首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AimIn this study, the egs_cbct code’s ability to replicate an electronic portal imaging device (EPID) is explored.BackgroundWe have investigated head and neck (H&N) setup verification on an Elekta Precise linear accelerator. It is equipped with an electronic portal imaging device (EPID) that can capture a set of projection images over different gantry angles.Methods and materialsCone-beam computed tomography (CBCT) images were reconstructed from projection images of two different setup scenarios. Projections of an Anthropomorphic Rando head phantom were also simulated by using the egs_cbct Monte Carlo code for comparison with the measured projections.Afterwards, CBCT images were reconstructed from this data. Image quality was evaluated against a metric defined as the image acquisition interval (IAI). It determines the number of projection images to be used for CBCT image reconstruction.ResultsFrom this results it was established that phantom shifts could be determined within 2 mm and rotations within one degree accuracy using only 20 projection images (IAI = 10 degrees). Similar results were obtained with the simulated data.ConclusionIn this study it is demonstrated that a head and neck setup can be verified using substantially fewer projection images. Bony landmarks and air cavities could still be observed in the reconstructed Rando head phantom. The egs_cbct code can be used as a tool to investigate setup errors without tedious measurements with an EPID system.  相似文献   

2.
Background and purposeThe use of cone beam computed tomography (CBCT) for performing dose calculations in radiation therapy has been widely investigated as it could provide a quantitative analysis of the dosimetric impact of changes in patients during the treatment. The aim of this review was to classify different techniques adopted to perform CBCT dose calculation and to report their dosimetric accuracy with respect to the metrics used.Methods and materialsA literature search was carried out in PubMed and ScienceDirect databases, based upon the following keywords: “cone beam computed tomography”, “CBCT”, “cone beam CT”, “dose calculation”, “accuracy”. Sixty-nine peer-reviewed relevant articles were included in this review: thirty-one patient studies, fifteen phantom studies and twenty-three patient & phantom studies. Most studies were found to have focused on head and neck, lung and prostate cancers.ResultsThe techniques adopted to perform CBCT dose calculation have been grouped in six categories labelled as (1) pCT calibration, (2) CBCT calibration, (3) HU override, (4) Deformable image registration, (5) Dose deformation, and (6) Combined techniques. Differences between CBCT dose and reference dose were reported both for target volumes and OARs.ConclusionsA comparison among the available techniques for CBCT dose calculations is challenging as many variables are involved. Therefore, a set of reporting standards is recommended to enable meaningful comparisons among different studies. The accuracy of the results was strongly dependent on the image quality, regardless of the methods used, highlighting the need for dose validation and quality assurance standards.  相似文献   

3.
PurposeThis study aims to evaluate the accuracy of a hybrid approach combining the histogram matching (HM) and the multilevel threshold (MLT) to correct the Hounsfield Unit (HU) distribution in cone-beam CT (CBCT) images.Methods and MaterialsCBCT images acquired for ten prostate cancer patients were processed by matching their histograms to those of deformed planning CT (pCT) images obtained after applying a deformable registration (DR) process. Then, HU values corresponding to five tissue types in the pCT were assigned to the obtained CBCT images (CBCTHM-MLT). Finally, the CBCTHM-MLT images were compared to the deformed pCT visually and using different statistical metrics.ResultsThe visual assessment and the profiles comparison showed that the high discrepancies in the CBCT images were significantly reduced when using the proposed approach. Furthermore, the correlation values indicated that the CBCTHM-MLT were in good agreement with the deformed pCT with correlation values ranging from 0.9893 to 0.9962. In addition, the root mean squared error (RMSE) over the entire volume was reduced from 64.15 ± 9.50 to 51.20 ± 6.76 HU. Similarly, the mean absolute error in specific tissue classes was significantly reduced especially in the soft tissue-air interfaces. These results confirmed that applying MLT after HM worked better than using only HM for which the correlation values were ranging from 0.9878 to 0.9955 and the RMSE was 55.95 ± 10.43 HU.ConclusionEvaluation of the proposed approach showed that the HM + MLT correction can improve the HU distribution in the CBCT images and generate corrected images in good agreement with the pCT.  相似文献   

4.
PurposeTo evaluate the utility of the use of iterative cone-beam computed tomography (CBCT) for machine log file-based dose verification during volumetric modulated arc therapy (VMAT) for prostate cancer patients.MethodsAll CBCT acquisition data were used to reconstruct images with the Feldkamp-Davis-Kress algorithm (FDK-CBCT) and the novel iterative algorithm (iCBCT). The Hounsfield unit (HU)-electron density curves for CBCT images were created using the Advanced Electron Density Phantom. The I’mRT and anthropomorphic phantoms were irradiated with VMAT after CBCT registration. Subsequently, fourteen prostate cancer patients received VMAT after CBCT registration. Machine log files and both CBCT images were exported to the PerFRACTION software, and a 3D patient dose was reconstructed. Mean dose for planning target volume (PTV), the bladder, and rectum and the 3D gamma analysis were evaluated.ResultsFor the phantom studies, the variation of HU values was observed at the central position surrounding the bones in FDK-CBCT. There were almost no changes in the difference of doses at the isocenter between measurement and reconstructed dose for planning CT (pCT), FDK-CBCT, and iCBCT. Mean dose differences of PTV, rectum, and bladder between iCBCT and pCT were approximately 2% lower than those between FDK-CBCT and pCT. For the clinical study, average gamma analysis for 2%/2 mm was 98.22% ± 1.07 and 98.81% ± 1.25% in FDK-CBCT and iCBCT, respectively.ConclusionsA similar machine log file-based dose verification accuracy is obtained for FDK-CBCT and iCBCT during VMAT for prostate cancer patients.  相似文献   

5.

Aim and background

IGRT based on bone matching may produce a large target positioning error in terms of the reproducibility of expiration breath-holding on SBRT for liver cancer. We evaluated the intrafractional and interfractional errors using the diaphragm position at the end of expiration by utilising Abches and analysed the factor of the interfractional error.

Materials and methods

Intrafractional and interfractional errors were measured using a couple of frontal kV images, planning computed tomography (pCT) and daily cone-beam computed tomography (CBCT). Moreover, max–min diaphragm position within daily CBCT image sets with respect to pCT and the maximum value of diaphragm position difference between CBCT and pCT were calculated.

Results

The mean ± SD (standard deviation) of the intra-fraction diaphragm position variation in the frontal kV images was 1.0 ± 0.7 mm in the C-C direction. The inter-fractional diaphragm changes were 0.4 ± 4.6 mm in the C-C direction, 1.4 ± 2.2 mm in the A-P direction, and ?0.6 ± 1.8 mm in the L-R direction. There were no significant differences between the maximum value of the max–min diaphragm position within daily CBCT image sets with respect to pCT and the maximum value of diaphragm position difference between CBCT and pCT.

Conclusions

Residual intrafractional variability of diaphragm position is minimal, but large interfractional diaphragm changes were observed. There was a small effect in the patient condition difference between pCT and CBCT. The impact of the difference in daily breath-holds on the interfractional diaphragm position was large or the difference in daily breath-holding heavily influenced the interfractional diaphragm change.  相似文献   

6.
Impact of three different matching methods for delivery of Volumetric Modulated Arc Therapy (VMAT) in Cone-beam computed tomography (CBCT) on patient set-up error. As per institutional imaging protocol, 300 CBCT scans of 20 VMAT head and neck cancer patients treated with 60 Gy/30 fractions were chosen for the present study. Approved CT images of the plan were registered as a reference with the CBCT images on board. Grey-scale matching (GM), manual matching (MM), and bone matching (BM) between on-board CBCT and reference CT images were used to assess patient translation errors. Patient positioning verification was evaluated using the Clip-box registration in all three matching methods. Using the GM approach as a reference point, two additional matchings were rendered in offline mode using BM and MM. For analysis, random error (σ), systematic error (∑), maximum error (E) mean set-up error (M), mean displacement vector (R), matching time (Mt), and multiple comparisons using Post hoc Tukey's HSD test were performed. In MM, less random and systematic errors were found than in GM and BM with an insignificant difference (p > 0.05) Compared to BM and GM, the maximum error, mean set-up error, and displacement vector were marginally less in MM (p > 0.05). In MM, an increased Mt relative to BM and GM was observed (p > 0.05). Furthermore, an insignificant difference in set-up error was revealed in a multiple comparison test (p > 0.05). Any of the three matching methods can be used during CBCT to check patient translation errors for the delivery of the VMAT head and neck patients.  相似文献   

7.
PurposeIn the present study, clinical stereotactic radiosurgery (SRS) setup uncertainties from image-guidance data are analyzed, and the corresponding setup margin is estimated for treatment planning purposes.MethodsPatients undergoing single-fraction SRS at our institution were localized using invasive head ring or non-invasive thermoplastic masks. Setup discrepancies were obtained from an in-room x-ray patient position monitoring system. Post treatment re-planning using the measured setup errors was performed in order to estimate the individual target margins sufficient to compensate for the actual setup errors. The formula of setup margin for a general SRS patient population was derived by proposing a correlation between the three-dimensional setup error and the required minimal margin.ResultsSetup errors of 104 brain lesions were analyzed, in which 81 lesions were treated using an invasive head ring, and 23 were treated using non-invasive masks. In the mask cases with image guidance, the translational setup uncertainties achieved the same level as those in the head ring cases. Re-planning results showed that the margins for individual patients could be smaller than the clinical three-dimensional setup errors. The derivation of setup margin adequate to address the patient setup errors was demonstrated by using the arbitrary planning goal of treating 95% of the lesions with sufficient doses.ConclusionsWith image guidance, the patient setup accuracy of mask cases can be comparable to that of invasive head rings. The SRS setup margin can be derived for a patient population with the proposed margin formula to compensate for the institution-specific setup errors.  相似文献   

8.
PurposeThis study aims at the assessment of dose error in patients undergoing radiotherapy due to treatment couch of Co-60 teletherapy unit.Materials and methodsIn this study beam attenuation due to treatment couch of Co-60 unit was measured in air for different gantry angles and field sizes. Polymethylmethacrylate (PMMA) phantom was used to estimate the effect of depth on attenuation. Impact of couch on surface dose was also evaluated.ResultsBeam attenuation due to couch was in the range of 0.5–28% for different gantry angles with standard field size of 10 × 10 cm2 with optimum position of metallic cranks. Maximum attenuation (29%) was observed with smallest field size i.e. 5 × 5 cm2. Beam attenuation has been found higher in phantom as compared to that in air However, no particular trend of attenuation has been noted with varying depth of phantom. A 6% increase in surface dose has also been observed due to couch insertion for normal beam incidence. Maximum error of 80% is also note-worthy for most unfavorable situation of irradiation at 180 degree through the metallic cranks.ConclusionIt has been determined that ignoring the treatment couch and its accessories can result in dose error of 0.5–80%, depending on gantry angle, field size and position of couch accessories. Therefore, consideration of dose error due to couch during treatment planning is recommended.  相似文献   

9.
PurposeTo evaluate the feasibility of the use of iterative cone-beam computed tomography (CBCT) for dose calculation in the head and neck region.MethodsThis study includes phantom and clinical studies. All acquired CBCT images were reconstructed with Feldkamp–Davis–Kress algorithm-based CBCT (FDK-CBCT) and iterative CBCT (iCBCT) algorithm. The Hounsfield unit (HU) consistency between the head and body phantoms was determined in both reconstruction techniques. Volumetric modulated arc therapy (VMAT) plans were generated for 16 head and neck patients on a planning CT scan, and the doses were recalculated on FDK-CBCT and iCBCT with Anisotropic Analytical Algorithm (AAA) and Acuros XB (AXB). As a comparison of the accuracy of dose calculations, the absolute dosimetric difference and 1%/1 mm gamma passing rate analysis were analyzed.ResultsThe difference in the mean HU values between the head and body phantoms was larger for FDK-CBCT (max value: 449.1 HU) than iCBCT (260.0 HU). The median dosimetric difference from the planning CT were <1.0% for both FDK-CBCT and iCBCT but smaller differences were found with iCBCT (planning target volume D50%: 0.38% (0.15–0.59%) for FDK-CBCT, 0.28% (0.13–0.49%) for iCBCT, AAA; 0.14% (0.04–0.19%) for FDK-CBCT, 0.07% (0.02–0.20%) for iCBCT). The mean gamma passing rate was significantly better in iCBCT than FDK-CBCT (AAA: 98.7% for FDK-CBCT, 99.4% for iCBCT; AXB: 96.8% for FDK_CBCT, 97.5% for iCBCT).ConclusionThe iCBCT-based dose calculation in VMAT for head and neck cancer was accurate compared to FDK-CBCT.  相似文献   

10.
Using magnetic resonance imaging (MRI) as the sole imaging modality for patient modeling in radiation therapy (RT) is a challenging task due to the need to derive electron density information from MRI and construct a so-called pseudo-computed tomography (pCT) image. We have previously published a new method to derive pCT images from head T1-weighted (T1-w) MR images using a single-atlas propagation scheme followed by a post hoc correction of the mapped CT numbers using local intensity information. The purpose of this study was to investigate the performance of our method with head zero echo time (ZTE) MR images. To evaluate results, the mean absolute error in bins of 20 HU was calculated with respect to the true planning CT scan of the patient. We demonstrated that applying our method using ZTE MR images instead of T1-w improved the correctness of the pCT in case of bone resection surgery prior to RT (that is, an example of large anatomical difference between the atlas and the patient).  相似文献   

11.
PurposeTo assess the effectiveness of SGRT in clinical applications through statistical process control (SPC).MethodsTaking the patients’ positioning through optical surface imaging (OSI) as a process, the average level of process execution was defined as the process mean. Setup errors detected by cone-beam computed tomography (CBCT) and OSI were extracted for head-and-neck cancer (HNC) and breast cancer patients. These data were used to construct individual and exponentially weighted moving average (EWMA) control charts to analyze outlier fractions and small process shifts from the process mean. Using the control charts and process capability indices derived from this process, the patient positioning-related OSI performance and setup error were analyzed for each patient.ResultsOutlier fractions and small shifts from the process mean that are indicative of setup errors were found to be widely prevalent, with the outliers randomly distributed between fractions. A systematic error of up to 1.6 mm between the OSI and CBCT results was observed in all directions, indicating a significantly degraded OSI performance. Adjusting this systematic error for each patient using setup errors of the first five fractions could effectively mitigate these effects. Process capability analysis following adjustment for systematic error indicated that OSI performance was acceptable (process capability index Cpk = 1.0) for HNC patients but unacceptable (Cpk < 0.75) for breast cancer patients.ConclusionSPC is a powerful tool for detecting the outlier fractions and process changes. Our application of SPC to patient-specific evaluations validated the suitability of OSI in clinical applications involving patient positioning.  相似文献   

12.
PurposeImage-guided radiation therapy could benefit from implementing adaptive radiation therapy (ART) techniques. A cycle-generative adversarial network (cycle-GAN)-based cone-beam computed tomography (CBCT)-to-synthetic CT (sCT) conversion algorithm was evaluated regarding image quality, image segmentation and dosimetric accuracy for head and neck (H&N), thoracic and pelvic body regions.MethodsUsing a cycle-GAN, three body site-specific models were priorly trained with independent paired CT and CBCT datasets of a kV imaging system (XVI, Elekta). sCT were generated based on first-fraction CBCT for 15 patients of each body region. Mean errors (ME) and mean absolute errors (MAE) were analyzed for the sCT. On the sCT, manually delineated structures were compared to deformed structures from the planning CT (pCT) and evaluated with standard segmentation metrics. Treatment plans were recalculated on sCT. A comparison of clinically relevant dose-volume parameters (D98, D50 and D2 of the target volume) and 3D-gamma (3%/3mm) analysis were performed.ResultsThe mean ME and MAE were 1.4, 29.6, 5.4 Hounsfield units (HU) and 77.2, 94.2, 41.8 HU for H&N, thoracic and pelvic region, respectively. Dice similarity coefficients varied between 66.7 ± 8.3% (seminal vesicles) and 94.9 ± 2.0% (lungs). Maximum mean surface distances were 6.3 mm (heart), followed by 3.5 mm (brainstem). The mean dosimetric differences of the target volumes did not exceed 1.7%. Mean 3D gamma pass rates greater than 97.8% were achieved in all cases.ConclusionsThe presented method generates sCT images with a quality close to pCT and yielded clinically acceptable dosimetric deviations. Thus, an important prerequisite towards clinical implementation of CBCT-based ART is fulfilled.  相似文献   

13.
BackgroundCurrently, CBCT system is an indispensable component of radiation therapy units. Because of that, it is important in treatment planning and diagnosis. CBCT is also an crucial tool for patient positioning and verification in image-guided radiation therapy (IGRT). Therefore, it is critical to investigate the patient organ doses arising from CBCT imaging. The purpose of this study is to evaluate patient organ doses and effective dose to patients from three different protocols of Elekta Synergy XVI system for kV CBCT imaging examinations in image guided radiation therapy.Materials and methodsOrgan dose measurements were done with thermoluminescent dosimeters in Alderson RA NDO male phantom for head & neck (H&N), chest and pelvis protocols of the Elekta Synergy XVI kV CBCT system. From the measured organ dose, effective dose to patients were calculated according to the International Commission on Radiological Protection 103 report recommendations.ResultsFor H&N, chest and pelvis scans, the organ doses were in the range of 0.03–3.43 mGy, 6.04–22.94 mGy and 2.5–25.28 mGy, respectively. The calculated effective doses were 0.25 mSv, 5.56 mSv and 4.72 mSv, respectively.ConclusionThe obtained results were consistent with the most published studies in the literature. Although the doses to patient organs from the kV CBCT system were relatively low when compared with the prescribed treatment dose, the amount of delivered dose should be monitored and recorded carefully in order to avoid secondary cancer risk, especially in pediatric examinations.  相似文献   

14.
BackgroundLung toxicity in patients undergoing cetuximab and radiotherapy (Cetux-RT) for head and neck squamous cell carcinoma (HNSCC) has been reported in literature and represents a serious side effect of concurrent therapies.MethodsWe report a case of a HNSCC patient that developed neck emphysema during the course of Cetux-RT. The patient was an old male (80 years old) in a good performance status, with an oropharyngeal cancer (T4aN3a).ResultsDuring RT, cone-beam computed tomography (CBCT) showed bilateral neck emphysema that was confirmed at restaging CT. We decided to stop the treatment and to treat the neck emphysema with conservative strategies. After one week CT was repeated and the neck emphysema had improved, so we decided to complete the RT treatment.ConclusionsPatients undergoing Cetux-RT must be properly selected, whereas IGRT imaging must be viewed carefully in order to permit an early diagnosis and careful management of the patients.  相似文献   

15.
PurposeThe purpose of this study was to investigate the influence of head motion on the accuracy of three-dimensional (3D) reconstruction with cone-beam computed tomography (CBCT) scan.ResultsRendered surface models with head motion were similar to the control model in appearance; however, the landmark identification errors showed larger values in models with head motion than in the control. In particular, the Porion in the horizontal rotation models presented statistically significant differences (P < .05). Statistically significant difference in the errors between the right and left side landmark was present in the left side rotation which was opposite direction to the scanner rotation (P < .05).ConclusionsPatient movement during CBCT scan might cause landmark identification errors on the 3D surface model in relation to the direction of the scanner rotation. Clinicians should take this into consideration to prevent patient movement during CBCT scan, particularly horizontal movement.  相似文献   

16.
PurposeTo commission and assess the performance of AlignRT InBore™, a Halcyon™ and Ethos™-dedicated Surface Guided Radiation Therapy (SGRT) platform which combines ceiling-mounted cameras for patient setup and bore-mounted cameras for in-bore tracking.MethodsTo check the potential impact of InBore™ cameras on dose delivery, 16 SRS, H&N, breast and pelvis patients’ quality assurance (QA) treatment plans were measured with/without AlignRT InBore™ and using ArcCHECK® and SRS MapCHECK®. Impact on image quality was determined using Catphan® 540 phantom and considering all available MV and CBCT protocols (head, breast, chest and pelvis). The stability, accuracy and overall performance of AlignRT InBore™ was assessed using an MV Cube and anthropomorphic phantoms.ResultsComparison of 2D dose distributions with/without AlignRT InBore™ showed no impact on treatment delivery for all 16 QA checks (p-value > 0.25). 2D and CBCT images showed no artefacts or change in the contrast-to-noise ratio, resolution and noise values measured with Catphan® 540. Anti-collision sensors were unaffected by the bore-mounted cameras. Additionally, AlignRT InBore™ cameras allowed for motion detection with sub-0.5 mm accuracy and sub-0.4 mm stability with surface coverage of >50 × 60 × 35 cc. Accurate transition (sub-0.3 mm) from virtual to treatment isocentres was achieved. Finally, Halcyon™ rotations during CBCT and beam delivery resulted in limited camera vibrations with translation uncertainty <0.5 mm in left-right and anterior-posterior directions and <0.1 mm in head-feet direction.ConclusionAlignRT InBore™ provides SGRT setup and intrafraction monitoring capabilities with a performance comparable to standard SGRT solutions while having no adverse effect on Halcyon™.  相似文献   

17.
We evaluated the absorbed dose to critical organs, as well as the image quality, at different partial angles in kV-CBCT (Cone Beam Computed Tomography) scanning of the head and neck region. CBCT images of phantom from a 200° rotation were performed by using three different scanning paths, anterior, posterior, and right lateral with Catphan504 and RANDO phantoms. Critical organ dose was measured using TLD 100H in the RANDO phantom. The image quality of those phantoms was evaluated, using HU uniformity, HU linearity, contrast-to-noise ratio, low contrast visibility and spatial resolution with the Catphan504 dataset; and 5-point grading scales for the RANDO phantom dataset by five radiation oncologists. The image qualities from Catphan504 and RANDO phantom of every scanning path were comparable, with no statistically significant difference (p ≥ 0.05). However, there was a significant difference in the critical organ dose in all paths (p < 0.05), depending on the critical organ location and the scanning direction. Scanning directions show no effects on the image quality. Differences in absorbed dose to critical organs should were evaluated. The posterior scanning path for the CBCT was deemed preferable due because of considerably lower doses to several critical organs of the head and neck region.  相似文献   

18.
PurposeThe purpose of this work is to compare the positioning accuracy achieved by three different imaging techniques and planar vs. CBCT imaging for two common IGRT indications.MethodsA collective of prostate cancer and head-and-neck cancer patients treated at our institution during the year 2013 was retrospectively analyzed. For all treatment fractions (3078 in total), the kind of acquired set-up image and the performed couch shift before treatment were assessed. The distribution of couch corrections was compared for three different imaging systems available at our institution: the treatment beam line operating at 6 MV, a dedicated imaging beam line of nominally 1 MV, and the kVision system at 70–121 kV. Shifts were analyzed for planar and cone-beam CT images. Based on the set-up corrections, CTV to PTV expansion margins were calculated.ResultsThe difference in set-up corrections performed for the three energies and both techniques (planar vs. CBCT) was not significant for head-and-neck cancer patients. For prostate cancer all shifts had equal variance. Averages ranged from −0.7 to +0.7 mm. The set-up margins calculated on the basis of the observed shifts are 4.0 mm (AP) and 3.8 mm (SI, LR) for the head-and-neck PTV and 6.6 mm (SI), 6.7 mm (AP) and 7.9 mm (LR) for the prostate cancer patients.ConclusionsFor three different linac-based imaging energies and planar/CBCT imaging, no relevant differences in set-up shifts were observed. The suggested set-up margins for these indications are of the order of 4 mm for head-and-neck and 6–8 mm for prostate treatment.  相似文献   

19.
AimTo determine the setup reproducibility in the radiation treatment of Head and Neck (HN) patients using open face head and shoulder masks (OHSM) with customized headrest (CHR) versus standard closed head and shoulder masks (CHSM) and to determine the patient’s level of comfort and satisfaction for both masks.MethodsForty patients were prospectively randomized into two groups using simple random sampling. Group 1 was assigned with CHSMs, immobilized with a standard HR (SHR) while Group 2 was assigned with OHSMs, and immobilized with CHR. Cone beam computed tomography (CBCT) was taken the first 3 days, followed by weekly CBCT (prior treatment) with results registered to the planning CT to determine translational and rotational inter-fraction shifts and to verify accuracy. Mean (M) and standard deviation (SD) of the systematic and random setup errors of the 2 arms in the translational and rotational directions were analyzed, using Independent t-test and Mann–Whitney U test. Patient comfort was measured using a Likert questionnaire.ResultsThe vertical, lateral, longitudinal and Z/roll rotational shifts were not significantly different between the two masks. X/yaw and Y/pitch rotational shifts were significantly greater in Group 2 versus Group 1, for both systematic (p = 0.009 and 0.046, respectively) and random settings (p = 0.016 and 0.020) but still within three degrees. Patients reported higher neck and shoulder comfort (p = 0.020) and overall satisfaction (p = 0.026) using the OHSM with the CHR versus the CHSM with the SHR during CT simulation.ConclusionOpen masks provide comparable yet comfortable immobilization to closed masks for HN radiotherapy.  相似文献   

20.
PurposeThe aim of this study is to report results of measurements of dose to the skin in vivo with radiochromic EBT films in treatments with helical tomotherapy.Methods and materialsIn vivo measurements were performed by applying pieces of radiochromic films to the skin or to the inner side of thermoplastic mask before the treatment. The sites of treatment included scalp, brain, head and neck, cranio-spinal axis and lower limbs. Skin dosimetry was performed in a patient who experienced grade 3–4 acute side effects to the skin shortly after the first treatment sessions. For each patient we measured the setup errors using the daily MVCT acquired for image guidance of the treatment. EBT films were read with a flatbed Epson Expression scanner and images were processed with an in-house written routine.ResultsA total of 96 measurements of dose to the skin performed on 14 patients. The mean difference and standard error of the mean difference between measured and TPS-calculated dose was ?9.2% ± 2.6% for all treatments, ?6.6% ± 2.6% for head and neck treatments. These differences were statistically significant at the 0.05 significance level (t-Student test). Planned dose and dose range in the region of measurements were not correlated with dose discrepancy.ConclusionsRadiochromic EBT films are suitable detectors for surface dose measurements in tomotherapy treatments. Results show that TPS overestimates dose to the skin measured with EBT radiochromic films. In vivo skin measurements with EBT films are a useful tool for quality assurance of tomotherapy treatments, as the treatment planning system may not give accurate dose values at the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号