首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Rational engineering of metabolism is important for bio-production using microorganisms. Metabolic design based on in silico simulations and experimental validation of the metabolic state in the engineered strain helps in accomplishing systematic metabolic engineering. Flux balance analysis (FBA) is a method for the prediction of metabolic phenotype, and many applications have been developed using FBA to design metabolic networks. Elementary mode analysis (EMA) and ensemble modeling techniques are also useful tools for in silico strain design. The metabolome and flux distribution of the metabolic pathways enable us to evaluate the metabolic state and provide useful clues to improve target productivity. Here, we reviewed several computational applications for metabolic engineering by using genome-scale metabolic models of microorganisms. We also discussed the recent progress made in the field of metabolomics and 13C-metabolic flux analysis techniques, and reviewed these applications pertaining to bio-production development. Because these in silico or experimental approaches have their respective advantages and disadvantages, the combined usage of these methods is complementary and effective for metabolic engineering.  相似文献   

2.
Chinese hamster ovary (CHO) cells are the most popular mammalian cell factories for the production of glycosylated biopharmaceuticals. To further increase titer and productivity and ensure product quality, rational system-level engineering strategies based on constraint-based metabolic modeling, such as flux balance analysis (FBA), have gained strong interest. However, the quality of FBA predictions depends on the accuracy of the experimental input data, especially on the exchange rates of extracellular metabolites. Yet, it is not standard practice to devote sufficient attention to the accurate determination of these rates. In this work, we investigated to what degree the sampling frequency during a batch culture and the measurement errors of metabolite concentrations influence the accuracy of the calculated exchange rates and further, how this error then propagates into FBA predictions of growth rates. We determined that accurate measurements of essential amino acids with low uptake rates are crucial for the accuracy of FBA predictions, followed by a sufficient number of analyzed time points. We observed that the measured difference in growth rates of two cell lines can only be reliably predicted when both high measurement accuracy and sampling frequency are ensured.  相似文献   

3.

Background  

In silico genome-scale metabolic models enable the analysis of the characteristics of metabolic systems of organisms. In this study, we reconstructed a genome-scale metabolic model of Corynebacterium glutamicum on the basis of genome sequence annotation and physiological data. The metabolic characteristics were analyzed using flux balance analysis (FBA), and the results of FBA were validated using data from culture experiments performed at different oxygen uptake rates.  相似文献   

4.
MotivationGenome-scale metabolic networks can be modeled in a constraint-based fashion. Reaction stoichiometry combined with flux capacity constraints determine the space of allowable reaction rates. This space is often large and a central challenge in metabolic modeling is finding the biologically most relevant flux distributions. A widely used method is flux balance analysis (FBA), which optimizes a biologically relevant objective such as growth or ATP production. Although FBA has proven to be highly useful for predicting growth and byproduct secretion, it cannot predict the intracellular fluxes under all environmental conditions. Therefore, alternative strategies have been developed to select flux distributions that are in agreement with experimental “omics” data, or by incorporating experimental flux measurements. The latter, unfortunately can only be applied to a limited set of reactions and is currently not feasible at the genome-scale. On the other hand, it has been observed that micro-organisms favor a suboptimal growth rate, possibly in exchange for a more “flexible” metabolic network. Instead of dedicating the internal network state to an optimal growth rate in one condition, a suboptimal growth rate is used, that allows for an easier switch to other nutrient sources. A small decrease in growth rate is exchanged for a relatively large gain in metabolic capability to adapt to changing environmental conditions.ResultsHere, we propose Maximum Metabolic Flexibility (MMF) a computational method that utilizes this observation to find the most probable intracellular flux distributions. By mapping measured flux data from central metabolism to the genome-scale models of Escherichia coli and Saccharomyces cerevisiae we show that i) indeed, most of the measured fluxes agree with a high adaptability of the network, ii) this result can be used to further reduce the space of feasible solutions iii) this reduced space improves the quantitative predictions made by FBA and contains a significantly larger fraction of the measured fluxes compared to the flux space that was reduced by a uniform sampling approach and iv) MMF can be used to select reactions in the network that contribute most to the steady-state flux space. Constraining the selected reactions improves the quantitative predictions of FBA considerably more than adding an equal amount of flux constraints, selected using a more naïve approach. Our method can be applied to any cell type without requiring prior information.AvailabilityMMF is freely available as a MATLAB plugin at: http://cs.ru.nl/~wmegchel/mmf.  相似文献   

5.
Proposed herein is a systematic media design framework that combines multivariate statistical approaches with in silico analysis of a genome-scale metabolic model of Chinese hamster ovary cell. The framework comprises sequential modules including cell culture and metabolite data collection, multivariate data analysis, in silico modeling and flux prediction, and knowledge-based identification of target media components. Two monoclonal antibody-producing cell lines under two different media conditions were used to demonstrate the applicability of the framework. First, the cell culture and metabolite profiles from all conditions were generated, and then statistically and mechanistically analyzed to explore combinatorial effects of cell line and media on intracellular metabolism. As a result, we found a metabolic bottleneck via a redox imbalance in the TCA cycle in the poorest growth condition, plausibly due to inefficient coenzyme q10-q10h2 recycling. Subsequent in silico simulation allowed us to suggest q10 supplementation to debottleneck the imbalance for the enhanced cellular energy state and TCA cycle activity. Finally, experimental validation was successfully conducted by adding q10 in the media, resulting in increased cell growth. Taken together, the proposed framework rationally identified target nutrients for cell line-specific media design and reformulation, which could greatly improve cell culture performance.  相似文献   

6.
Flux balance analysis (FBA) and associated techniques operating on stoichiometric genome-scale metabolic models play a central role in quantifying metabolic flows and constraining feasible phenotypes. At the heart of these methods lie two important assumptions: (i) the biomass precursors and energy requirements neither change in response to growth conditions nor environmental/genetic perturbations, and (ii) metabolite production and consumption rates are equal at all times (i.e., steady-state). Despite the stringency of these two assumptions, FBA has been shown to be surprisingly robust at predicting cellular phenotypes. In this paper, we formally assess the impact of these two assumptions on FBA results by quantifying how uncertainty in biomass reaction coefficients, and departures from steady-state due to temporal fluctuations could propagate to FBA results. In the first case, conditional sampling of parameter space is required to re-weigh the biomass reaction so as the molecular weight remains equal to 1 g mmol−1, and in the second case, metabolite (and elemental) pool conservation must be imposed under temporally varying conditions. Results confirm the importance of enforcing the aforementioned constraints and explain the robustness of FBA biomass yield predictions.  相似文献   

7.
In the study of metabolic networks, optimization techniques are often used to predict flux distributions, and hence, metabolic phenotype. Flux balance analysis in particular has been successful in predicting metabolic phenotypes. However, an inherent limitation of a stoichiometric approach such as flux balance analysis is that it can predict only flux distributions that result in maximal yields. Hence, previous attempts to use FBA to predict metabolic fluxes in Lactobacillus plantarum failed, as this lactic acid bacterium produces lactate, even under glucose-limited chemostat conditions, where FBA predicted mixed acid fermentation as an alternative pathway leading to a higher yield. In this study we tested, however, whether long-term adaptation on an unusual and poor carbon source (for this bacterium) would select for mutants with optimal biomass yields. We have therefore adapted Lactobacillus plantarum to grow well on glycerol as its main growth substrate. After prolonged serial dilutions, the growth yield and corresponding fluxes were compared to in silico predictions. Surprisingly, the organism still produced mainly lactate, which was corroborated by FBA to indeed be optimal. To understand these results, constraint-based elementary flux mode analysis was developed that predicted 3 out of 2669 possible flux modes to be optimal under the experimental conditions. These optimal pathways corresponded very closely to the experimentally observed fluxes and explained lactate formation as the result of competition for oxygen by the other flux modes. Hence, these results provide thorough understanding of adaptive evolution, allowing in silico predictions of the resulting flux states, provided that the selective growth conditions favor yield optimization as the winning strategy.  相似文献   

8.
Rhizobiaceas are bacteria that fix nitrogen during symbiosis with plants. This symbiotic relationship is crucial for the nitrogen cycle, and understanding symbiotic mechanisms is a scientific challenge with direct applications in agronomy and plant development. Rhizobium etli is a bacteria which provides legumes with ammonia (among other chemical compounds), thereby stimulating plant growth. A genome-scale approach, integrating the biochemical information available for R. etli, constitutes an important step toward understanding the symbiotic relationship and its possible improvement. In this work we present a genome-scale metabolic reconstruction (iOR363) for R. etli CFN42, which includes 387 metabolic and transport reactions across 26 metabolic pathways. This model was used to analyze the physiological capabilities of R. etli during stages of nitrogen fixation. To study the physiological capacities in silico, an objective function was formulated to simulate symbiotic nitrogen fixation. Flux balance analysis (FBA) was performed, and the predicted active metabolic pathways agreed qualitatively with experimental observations. In addition, predictions for the effects of gene deletions during nitrogen fixation in Rhizobia in silico also agreed with reported experimental data. Overall, we present some evidence supporting that FBA of the reconstructed metabolic network for R. etli provides results that are in agreement with physiological observations. Thus, as for other organisms, the reconstructed genome-scale metabolic network provides an important framework which allows us to compare model predictions with experimental measurements and eventually generate hypotheses on ways to improve nitrogen fixation.  相似文献   

9.
With a genome size of ∼580 kb and approximately 480 protein coding regions, Mycoplasma genitalium is one of the smallest known self-replicating organisms and, additionally, has extremely fastidious nutrient requirements. The reduced genomic content of M. genitalium has led researchers to suggest that the molecular assembly contained in this organism may be a close approximation to the minimal set of genes required for bacterial growth. Here, we introduce a systematic approach for the construction and curation of a genome-scale in silico metabolic model for M. genitalium. Key challenges included estimation of biomass composition, handling of enzymes with broad specificities, and the lack of a defined medium. Computational tools were subsequently employed to identify and resolve connectivity gaps in the model as well as growth prediction inconsistencies with gene essentiality experimental data. The curated model, M. genitalium iPS189 (262 reactions, 274 metabolites), is 87% accurate in recapitulating in vivo gene essentiality results for M. genitalium. Approaches and tools described herein provide a roadmap for the automated construction of in silico metabolic models of other organisms.  相似文献   

10.
Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function was used to explain observed miniHimar transposon insertion patterns, and gene essentiality calls were made by transposon insertion frequency analysis (TIFA). TIFA incorporated the observed genome and sequence motif bias of the miniHimar transposon. The gene essentiality calls were compared to: 1) previous genome-wide direct gene-essentiality assignments; and, 2) flux balance analysis (FBA) predictions from an existing genome-scale metabolic model of Shewanella oneidensis MR-1. A three-way comparison between FBA, TIFA, and the direct essentiality calls was made to validate the TIFA approach. The refinement in the interpretation of observed transposon insertions demonstrated that genes without insertions are not necessarily essential, and that genes that contain insertions are not always nonessential. The TIFA calls were in reasonable agreement with direct essentiality calls for S. oneidensis, but agreed more closely with E. coli essentiality calls for orthologs. The TIFA gene essentiality calls were in good agreement with the MR-1 FBA essentiality predictions, and the agreement between TIFA and FBA predictions was substantially better than between the FBA and the direct gene essentiality predictions.  相似文献   

11.
This study presents a detailed in silico analysis of bioethanol production from glucose/xylose mixtures of various compositions by fed-batch co-culture and mono-culture fermentation of specialized microbes. The mono-culture consists of recombinant Saccharomyces cerevisise that can metabolize both hexose and pentose sugars while the co-culture system consists of substrate-selective microbes. Dynamic flux balance models based on available genome-scale reconstructions of the microorganisms have been used to analyze bioethanol production in fed-batch culture with constant feed rates and the maximization of ethanol productivity is addressed by computing optimal aerobic-anaerobic switching times. The simulation results clearly point to the superior performance of fed-batch fermentation of microbial co-culture against fed-batch fermentation of mono-culture for bioethanol production from glucose/xylose mixtures. A set of potential genetic engineering strategies for enhancement of S. cerevisiae and Escherichia coli strains performance have been identified. Such in silico predictions using genome-scale models provide valuable guidance for conducting in vivo metabolic engineering experiments.  相似文献   

12.
Background

Cockroaches are terrestrial insects that strikingly eliminate waste nitrogen as ammonia instead of uric acid. Blattabacterium cuenoti (Mercier 1906) strains Bge and Pam are the obligate primary endosymbionts of the cockroaches Blattella germanica and Periplaneta americana, respectively. The genomes of both bacterial endosymbionts have recently been sequenced, making possible a genome-scale constraint-based reconstruction of their metabolic networks. The mathematical expression of a metabolic network and the subsequent quantitative studies of phenotypic features by Flux Balance Analysis (FBA) represent an efficient functional approach to these uncultivable bacteria.

Results

We report the metabolic models of Blattabacterium strains Bge (iCG238) and Pam (iCG230), comprising 296 and 289 biochemical reactions, associated with 238 and 230 genes, and 364 and 358 metabolites, respectively. Both models reflect both the striking similarities and the singularities of these microorganisms. FBA was used to analyze the properties, potential and limits of the models, assuming some environmental constraints such as aerobic conditions and the net production of ammonia from these bacterial systems, as has been experimentally observed. In addition, in silico simulations with the iCG238 model have enabled a set of carbon and nitrogen sources to be defined, which would also support a viable phenotype in terms of biomass production in the strain Pam, which lacks the first three steps of the tricarboxylic acid cycle. FBA reveals a metabolic condition that renders these enzymatic steps dispensable, thus offering a possible evolutionary explanation for their elimination. We also confirm, by computational simulations, the fragility of the metabolic networks and their host dependence.

Conclusions

The minimized Blattabacterium metabolic networks are surprisingly similar in strains Bge and Pam, after 140 million years of evolution of these endosymbionts in separate cockroach lineages. FBA performed on the reconstructed networks from the two bacteria helps to refine the functional analysis of the genomes enabling us to postulate how slightly different host metabolic contexts drove their parallel evolution.

  相似文献   

13.
The composition of a cell in terms of macromolecular building blocks and other organic molecules underlies the metabolic needs and capabilities of a species. Although some core biomass components such as nucleic acids and proteins are evident for most species, the essentiality of the pool of other organic molecules, especially cofactors and prosthetic groups, is yet unclear. Here we integrate biomass compositions from 71 manually curated genome-scale models, 33 large-scale gene essentiality datasets, enzyme-cofactor association data and a vast array of publications, revealing universally essential cofactors for prokaryotic metabolism and also others that are specific for phylogenetic branches or metabolic modes. Our results revise predictions of essential genes in Klebsiella pneumoniae and identify missing biosynthetic pathways in models of Mycobacterium tuberculosis. This work provides fundamental insights into the essentiality of organic cofactors and has implications for minimal cell studies as well as for modeling genotype-phenotype relations in prokaryotic metabolic networks.  相似文献   

14.

Background

The main objective of flux balance analysis (FBA) is to obtain quantitative predictions of metabolic fluxes of an organism, and it is necessary to use an appropriate objective function to guarantee a good estimation of those fluxes.

Methodology

In this study, the predictive performance of FBA was evaluated, using objective functions arising from the linear combination of different cellular objectives. This approach is most suitable for eukaryotic cells, owing to their multiplicity of cellular compartments. For this reason, Saccharomyces cerevisiae was used as model organism, and its metabolic network was represented using the genome-scale metabolic model iMM904. As the objective was to evaluate the predictive performance from the FBA using the kind of objective function previously described, substrate uptake and oxygen consumption were the only input data used for the FBA. Experimental information about microbial growth and exchange of metabolites with the environment was used to assess the quality of the predictions.

Conclusions

The quality of the predictions obtained with the FBA depends greatly on the knowledge of the oxygen uptake rate. For the most of studied classifications, the best predictions were obtained with “maximization of growth”, and with some combinations that include this objective. However, in the case of exponential growth with unknown oxygen exchange flux, the objective function “maximization of growth, plus minimization of NADH production in cytosol, plus minimization of NAD(P)H consumption in mitochondrion” gave much more accurate estimations of fluxes than the obtained with any other objective function explored in this study.  相似文献   

15.
Constraint-based modeling methods, such as Flux Balance Analysis (FBA), have been extensively used to decipher complex, information rich -omics datasets to elicit system-wide behavioral patterns of cellular metabolism. FBA has been successfully used to gain insight in a wide range of applications, such as range of substrate utilization, product yields and to design metabolic engineering strategies to improve bioprocess performance. A well-known challenge associated with large genome-scale metabolic networks is that they result in underdetermined problem formulations. Consequently, rather than unique solutions, FBA and related methods examine ranges of reaction flux values that are consistent with the studied physiological conditions. The wider the reported flux ranges, the higher the uncertainty in the determination of basic reaction properties, limiting interpretability of and confidence in the results. Herein, we propose a new, computationally efficient approach that refines flux range predictions by constraining reaction fluxes on the basis of the elemental balance of carbon. We compared carbon constraint FBA (ccFBA) against experimentally-measured intracellular fluxes using the latest CHO GEM (iCHO1766) and were able to substantially improve the accuracy of predicted flux values compared with FBA. ccFBA can be used as a stand-alone method but is also compatible with and complimentary to other constraint-based approaches.  相似文献   

16.
17.
Flux balance analysis (FBA) is an increasingly useful approach for modeling the behavior of metabolic systems. However, standard FBA modeling of genetic knockouts cannot predict drug combination synergies observed between serial metabolic targets, even though such synergies give rise to some of the most widely used antibiotic treatments. Here we extend FBA modeling to simulate responses to chemical inhibitors at varying concentrations, by diverting enzymatic flux to a waste reaction. This flux diversion yields very similar qualitative predictions to prior methods for single target activity. However, we find very different predictions for combinations, where flux diversion, which mimics the kinetics of competitive metabolic inhibitors, can explain serial target synergies between metabolic enzyme inhibitors that we confirmed in Escherichia coli cultures. FBA flux diversion opens the possibility for more accurate genome-scale predictions of drug synergies, which can be used to suggest treatments for infections and other diseases.  相似文献   

18.
Accurately predicting the interactions between microbial metabolism and the physical subsurface environment is necessary to enhance subsurface energy development, soil and groundwater cleanup, and carbon management. This study was an initial attempt to confirm the metabolic functional roles within an in silico model using environmental proteomic data collected during field experiments. Shotgun global proteomics data collected during a subsurface biostimulation experiment were used to validate a genome-scale metabolic model of Geobacter metallireducens—specifically, the ability of the metabolic model to predict metal reduction, biomass yield, and growth rate under dynamic field conditions. The constraint-based in silico model of G. metallireducens relates an annotated genome sequence to the physiological functions with 697 reactions controlled by 747 enzyme-coding genes. Proteomic analysis showed that 180 of the 637 G. metallireducens proteins detected during the 2008 experiment were associated with specific metabolic reactions in the in silico model. When the field-calibrated Fe(III) terminal electron acceptor process reaction in a reactive transport model for the field experiments was replaced with the genome-scale model, the model predicted that the largest metabolic fluxes through the in silico model reactions generally correspond to the highest abundances of proteins that catalyze those reactions. Central metabolism predicted by the model agrees well with protein abundance profiles inferred from proteomic analysis. Model discrepancies with the proteomic data, such as the relatively low abundances of proteins associated with amino acid transport and metabolism, revealed pathways or flux constraints in the in silico model that could be updated to more accurately predict metabolic processes that occur in the subsurface environment.  相似文献   

19.
Genome-scale metabolic models (GEMs) possess the power to revolutionize bioprocess and cell line engineering workflows thanks to their ability to predict and understand whole-cell metabolism in silico. Despite this potential, it is currently unclear how accurately GEMs can capture both intracellular metabolic states and extracellular phenotypes. Here, we investigate this knowledge gap to determine the reliability of current Chinese hamster ovary (CHO) cell metabolic models. We introduce a new GEM, iCHO2441, and create CHO-S and CHO-K1 specific GEMs. These are compared against iCHO1766, iCHO2048, and iCHO2291. Model predictions are assessed via comparison with experimentally measured growth rates, gene essentialities, amino acid auxotrophies, and 13C intracellular reaction rates. Our results highlight that all CHO cell models are able to capture extracellular phenotypes and intracellular fluxes, with the updated GEM outperforming the original CHO cell GEM. Cell line-specific models were able to better capture extracellular phenotypes but failed to improve intracellular reaction rate predictions in this case. Ultimately, this work provides an updated CHO cell GEM to the community and lays a foundation for the development and assessment of next-generation flux analysis techniques, highlighting areas for model improvements.  相似文献   

20.
Traditional (genome-scale) metabolic models of cellular growth involve an approximate biomass “reaction”, which specifies biomass composition in terms of precursor metabolites (such as amino acids and nucleotides). On the one hand, biomass composition is often not known exactly and may vary drastically between conditions and strains. On the other hand, the predictions of computational models crucially depend on biomass. Also elementary flux modes (EFMs), which generate the flux cone, depend on the biomass reaction. To better understand cellular phenotypes across growth conditions, we introduce and analyze new classes of elementary vectors for comprehensive (next-generation) metabolic models, involving explicit synthesis reactions for all macromolecules. Elementary growth modes (EGMs) are given by stoichiometry and generate the growth cone. Unlike EFMs, they are not support-minimal, in general, but cannot be decomposed “without cancellations”. In models with additional (capacity) constraints, elementary growth vectors (EGVs) generate a growth polyhedron and depend also on growth rate. However, EGMs/EGVs do not depend on the biomass composition. In fact, they cover all possible biomass compositions and can be seen as unbiased versions of elementary flux modes/vectors (EFMs/EFVs) used in traditional models. To relate the new concepts to other branches of theory, we consider autocatalytic sets of reactions. Further, we illustrate our results in a small model of a self-fabricating cell, involving glucose and ammonium uptake, amino acid and lipid synthesis, and the expression of all enzymes and the ribosome itself. In particular, we study the variation of biomass composition as a function of growth rate. In agreement with experimental data, low nitrogen uptake correlates with high carbon (lipid) storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号