首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Increased excitability of the spinal motor system has been observed after loud and unexpected acoustic stimuli (AS) preceding H-reflexes. The paradigm has been proposed as an electrophysiological marker of reticulospinal tract activity in humans. The brainstem reticular formation also maintains dense anatomical interconnections with the cortical motor system. When a startling AS is delivered, prior to transcranial magnetic stimulation (TMS), the AS produces a suppression of motor evoked potential (MEP) amplitude in hand and arm muscles of healthy subjects. Here we analyzed the conditioning effect of a startling AS on MEP amplitude evoked by TMS to the primary motor leg area. Ten healthy volunteers participated in two experiments that used a conditioning-test paradigm. In the first experiment, a startling AS preceded a suprathreshold transcranial test stimulus. The interstimulus interval (ISI) varied between 20 to 160 ms. When given alone, the test stimulus evoked a MEP amplitude of approximately 0.5 mV in the slightly preinervated soleus muscle (SOL). In the second experiment, the startling AS was used to condition the size of the H-reflex in SOL muscle. Mean MEP amplitude was calculated for each ISI. The conditioning AS suppressed MEP amplitude at ISIs of 30-80 ms. By contrast, H-reflex amplitude was augmented at ISIs of 100-200 ms. In conclusions, acoustic stimulation exerts opposite and ISI-specific effects on the amplitude of MEPs and H-reflex in the SOL muscle, indicating different mechanism of auditory-to-motor interactions at cortical and spinal level of motor system.  相似文献   

2.
In order to determine whether joint position exerts a powerful influence on length-tension regulation in multiarticulate wrist flexors, three wrist positions (neutral, flexion and extension) and four levels of flexor contraction [0%, 10%, 20% and 30% maximum voluntary contraction (MVC)] were manipulated. There were significant differences in H-reflex amplitudes according to wrist positions and levels of flexor contraction. H-reflex increased linearly as a function of contraction in all three wrist positions. H-reflex was consistently larger in the wrist flexion than in the wrist extension position. The strength of the relationship (omega2) indicated that wrist position had a greater effect on H-reflex than force of muscle contraction. The interaction between wrist flexors contraction and joint position was significant only in the wrist flexion position. Trend analysis showed that, in the wrist flexion position, a low level of contraction was sufficient to maximally facilitate the H-reflex; however, a quadratic component was seen at higher contraction levels. The above findings may reflect the length-tension relationship of the multiarticulate wrist flexors. Therefore, this paper will discuss the functional implications related to the larger H-reflex in flexion position and the depressed H-reflex in the wrist extension position.  相似文献   

3.
The aim of this study was to investigate if the magnitude of the soleus H-reflex is different depending on the method employed to measure its size (peak-to-peak amplitude vs. area). In this study, 13 healthy human subjects participated, while the soleus H-reflex was induced via conventional methods. In the first experiment, the soleus H-reflex was recorded via two monopolar electrodes and was evoked at least at eight different stimulation intensities in respect to the recovery curve of the H-reflex and at three different inter-stimulus intervals (ISIs) (8, 5, and 2 s). The ISI refers to the time delay between the single pulses delivered to the posterior tibial nerve within a single trial. In the second experiment, the effects of common peroneal nerve (CPN) stimulation at short (2-4 ms) and at long (60-120 ms) conditioning test (C-T) intervals on the soleus H-reflex elicited every 5 s were established. Control and conditioned reflexes were recorded via a single differential bipolar electrode. In both experiments, H-reflexes were quantified by measuring their size as peak-to-peak amplitude and as area under the full-wave rectified waveform. The reflex responses recorded through two monopolar electrodes across stimulation intensities and ISIs measured as peak-to-peak amplitude had larger values than measured as area. In contrast, the magnitude of the reflexes, conditioned by CPN stimulation at either short or long C-T intervals and recorded via a single differential electrode, were not significantly different when measured as peak-to-peak amplitude or as area. Our findings indicate that monopolar recordings yield different reflex sizes depending on the method employed to measure the reflex size, and that the H-reflex measured as area might detect better the homosynaptic reflex depression. The lack of observing such differences with bipolar recordings might be related to changes of the reflex shape at a given stimulus intensity due to inhibitory inputs. The implications of our findings are discussed in respect to human reflex studies.  相似文献   

4.
The aim of this study was to investigate if the magnitude of the soleus H-reflex is different depending on the method employed to measure its size (peak-to-peak amplitude vs. area). In this study, 13 healthy human subjects participated, while the soleus H-reflex was induced via conventional methods. In the first experiment, the soleus H-reflex was recorded via two monopolar electrodes and was evoked at least at eight different stimulation intensities in respect to the recovery curve of the H-reflex and at three different inter-stimulus intervals (ISIs) (8, 5, and 2?s). The ISI refers to the time delay between the single pulses delivered to the posterior tibial nerve within a single trial. In the second experiment, the effects of common peroneal nerve (CPN) stimulation at short (2–4?ms) and at long (60–120?ms) conditioning test (C-T) intervals on the soleus H-reflex elicited every 5?s were established. Control and conditioned reflexes were recorded via a single differential bipolar electrode. In both experiments, H-reflexes were quantified by measuring their size as peak-to-peak amplitude and as area under the full-wave rectified waveform. The reflex responses recorded through two monopolar electrodes across stimulation intensities and ISIs measured as peak-to-peak amplitude had larger values than measured as area. In contrast, the magnitude of the reflexes, conditioned by CPN stimulation at either short or long C-T intervals and recorded via a single differential electrode, were not significantly different when measured as peak-to-peak amplitude or as area. Our findings indicate that monopolar recordings yield different reflex sizes depending on the method employed to measure the reflex size, and that the H-reflex measured as area might detect better the homosynaptic reflex depression. The lack of observing such differences with bipolar recordings might be related to changes of the reflex shape at a given stimulus intensity due to inhibitory inputs. The implications of our findings are discussed in respect to human reflex studies.  相似文献   

5.
The purpose of this study was to investigate how reciprocal Ia inhibition is changed during muscle fatigue of lower limb muscle, induced with a voluntary contraction or height frequency electrical stimulation. Reciprocal Ia inhibition from ankle flexors to extensors has been investigated in 12 healthy subjects. Hoffmann reflex (H-reflex) in the soleus muscle was used to monitor changes in the amount of reciprocal Ia inhibition from common peroneal nerve as demonstrated during voluntary dorsi or planterflexion and 50 Hz electrical stimulation induced dorsi or planterflexion. The test soleus H-reflex was kept at 20-25% of maximum directly evoked motor response (M response) and the strength of the conditioning common peroneal nerve stimulation was kept at 1.0 x motor threshold. At rest, weak la inhibition was demonstrated in 12 subjects, maximal inhibition from the common peroneal nerve was 28.8%. During voluntary dorsiflexion and 50 Hz electrical stimulation induced dorsiflexion, there absolute amounts of inhibition increased as compared to at rest, and decreased or disappeared during voluntary planterflexion and 50 Hz electrical stimulation induced planterflexion as compared to at rest. During voluntary or electrical stimulation induced agonist muscle fatigue, the inhibition of the soleus H-reflex from the common peroneal nerve was greater during voluntary dorsiflexion (maximal, 11.1%) and 50 Hz (maximal, 6.7%) electrical stimulation induced dorsiflexion than at rest. The inhibition was decreased or disappeared during voluntary planterflexion 50 Hz electrical stimulation induced planterflexion. It was concluded that the results were considered to support the hypothesis that alpha-motoneurones and la inhibitory intemeurones link to antagonist motoneurones in reciprocal inhibition. The diminished reciprocal Ia inhibition of voluntary contraction during muscle fatigue as compared to electrical stimulation, is discussed in relation to its possible contribution to ankle stability.  相似文献   

6.
The aim was to study the methodological aspects of the muscle twitch interpolation technique in estimating the maximal force of contraction in the quadriceps muscle utilizing commercial muscle testing equipment. Six healthy subjects participated in seven sets of experiments testing the effects on twitch size of potentiation, time lag after potentiation, magnitude of voluntary force, stimulus amplitude, stimulus duration, angle of the knee, and angle of the hip. In addition, the consequences of submaximal potentiation on the estimation of maximal force from twitch sizes were studied in five healthy subjects. We found an increase in twitch size with increasing levels of potentiation and twitch size decreased exponentially following potentiation. We found a curvilinear relationship between twitch size and voluntary force, and these properties were more obvious when the stimulation intensity of the preload was reduced. The relationship between twitch size and force was only linear, for force levels greater than 25% of maximum. It was concluded that to achieve an accurate estimate of true maximal force of muscle contraction, it would be necessary for the subject to be able to perform at least 75% of the true maximal force.  相似文献   

7.
Diverging results have been reported regarding the modulation and amplitude of the soleus H-reflex measured during human walking and running. A possible explanation to this could be the use of too high stimulus strength in some studies while not in others. During activities like walking and running it is necessary to use a small M-wave to control the effective stimulus strength during all phases of the movement. This implies that the descending part of the H-reflex recruitment curve is being used, which may lead to an unwanted suppression of the H-reflex due to limitations imbedded within the H-reflex methodology itself.Accordingly, the purpose of the present study was to study the effect on the soleus H-reflex during walking and running using stimulus intensities normally considered too high (up to 45% Mmax).Using M-waves of 25–45% Mmax as opposed to 5–25% Mmax showed a significant suppression of the peak H-reflex during the stance phase of walking, while no changes were observed during running. No differences were observed regarding modulation pattern. So a possible use of too high stimulus intensity cannot explain the differences mentioned. The surprising result in running may be explained by the much higher voluntary muscle activity, which implies the existence of a V-wave influencing the H-reflex amplitude in positive direction.  相似文献   

8.
The relationship between the size of the soleus (Sol) Hoffmann (H-) reflex and the level of background (BG) electromyographic (EMG) activity was examined during plantarflexing at different force levels. The experiments were carried out on seven healthy male subjects aged 20-37 years. The subjects were asked to perform fast plantarflexion under a reaction-time condition. The amounts of contraction force were 10, 20, 50 and 80% of maximum voluntary contraction (MVC). Since the maximum size of the M-wave (Mmax) changed systematically during the plantarflexion, we tried to maintain the size of the reference M-wave, an indicator of the efficiency of the electrical stimulation, at a constant value (20% of Mmax) throughout the experiment. The size of the H-reflex was rapidly increased at the very beginning of the movement, and then it tended to decrease in the later phase of the movement. Consequently, even with the same level of BG EMG, the size of the H-reflex was always larger in the early rising phase of the EMG activity than in the later falling phase. The maximum size of the H-reflex was poorly correlated with the force exerted. In contrast, the size of the F-response was proportional to the force exerted. The non-linear relationship between the size of the H-reflex and the BG EMG suggests that the level of the presynaptic inhibition onto Ia terminals was modified depending on the required force level and during the course of the movement.  相似文献   

9.
Paired pacing has been shown to potentiate contractile function of cardiac muscle, and it has been suggested that this may enhance contractile function of diaphragmatic muscle. The primary goal of this study was to study the effect of paired pacing on potentiation of contractile function of diaphragmatic muscle compared to atrial and ventricular myocardium. Diaphragmatic muscle was isolated from mouse and rat, and atrial and ventricular myocardium from dogs. Potentiation was induced by isolated extrastimuli (equal in duration and intensity to the pacing stimulus) and by repetitive extrastimuli (i.e. paired pacing) at a paced rate of 12, 30 and 60 beats/min. Baseline studies were performed while preparations were isometrically contracting at L(max) in oxygenated Krebs-Henseleit solution at 28 degrees C. Maximal force generation in response to a premature stimulus was determined at each rate by scanning the coupling interval between paced beats. Under baseline conditions, diaphragmatic muscle contracted faster than atrial and ventricular muscle. In all tissues, maximum potentiation (increase in force above baseline) was approximately 100% of baseline force, and peak potentiation occurred at shorter coupling intervals with increasing rates of stimulation. Single and paired pacing of diaphragm potentiated the contraction during which the extrastimuli were introduced, while in cardiac muscle, extrastimuli potentiated the contraction following the extrastimulus. The maximum potentiated response occurred when the extrastimulus was introduced prior to the development of peak force in diaphragmatic muscle. In contrast, in atrial and ventricular muscle, a single or paired premature stimulus potentiated the subsequent beat when delivered late during relaxation. In cardiac muscle, maximal potentiation gradually occurred following several repetitive stimuli. Following cessation of single and paired pacing, the beat following the potentiated response immediately returned to baseline in diaphragmatic muscle, while a gradual decline was evident over several subsequent beats in cardiac muscle. Increasing the bath temperature from 28 to 37 degrees C resulted in a leftward shift in the peak potentiated force vs. coupling interval curve without a decline in the magnitude of potentiated force in diaphragmatic muscle. In diaphragm muscle, exposure to ryanodine markedly decreased baseline force and maximal potentiation. We conclude that closely timed extrastimuli applied to diaphragmatic muscle can potentiate developed force in a given contraction, while in cardiac tissue a delayed stimulus potentiates the subsequent beat. These differences in contractile responsiveness are not due to differences in loading conditions, but appear to reflect intrinsic differences in calcium handling.  相似文献   

10.
A subthreshold pharyngeal stimulus induces lower esophageal sphincter (LES) relaxation and inhibits progression of ongoing peristaltic contraction in the esophagus. Recent studies show that longitudinal muscle contraction of the esophagus may play a role in LES relaxation. Our goal was to determine whether a subthreshold pharyngeal stimulus induces contraction of the longitudinal muscle of the esophagus and to determine the nature of this contraction. Studies were conducted in 16 healthy subjects. High resolution manometry (HRM) recorded pressures, and high frequency intraluminal ultrasound (HFIUS) images recorded longitudinal muscle contraction at various locations in the esophagus. Subthreshold pharyngeal stimulation was induced by injection of minute amounts of water in the pharynx. A subthreshold pharyngeal stimulus induced strong contraction and caudal descent of the upper esophageal sphincter (UES) along with relaxation of the LES. HFIUS identified longitudinal muscle contraction of the proximal (3-5 cm below the UES) but not the distal esophagus. Pharyngeal stimulus, following a dry swallow, blocked the progression of dry swallow-induced peristalsis; this was also associated with UES contraction and descent along with the contraction of longitudinal muscle of the proximal esophagus. We identify a unique pattern of longitudinal muscle contraction of the proximal esophagus in response to subthreshold pharyngeal stimulus, which we propose may be responsible for relaxation of the distal esophagus and LES through the stretch sensitive activation of myenteric inhibitory motor neurons.  相似文献   

11.
Percutaneous electrical nerve stimulation is a non-invasive method commonly used to evaluate neuromuscular function from brain to muscle (supra-spinal, spinal and peripheral levels). The present protocol describes how this method can be used to stimulate the posterior tibial nerve that activates plantar flexor muscles. Percutaneous electrical nerve stimulation consists of inducing an electrical stimulus to a motor nerve to evoke a muscular response. Direct (M-wave) and/or indirect (H-reflex) electrophysiological responses can be recorded at rest using surface electromyography. Mechanical (twitch torque) responses can be quantified with a force/torque ergometer. M-wave and twitch torque reflect neuromuscular transmission and excitation-contraction coupling, whereas H-reflex provides an index of spinal excitability. EMG activity and mechanical (superimposed twitch) responses can also be recorded during maximal voluntary contractions to evaluate voluntary activation level. Percutaneous nerve stimulation provides an assessment of neuromuscular function in humans, and is highly beneficial especially for studies evaluating neuromuscular plasticity following acute (fatigue) or chronic (training/detraining) exercise.  相似文献   

12.
Combined V-wave and Hoffmann (H) reflex measurements were performed during maximal muscle contraction to examine the neural adaptation mechanisms induced by resistance training. The H-reflex can be used to assess the excitability of spinal alpha-motoneurons, while also reflecting transmission efficiency (i.e., presynaptic inhibition) in Ia afferent synapses. Furthermore, the V-wave reflects the overall magnitude of efferent motor output from the alpha-motoneuron pool because of activation from descending central pathways. Fourteen male subjects participated in 14 wk of resistance training that involved heavy weight-lifting exercises for the muscles of the leg. Evoked V-wave, H-reflex, and maximal M-wave (M(max)) responses were recorded before and after training in the soleus muscle during maximal isometric ramp contractions. Maximal isometric, concentric, and eccentric muscle strength was measured by use of isokinetic dynamometry. V-wave amplitude increased approximately 50% with training (P < 0.01) from 3.19 +/- 0.43 to 4.86 +/- 0.43 mV, or from 0.308 +/- 0.048 to 0.478 +/- 0.034 when expressed relative to M(max) (+/- SE). H-reflex amplitude increased approximately 20% (P < 0.05) from 5.37 +/- 0.41 to 6.24 +/- 0.49 mV, or from 0.514 +/- 0.032 to 0.609 +/- 0.025 when normalized to M(max). In contrast, resting H-reflex amplitude remained unchanged with training (0.503 +/- 0.059 vs. 0.499 +/- 0.063). Likewise, no change occurred in M(max) (10.78 +/- 0.86 vs. 10.21 +/- 0.66 mV). Maximal muscle strength increased 23-30% (P < 0.05). In conclusion, increases in evoked V-wave and H-reflex responses were observed during maximal muscle contraction after resistance training. Collectively, the present data suggest that the increase in motoneuronal output induced by resistance training may comprise both supraspinal and spinal adaptation mechanisms (i.e., increased central motor drive, elevated motoneuron excitability, reduced presynaptic inhibition).  相似文献   

13.
INTRODUCTION: When muscle is allowed to shorten during an active contraction, the maximum force that redevelops after shortening is smaller than the isometric force at the same muscle length without prior shortening. We studied the course of force redevelopment after shortening in smooth muscle to unravel the mechanism responsible for this deactivation. METHOD: In a first series of measurements the shortening velocity was varied resulting in different shortening amplitudes. In a second series, the duration of stimulation before shortening (shortening delay) was varied. In a third series, the stimulation was interrupted for a certain duration immediately after shortening. Force, muscle length and stimulation were continuously recorded. Time constants were calculated to describe the rate of force development before and after shortening. RESULTS: With increasing shortening amplitude and with increasing shortening delay, force redevelopment decreased. Redevelopment increased with an increase in the interruption time. After stimulus interruption force redeveloped mono-exponentially with a time constant similar to that of isometric contractions (approximately 3s). Without the interruption of stimulation, the redevelopment of force immediately after shortening was best described by two time constants; one similar to and one about 3-5 times faster than the isometric time constant. DISCUSSION: Force (re)development is caused by a cascade of events leading to the cycling of cross-bridges. In smooth muscle, isometric force development is described by a time constant of about 3s. Force redevelopment immediately after shortening involves a second process which takes place at a faster rate (time constant about 1s). We assume that this process is faster due to the immediate availability of cytoplasmic calcium released during active shortening. Deactivation presumably is caused by disorganization of filaments during shortening.  相似文献   

14.
Transient stretch of cardiac muscle during a twitch contraction may dissociate Ca2+ from myofilaments into the cytosol at the moment of quick release of the muscle. We studied the effect of stretch and quick release of trabeculae on changes in intracellular Ca2+ ([Ca2+]i) during triggered propagated contractions (TPCs). Trabeculae were dissected from the right ventricle of 9 rat hearts. [Ca2+]i was measured using electrophoretically injected fura-2. Force was measured using a silicon strain gauge and sarcomere length was measured using laser diffraction techniques. Reproducible TPCs (n = 13) were induced by trains of electrical stimuli (378 +/- 19 ms interval) for 7.5 s at [Ca2+]o of 2.0 mM (27.9 +/- 0.2 degrees C). The latency of the TPC force and the underlying increase in [Ca2+]i was calculated from the time (TimeF) between the last stimulus and the peak of TPC force (PeakF), or the time (TimeCa) between the last stimulus and the peak of the increase in [Ca2+]i during the TPCs (PeakCa). As a result of a 10% increase in muscle length for 150-200 ms during the last stimulated twitches, TimeF and TimeCa decreased and PeakF and PeakCa increased significantly (n = 13). In addition, transient stretch sometimes induced a twitch contraction subsequent to the accelerated TPC and its underlying increase in [Ca2+]i. These results suggest that Ca2+ binding and dissociation from the myofilaments by the stretch and quick release of muscle may modulate the TPC force and the underlying increases in [Ca2+]i and play an important role in the induction of arrhythmias.  相似文献   

15.
Voluntary activation of muscle is commonly quantified by comparison of the extra force added by motor nerve stimulation during a contraction [superimposed twitch (SIT)] with that produced at rest by the same stimulus (resting twitch). An inability to achieve 100% voluntary activation implies that failure to produce maximal force output from the muscle must have occurred at a site at or above the level of the motoneurons. We have used cortical stimulation to quantify voluntary activation. Here, incomplete activation implies a failure at or above the level of motor cortical output. With cortical stimulation, it is inappropriate to compare extra force evoked during a contraction with the twitch evoked in resting muscle because motor cortical and spinal cord excitability both increase with activity. However, an appropriate "resting twitch" can be estimated. We previously estimated its amplitude by extrapolation of the linear relation between SIT amplitude and voluntary torque calculated from 35 contractions of >50% maximum (Todd G, Taylor JL, and Gandevia SC. J Physiol 551: 661-671, 2003). In this study, we improved the utility of this method to enable evaluation of voluntary activation when it may be changing over time, such as during the development of fatigue, or in patients who may be unable to perform large numbers of contractions. We have reduced the number of contractions required to only three. Estimation of the resting twitch from three contractions was reliable over time with low variability. Furthermore, its reliability and variability were similar to the resting twitch estimated from 30 contractions and to that evoked by conventional motor nerve stimulation.  相似文献   

16.
The purpose of this study was to investigate systematically if complementary knowledge could be obtained from the recordings of electromyography (EMG) and mechanomyography (MMG) signals. EMG and MMG activities were recorded from the first dorsal interosseous muscle during slow concentric, isometric, and eccentric contraction at 0, 25, 50, 75 and 100% of the maximal voluntary contraction (MVC). The combination of the EMG and MMG recordings during voluntary concentric-isometric-eccentric contraction showed significant different non-linear EMG/force and MMG/force relationships (P<0.001). The EMG root mean square (rms) values increased significantly from 0 to 50% MVC during concentric and isometric contraction and up to 75% MVC during eccentric contraction (P<0.05). The MMG rms values increased significantly from 0 to 50% MVC during concentric contraction (P<0.05). The non-linear relationships depended mainly on the type and the level of contraction together with the angular velocity. Furthermore, the type of contraction, the contraction level, and the angular velocity influenced the electromechanical efficiency evaluated as the MMG to EMG ratio (P<0.05). These results highlight that EMG and MMG provide complementary information about the electrical and mechanical activity of the muscle. Different activation strategies seem to be used during graded isometric and anisometric contraction.  相似文献   

17.
The extent to which motoneuron pool excitability, as measured by the Hoffmann reflex (H-reflex), is affected by an acute bout of whole-body vibration (WBV) was recorded in 19 college-aged subjects (8 male and 11 female; mean age 19 +/- 1 years) after tibial nerve stimulation. H/M recruitment curves were mapped for the soleus muscle by increasing stimulus intensity in 0.2- to 1.0-volt increments with 10-second rest intervals between stimuli, until the maximal M-wave and H-reflex were obtained. After determination of Hmax and Mmax, the intensity necessary to generate an H-reflex approximately 30% of Mmax (mean 31.5% +/- 4.1%) was determined and used for all subsequent measurements. Fatigue was then induced by 1 minute of WBV at 40 Hz and low amplitude (2-4 mm). Successive measurements of the H-reflex were recorded at the test intensity every 30 seconds for 30 minutes post fatigue. All subjects displayed a significant suppression of the H-reflex during the first minute post-WBV; however, four distinct recovery patterns were observed among the participants (alpha = 0.50). There were no significant differences between genders across time (P = 0.401). The differences observed in this study cannot be explained by level or type training. One plausible interpretation of these data is that the multiple patterns of recovery may display variation of muscle fiber content among subjects. Future investigation should consider factors such as training specificity and muscle fiber type that might contribute to the differing H-reflex response, and the effect of WBV on specific performance measures should be interpreted with the understanding that there may be considerable variability among individuals. Recovery times and sample size should be adjusted accordingly.  相似文献   

18.
19.
The force produced by cat muscles over time with two stimuli separated by a short interval is approximately three times that produced by a twitch of cat muscles. This facilitation of force production by a second stimulus involves both increases in magnitude and duration of the contraction. Increased magnitude is relatively more important in the fast-twitch plantaris muscle, whereas increased duration is more important in the slow-twitch soleus muscle. The facilitation decays in an approximately exponential manner with the interval between stimuli, having a time constant between one and two times the twitch contraction time in different muscles. If a third stimulus is added, the greatest facilitation is seen at intervals longer than the twitch contraction time. The drug Dantrolene, which specifically reduces Ca++ release from the sarcoplasmic reticulum, eliminates the delayed peak in facilitation with three stimuli. Associated with the increases in force with one or more stimuli are increases in muscle stiffness, which can be measured with small, brief stretches and releases that do not alter the time- course of contraction. The stiffness of soleus muscle reaches a peak after the peak in force. The increasing stiffness of the muscle can considerably facilitate transmission of force generated internally, in addition to any facilitation arising from Ca++-release mechanisms.  相似文献   

20.
Some disorders of the upper airway in humans are marked by decreased cross-sectional area and increased airway wall compliance. Based on our observations from studies performed in the isolated upper airway of dogs, we hypothesized that the size, and perhaps the geometry, of the airway was altered by changes in the relative activation levels of various muscle pairs. This could be accomplished either by altering the intensity of the neuromuscular input, or by activating muscle pairs which have different geometric orientation to the airway. We developed an analytic relationship to allow us to vary the stimulus level driving any one of six muscle pairs, each with a different anatomic orientation, to evaluate the relationship between those parameters and upper airway volume. With data generated from bilateral electrical stimulation of upper airway muscles, we described a shape factor which allowed us to predict the maximum force produced at optimal length. These findings were applied to a length/tension curve common to striated muscle to allow us to examine the muscle behavior at lengths other than optimal. The position of each muscle was described in spherical coordinates relative to an elastic cylinder, which represented the isolated, sealed upper airway. These coordinates defined the direction in which the force generated by each muscle pair would be applied. Three compliance constants determined the change in airway dimensions produced by the muscle force. This system and its variables were used to calculate the change in volume of the sealed upper airway chamber resulting from muscle contraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号