating pathway and evolutionary engineering. Strong and balanced expression levels of the XYL1, XYL2, and XYL3 genes constituting the xylose-assimilating pathway increased ethanol yields and the xylose consumption rates from a mixture of glucose and xylose with little xylitol accumulation. The engineered strain, however, still exhibited a long lag time when metabolizing xylose above 10 g/l as a sole carbon source, defined here as xylose toxicity. Through serial-subcultures on xylose, we isolated evolved strains which exhibited a shorter lag time and improved xylose-fermenting capabilities than the parental strain. Genome sequencing of the evolved strains revealed that mutations in PHO13 causing loss of the Pho13p function are associated with the improved phenotypes of the evolved strains. Crude extracts of a PHO13-overexpressing strain showed a higher phosphatase activity on xylulose-5-phosphate (X-5-P), suggesting that the dephosphorylation of X-5-P by Pho13p might generate a futile cycle with xylulokinase overexpression. While xylose consumption rates by the evolved strains improved substantially as compared to the parental strain, xylose metabolism was interrupted by accumulated acetate. Deletion of ALD6 coding for acetaldehyde dehydrogenase not only prevented acetate accumulation, but also enabled complete and efficient fermentation of xylose as well as a mixture of glucose and xylose by the evolved strain. These findings provide direct guidance for developing industrial strains to produce cellulosic fuels and chemicals.  相似文献   

5.
6.
Increasing recombinant protein production yields from bacterial cultures remains an important challenge in biotechnology. Acetate accumulation due to high dissolved carbon dioxide (pCO2) concentrations in the medium has been identified as a factor that negatively affects such yields. Under appropriate culture conditions, acetate could be re-assimilated by bacterial cells to maintain heterologous proteins production. In this work, we developed a simplified metabolic network aiming to establish a reaction rate analysis for a recombinant Escherichia coli when producing green fluorescent protein (GFP) under controlled pCO2 concentrations. Because E. coli is able to consume both glucose and acetate, the analysis was performed in two stages. Our results indicated that GFP synthesis is an independent process of cellular growth in some culture phases. Additionally, recombinant protein production is influenced by the available carbon source and the amount of pCO2 in the culture medium. When growing on glucose, the increase in the pCO2 concentration produced a down-regulation of central carbon metabolism by directing the carbon flux toward acetate accumulation; as a result, cellular growth and the overall GFP yield decreased. However, the maximum specific rate of GFP synthesis occurred with acetate as the main available carbon source, despite the low activity in the other metabolic pathways. To maintain cellular functions, including GFP synthesis, carbon flux was re-distributed toward the tricarboxylic acid cycle and the pentose phosphate pathway to produce ATP and NADH. The thermodynamic analysis allowed demonstrating the feasibility of the simplified network for describing the metabolic state of a recombinant system.  相似文献   

7.
8.
9.
In its natural environment, Escherichia coli is exposed to short-chain fatty acids, such as acetic acid or propionic acid, which can be utilized as carbon sources but which inhibit growth at higher concentrations. DNA microarray experiments revealed expression changes during exponential growth on complex medium due to the presence of sodium acetate or sodium propionate at a neutral external pH. The adaptive responses to acetate and propionate were similar and involved genes in three categories. First, the RNA levels for chemotaxis and flagellum genes increased. Accordingly, the expression of chromosomal fliC′-′lacZ and flhDC′-′lacZ fusions and swimming motility increased after adaptation to acetate or propionate. Second, the expression of many genes that are involved in the uptake and utilization of carbon sources decreased, indicating some kind of catabolite repression by acetate and propionate. Third, the expression of some genes of the general stress response increased, but the increases were more pronounced after short-term exposure for this response than for the adaptive response. Adaptation to propionate but not to acetate involved increased expression of threonine and isoleucine biosynthetic genes. The gene expression changes after adaptation to acetate or propionate were not caused solely by uncoupling or osmotic effects but represented specific characteristics of the long-term response of E. coli to either compound.  相似文献   

10.
In Escherichia coli K12, succinate was not the dominant fermentation product from xylose. To reduce by-product formation and increase succinate accumulation, pyruvate formate lyase and lactate dehydrogenase, encoded by pflB and ldhA genes, were inactivated. However, these mutations eliminated cell growth and xylose utilization. During anaerobic growth of bacteria, organic intermediates, such as pyruvate, serve as electron acceptors to maintain the overall redox balance. Under these conditions, the ATP needed for cell growth is derived from substrate level phosphorylation. In E. coli K12, conversion of xylose to pyruvate only yielded 0.67 net ATP per xylose during anaerobic fermentation. However, E. coli produces equimolar amounts of acetate and ethanol from two pyruvates, and these reactions generate one additional ATP. Conversion of xylose to acetate and ethanol increases the net ATP yield from 0.67 to 1.5 per xylose, which could meet the ATP needed for xylose metabolism. A pflB deletion strain cannot convert pyruvate to acetyl coenzyme A, the precursor for acetate and ethanol production, and could not produce the additional ATP. Thus, the double mutations eliminated cell growth and xylose utilization. To supply the sufficient ATPs, overexpression of ATP-forming phosphoenolpyruvate-carboxykinase from Bacillus subtilis 168 in an ldhA, pflB, and ppc deletion strain resulted in a significant increase in cell mass and succinate production. In addition, fermentation of corn stalk hydrolysate containing a high percentage of xylose and glucose produced a final succinate concentration of 11.13 g l−1 with a yield of 1.02 g g−1 total sugars during anaerobic fermentation.  相似文献   

11.

Background  

Acetate metabolism in Escherichia coli plays an important role in the control of the central metabolism and in bioprocess performance. The main problems related to the use of E. coli as cellular factory are i) the deficient utilization of carbon source due to the excretion of acetate during aerobic growth, ii) the inhibition of cellular growth and protein production by acetate and iii) the need for cofactor recycling (namely redox coenzymes and free CoASH) to sustain balanced growth and cellular homeostasis.  相似文献   

12.
Synthetic methylotrophy aims to engineer methane and methanol utilization pathways in platform hosts like Escherichia coli for industrial bioprocessing of natural gas and biogas. While recent attempts to engineer synthetic methanol auxotrophs have proved successful, these studies focused on scarce and expensive co-substrates. Here, we engineered E. coli for methanol-dependent growth on glucose, an abundant and inexpensive co-substrate, via deletion of glucose 6-phosphate isomerase (pgi), phosphogluconate dehydratase (edd), and ribose 5-phosphate isomerases (rpiAB). Since the parental strain did not exhibit methanol-dependent growth on glucose in minimal medium, we first achieved methanol-dependent growth via amino acid supplementation and used this medium to evolve the strain for methanol-dependent growth in glucose minimal medium. The evolved strain exhibited a maximum growth rate of 0.15 h−1 in glucose minimal medium with methanol, which is comparable to that of other synthetic methanol auxotrophs. Whole genome sequencing and 13C-metabolic flux analysis revealed the causative mutations in the evolved strain. A mutation in the phosphotransferase system enzyme I gene (ptsI) resulted in a reduced glucose uptake rate to maintain a one-to-one molar ratio of substrate utilization. Deletion of the e14 prophage DNA region resulted in two non-synonymous mutations in the isocitrate dehydrogenase (icd) gene, which reduced TCA cycle carbon flux to maintain the internal redox state. In high cell density glucose fed-batch fermentation, methanol-dependent acetone production resulted in 22% average carbon labeling of acetone from 13C-methanol, which far surpasses that of the previous best (2.4%) found with methylotrophic E. coli Δpgi. This study addresses the need to identify appropriate co-substrates for engineering synthetic methanol auxotrophs and provides a basis for the next steps toward industrial one-carbon bioprocessing.  相似文献   

13.
14.
Thin stillage is a by-product generated in large amounts during the production of ethanol that is rich in carbon sources like glycerol, glucose and maltose. Unfortunately, the fermentation of thin stillage results in a mixture of organic acids and ethanol and minimum utilization of glycerol, the latter a compound that can represent up to 80% of the available substrates in this stream. We report here the efficient production of ethanol from thin stillage by a metabolically engineered strain of Escherichia coli. Simultaneous utilization of glycerol and sugars was achieved by overexpressing either the fermentative or the respiratory glycerol-utilization pathway. However, amplification of the fermentative pathway (encoded by gldA and dhaKLM) led to more efficient consumption of glycerol and promoted the synthesis of reduced products, including ethanol. A previously constructed strain, EH05, containing mutations that prevented the accumulation of competing by-products (i.e. lactate, acetate, and succinate) and overexpressing the fermentative pathway for glycerol utilization [i.e. strain EH05 (pZSKLMgldA)], efficiently converted thin stillage supplemented with only mineral salts to ethanol at yields close to 85% of the theoretical maximum. Ethanol accounted for about 90% (w/w) of the product mixture. These results, along with the comparable performance of strain EH05 (pZSKLMgldA) in 0.5 and 5 l fermenters, indicate a great potential for the adoption of this process by the biofuels industry.  相似文献   

15.
A genetically engineered strain of Escherichia coli JM109 harboring the isopropanol-producing pathway consisting of five genes encoding four enzymes, thiolase, coenzyme A (CoA) transferase, acetoacetate decarboxylase from Clostridium acetobutylicum ATCC 824, and primary–secondary alcohol dehydrogenase from C. beijerinckii NRRL B593, produced up to 227 mM of isopropanol from glucose under aerobic fed-batch culture conditions. Acetate production by the engineered strain was approximately one sixth that produced by a control E. coli strain bearing an expression vector without the clostridial genes. These results demonstrate a functional isopropanol-producing pathway in E. coli and consequently carbon flux from acetyl-CoA directed to isopropanol instead of acetate. This is the first report on isopropanol production by genetically engineered microorganism under aerobic culture conditions.  相似文献   

16.
Engineering microbes to utilize non-conventional substrates could create short and efficient pathways to convert substrate into product. In this study, we designed and constructed a two-step heterologous ethanol utilization pathway (EUP) in Escherichia coli by using acetaldehyde dehydrogenase (encoded by ada) from Dickeya zeae and alcohol dehydrogenase (encoded by adh2) from Saccharomyces cerevisiae. This EUP can convert ethanol into acetyl-CoA without ATP consumption, and generate two molecules of NADH per molecule of ethanol. We optimized the expression of these two genes and found that ethanol consumption could be improved by expressing them in a specific order (ada-adh2) with a constitutive promoter (PgyrA). The engineered E. coli strain with EUP consumed approximately 8 g/L of ethanol in 96 h when it was used as sole carbon source. Subsequently, we combined EUP with the biosynthesis of polyhydroxybutyrate (PHB), a biodegradable polymer derived from acetyl-CoA. The engineered E. coli strain carrying EUP and PHB biosynthetic pathway produced 1.1 g/L of PHB from 10 g/L of ethanol and 1 g/L of aspartate family amino acids in 96 h. We also engineered a E. coli strain to produce 24 mg/L of prenol in an ethanol-containing medium, supporting the feasibility of converting ethanol into different classes of acetyl-CoA derived compounds.  相似文献   

17.
Tolerance to high levels of ethanol is an ecologically and industrially relevant phenotype of microbes, but the molecular mechanisms underlying this complex trait remain largely unknown. Here, we use long-term experimental evolution of isogenic yeast populations of different initial ploidy to study adaptation to increasing levels of ethanol. Whole-genome sequencing of more than 30 evolved populations and over 100 adapted clones isolated throughout this two-year evolution experiment revealed how a complex interplay of de novo single nucleotide mutations, copy number variation, ploidy changes, mutator phenotypes, and clonal interference led to a significant increase in ethanol tolerance. Although the specific mutations differ between different evolved lineages, application of a novel computational pipeline, PheNetic, revealed that many mutations target functional modules involved in stress response, cell cycle regulation, DNA repair and respiration. Measuring the fitness effects of selected mutations introduced in non-evolved ethanol-sensitive cells revealed several adaptive mutations that had previously not been implicated in ethanol tolerance, including mutations in PRT1, VPS70 and MEX67. Interestingly, variation in VPS70 was recently identified as a QTL for ethanol tolerance in an industrial bio-ethanol strain. Taken together, our results show how, in contrast to adaptation to some other stresses, adaptation to a continuous complex and severe stress involves interplay of different evolutionary mechanisms. In addition, our study reveals functional modules involved in ethanol resistance and identifies several mutations that could help to improve the ethanol tolerance of industrial yeasts.  相似文献   

18.
As the bioconversion of methane becomes increasingly important for bio-industrial and environmental applications, methanotrophs have received much attention for their ability to convert methane under ambient conditions. This includes the extensive reporting of methanotroph engineering for the conversion of methane to biochemicals. To further increase methane usability, we demonstrated a highly flexible and efficient modular approach based on a synthetic consortium of methanotrophs and heterotrophs mimicking the natural methane ecosystem to produce mevalonate (MVA) from methane. In the methane-conversion module, we used Methylococcus capsulatus Bath as a highly efficient methane biocatalyst and optimized the culture conditions for the production of high amounts of organic acids. In the MVA-synthesis module, we used Escherichia coli SBA01, an evolved strain with high organic acid tolerance and utilization ability, to convert organic acids to MVA. Using recombinant E. coli SBA01 possessing genes for the MVA pathway, 61 mg/L (0.4 mM) of MVA was successfully produced in 48 h without any addition of nutrients except methane. Our platform exhibited high stability and reproducibility with regard to cell growth and MVA production. We believe that this versatile system can be easily extended to many other value-added processes and has a variety of potential applications.  相似文献   

19.
Methods that can randomly introduce mutations in the microbial genome have been used for classical genetic screening and, more recently, the evolutionary engineering of microbial cells. However, most methods rely on either cell-damaging agents or disruptive mutations of genes that are involved in accurate DNA replication, of which the latter requires prior knowledge of gene functions, and thus, is not easily transferable to other species. In this study, we developed a new mutator for in vivo mutagenesis that can directly modify the genomic DNA. Mutator protein, MutaEco, in which a DNA-modifying enzyme is fused to the α-subunit of Escherichia coli RNA polymerase, increases the mutation rate without compromising the cell viability and accelerates the adaptive evolution of E. coli for stress tolerance and utilization of unconventional carbon sources. This fusion strategy is expected to accommodate diverse DNA-modifying enzymes and may be easily adapted to various bacterial species.  相似文献   

20.
Summary The soil yeast Trichosporon cutaneum was grown in continuous culture on phenol, acetate or glucose as sole carbon source. The activities of enzymes participating in the tricarboxylic acid cycle, glyoxylate cycle, 3-oxoadipate pathway, pentose phosphate pathway and glycolysis were determined in situ during shifts of carbon sources. Cells grown on phenol or glucose contained basal activity of the glyoxylate-cycle-specific isocitrate lyase. The derepression of the glyoxylate cycle enzymes was partly hindered in the presence of phenol but not in the presence of low levels of glucose. Phenol and glucose caused repression of isocitrate lyase. In the presence of either phenol or glucose, acetate accumulation in the medium increased. However, part of the supplied acetate was utilized simultaneously with phenol or glucose, the utilization rate of either carbon source being reduced in the presence of the other carbon source. Acetate caused repression but not inactivation of the phenol-degrading enzymes, phenol hydroxylase and catechol 1,2-dioxygenase. The simultaneous utilization of phenol and other carbon sources in continuous culture as well as the observed repression-derepression patterns of the involved enzymes reveal T. cutaneum to be an organism of interest for possible use in decontamination processes. Offprint requests to: H. Y. Neujahr Offprint requests to: H. Y. Neujahr  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号