首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Colorectal cancer (CRC), a kind of human gastrointestinal cancer, has been reported to be one of the most common malignant tumors worldwide. Increasing evidence has indicated that circular RNAs exert significant effects on the development of multiple cancers. Nevertheless, whether hsa_circ_0053277 regulates the progression of CRC remains to be explored. In this study, our results showed that the expression of hsa_circ_0053277 was markedly upregulated in CRC tissues and cells. Knockdown of hsa_circ_0053277 inhibited cell proliferation, migration, and epithelial-mesenchymal transition (EMT) process in CRC. miR-2467-3p had a binding site for hsa_circ_0053277. Molecular mechanism assays confirmed that hsa_circ_0053277 could bind with miR-2467-3p. In addition, hsa_circ_0053277 accelerated cell proliferation rate by acting as a sponge for miR-2467-3p in CRC. Matrix metalloproteinase 14 (MMP14) expression was notably upregulated in CRC cells and MMP14 was a downstream target gene of miR-2467-3p. Besides, hsa_circ_0053277 positively regulated MMP14 expression while miR-2467-3p negatively regulated MMP14 expression. Rescue assays verified that MMP14 knockdown countervailed the function of miR-2467-3p inhibitor on cell proliferation, migration, and EMT process in CRC. To sum up, hsa_circ_0053277 facilitated the development of CRC by sponging miR-2467-3p to upregulate MMP14 expression.  相似文献   

2.
Increasing studies have found that circular RNAs (circRNAs) are aberrantly expressed and play important roles in the occurrence and development of human cancers. However, the function of circRNAs on environmental carcinogen-induced gastric cancer (GC) progression remains poorly elucidated. In the present study, hsa_circ_0110389 was identified as a novel upregulated circRNA in malignant-transformed GC cells through RNA-seq, and subsequent quantitative real-time PCR verified that hsa_circ_0110389 was significantly increased in GC tissues and cells. High hsa_circ_0110389 expression associates with advanced stages of GC and predicts poor prognosis. Knockdown and overexpression assays demonstrated that hsa_circ_0110389 regulates proliferation, migration, and invasion of GC cells in vitro. In addition, hsa_circ_0110389 was identified to sponge both miR-127-5p and miR-136-5p and SORT1 was validated as a direct target of miR-127-5p and miR-136-5p through multiple mechanism assays; moreover, hsa_circ_0110389 sponged miR-127-5p/miR-136-5p to upregulate SORT1 expression and hsa_circ_0110389 promoted GC progression through the miR-127-5p/miR-136-5p–SORT1 pathway. Finally, hsa_circ_0110389 knockdown suppressed GC growth in vivo. Taken together, our findings firstly identify the role of hsa_circ_0110389 in GC progression, which is through miR-127-5p/miR-136-5p–SORT1 pathway, and our study provides novel insight for the identification of diagnostic/prognostic biomarkers and therapeutic targets for GC.Subject terms: Gastrointestinal cancer, Non-coding RNAs  相似文献   

3.
Macrophage autophagy plays a major role in the control and elimination of invading Mycobacterium tuberculosis. However, the function and mechanism of circRNA on macrophage autophagy in tuberculosis remain unclear. Therefore, this study aimed to explore the role of circRNA underlying macrophage autophagy in tuberculosis. Quantitative real-time polymerase chain reaction was used to detect the expression of hsa_circ_0045474, miR-582-5p and TNKS2. Autophagy was detected by LC3B immunofluorescence and transmission electron microscopy. Dual-luciferase reporter assays were used to detect the relationship of miR-582-5p and hsa_circ_0045474 or TNKS2. Western blot was used to detect the expression of LC3-І and LC3-ІІ. The results showed that hsa_circ_0045474 was down-regulated in monocytes from patients with tuberculosis and induced autophagy in macrophages. hsa_circ_0045474 sponged miR-582-5p and negatively regulated miR-582-5p expression. Overexpression of miR-582-5p affected by hsa_circ_0045474 induced autophagy in macrophages. TNKS2 served as a target of miR-582-5p and down-regulation of TNKS2 induced autophagy in macrophages regulated by miR-582-5p. In conclusion, our results demonstrated that hsa_circ_0045474 down-regulation induced macrophage autophagy in tuberculosis via miR-582-5p/ TNKS2 axis, implying a novel strategy to treat the occurrence of active pulmonary tuberculosis caused by immune escape of M. tuberculosis.  相似文献   

4.
《Epigenetics》2013,8(1):119-128
It was previously demonstrated that miR-199a was downregulated in testicular germ cell tumor (TGCT), probably due to hypermethylation of its promoter. Further study found that re-expression of miR-199a in testicular cancer cells (NT2) led to suppression of cell growth, cancer migration, invasion and metastasis. More detailed analyses showed that these properties of miR-199a could be assigned to miR-199a-5p, one of its two derivatives. The biological role of the other derivative, miR-199a-3p in TGCT, remains largely uncharacterized. In this report, we identified DNA (cytosine-5)-methyltransferase 3A (DNMT3A), the de novo methyltransferase, as a direct target of miR-199a-3p using a 3′-UTR reporter assay. Transient expression of miR-199a-3p in NT2 cells led to decrease, while knocking down of miR-199a-3p in a normal human testicular cell line (HT) led to elevation, of DNMT3A2 (DNMT3A gene isoform 2) mRNA and protein levels. In clinical samples, DNMT3A2 was significantly overexpressed in malignant testicular tumor, and the expression of DNMT3A2 was inversely correlated with the expression of miR-199a-3p. However, DNMT3A did not affect miR-199a expression in NT2 cells. Further characterization of miR-199a-3p revealed that it negatively regulated DNA methylation, partly through targeting DNMT3A. Overexpression of miR-199a-3p restored the expression of APC and MGMT tumor-suppressor genes in NT2 cells by affecting DNA methylation of their promoter regions. Our studies demonstrated the deregulation of miR-199a-3p expression in TGCT may provide novel mechanistic insights into TGCT carcinogenesis and suggested a potentially therapeutic use of synthetic miR-199a-3p oligonucleotides as effective hypomethylating compounds in the treatment of TGCT.  相似文献   

5.
The de-regulation of the miR-29 family and DNA methyltransferase 3A (DNMT3A) is associated with gastric cancer (GC). While increasing evidence indicates miR-29b/c could regulate DNA methylation by targeting DNMT3A, it is currently unknown if epigenetic silencing of miR-29b/c via promoter hypermethylation in GC is caused by abnormal expression of DNMT3A. Thus, we aimed to evaluate whether cross-talk regulation exists between miR-29b/c and DNMT3A and whether it is associated with a malignant phenotype in GC. First, wound healing and Transwell assays revealed that miR-29b/c suppresses tumor metastasis in GC. A luciferase reporter assay demonstrated that DNMT3A is a direct target of miR-29b/c. We used bisulfite genomic sequencing to analyze the DNA methylation status of miR-29b/c. The percentage of methylated CpGs was significantly decreased in DNMT3A-depleted cells compared to the controls. Furthermore, the involvement of DNMT3A in promoting GC cell migration was associated with the promoter methylation-mediated repression of CDH1. In 50 paired clinical GC tissue specimens, decreased miR-29b/c was significantly correlated with the degree of differentiation and invasion of the cells and was negatively correlated with DNMT3A expression. Together, our preliminary results suggest that the following process may be involved in GC tumorigenesis. miR-29b/c suppresses the downstream gene DNMT3A, and in turn, miR-29b/c is suppressed by DNMT3A in a DNA methylation-dependent manner. The de-regulation of both of miR-29b/c and DNMT3A leads to the epigenetic silencing of CDH1 and contributes to the metastasis phenotype in GC. This finding reveals that DNA methylation-associated silencing of miR-29b/c is critical for GC development and thus may be a therapeutic target.  相似文献   

6.
7.
Circular RNA (circRNA) is a new class of noncoding RNA, and plays an important role in many pathological processes. Cervical cancer is the most common gynecologic malignant tumor. Recently, studies have shown that there is a variety of circRNA involved in the pathogenesis of cervical cancer. We screened out the highly expressed hsa_circ_0000263 from GSE102686 by the quantitative real-time polymerase chain reaction assay in cervical cancer cell lines. In this study, we investigated whether hsa_circ_0000263 might affect cell proliferation, migration, cell cycle and apoptosis in cervical cancer in vitro and in vivo. The luciferase reporter assay and RNA immunoprecipitation assay confirmed the direct interaction between miR-150-5p and hsa_circ_0000263. By using western blot and immunohistochemistry, we confirmed that hsa_circ_0000263 can regulate the expression of murine double minute 4 (MDM4) by affecting miR-150-5p, and finally affect the expression of p53 gene. We found that hsa_circ_0000263 was significantly upregulated in cervical cancer cells. In addition, the knockdown of hsa_circ_0000263, would inhibit cell proliferation and migration ability. In conclusion, our current research reveals the important role of hsa_circ_0000263/miR-150-5p/MDM4/p53 regulatory network in cervical cancer and provides a new insight into the pathogenesis of cervical cancer.  相似文献   

8.
摘要 目的:探讨卵巢癌细胞UWB1.289中miR-155-5p对PARP抑制剂敏感性的影响及可能涉及的分子机制研究。方法:采用qRT-PCR技术检测miR-155-5p在有BRCA1/2突变和无BRCA1/2突变的卵巢癌组织及卵巢癌细胞中的表达情况。利用细胞转染、qRT-PCR以及Western Blot技术检测转染miR-155-5p模拟物和抑制剂的卵巢癌细胞UWB1.289中miR-155-5p的表达以及同源重组修复相关基因SIRT1、BRG1的表达。通过双荧光素酶报告基因实验验证miR-155-5p与SIRT1、BRG1之间的靶向性。运用CCK-8检测卵巢癌细胞UWB1.289中miR-155-5p对PARP抑制剂敏感性的影响。结果:与无BRCA1/2突变的卵巢癌组织及卵巢癌细胞相比,miR-155-5p在有BRCA1/2突变的卵巢癌组织及卵巢癌细胞中低表达。转染miR-155-5p模拟物可增加卵巢癌细胞UWB1.289中miR-155-5p的表达,同时降低同源重组修复相关基因SIRT1、BRG1的表达;转染miR-155-5p抑制剂可下调卵巢癌细胞UWB1.289中miR-155-5p的表达,同时增加SIRT1、BRG1的表达,进一步通过双荧光素酶报告基因实验证实miR-155-5p与SIRT1、BRG1存在特异性靶向结合序列。与对照组相比,干扰同源重组修复相关基因以及miR-155-5p过表达均可增强卵巢癌细胞UWB1.289对PARP抑制剂的敏感性。结论:miR-155-5p可能通过影响同源重组修复基因增强卵巢癌细胞UWB1.289对PARP抑制剂的敏感性。  相似文献   

9.
X Bai  Z Song  Y Fu  Z Yu  L Zhao  H Zhao  W Yao  D Huang  X Mi  E Wang  Z Zheng  M Wei 《PloS one》2012,7(6):e40024
Altered DNA methylation of tumor suppressor gene promoters plays a role in human carcinogenesis and DNA methyltransferases (DNMTs) are responsible for it. This study aimed to determine aberrant expression of DNMT1, DNMT3a, and DNMT3b in benign and malignant ovarian tumor tissues for their association with clinicopathological significance and prognostic value. A total of 142 ovarian cancers and 44 benign ovarian tumors were recruited for immunohistochemical analysis of their expression. The data showed that expression of DNMT1, DNMT3a, and DNMT3b was observed in 76 (53.5%), 92 (64.8%) and 79 (55.6%) of 142 cases of ovarian cancer tissues, respectively. Of the serious tumors, DNMT3a protein expression was significantly higher than that in benign tumor samples (P?=?0.001); DNMT3b was marginally significant down regulated in ovarian cancers compared to that of the benign tumors (P?=?0.054); DNMT1 expression has no statistical difference between ovarian cancers and benign tumor tissues (P?=?0.837). Of the mucious tumors, the expression of DNMT3a, DNMT3b, and DNMT1 was not different between malignant and benign tumors. Moreover, DNMT1 expression was associated with DNMT3b expression (P?=?0.020, r?=?0.195). DNMT1 expression was associated with age of the patients, menopause status, and tumor localization, while DNMT3a expression was associated with histological types and serum CA125 levels and DNMT3b expression was associated with lymph node metastasis. In addition, patients with DNMT1 or DNMT3b expression had a trend of better survival than those with negative expression. Co-expression of DNMT1 and DNMT3b was significantly associated with better overall survival (P?=?0.014). The data from this study provided the first evidence for differential expression of DNMTs proteins in ovarian cancer tissues and their associations with clinicopathological and survival data in sporadic ovarian cancer patients.  相似文献   

10.

Thyroid carcinoma (TC) seriously threatens the health and safety of patients, and the treatment target of it still is poor. RT-qPCR and Western blot were carried out to detect the expression of genes and proteins, respectively. Cell proliferation was confirmed using colony formation assay. Transwell assay were performed to measure the cell migration and invasion. Besides, luciferase reporter assay was accomplished to ensure the target relationship between miR-942-5p and TWIST1 mRNA as well as hsa_circ_0001681. Here, we proved that hsa_circ_0001681 was increased in TC, and located majorly in the cytoplasm of TC cells. However,  miR-942-5p was decreased in TC, and was negatively correlated with hsa_circ_0001681 expression. Knockdown of hsa_circ_0001681 significantly repressed the proliferation, migration, invasion and EMT of TC cells. We also found that the process of hsa_circ_0001681 silencing limited EMT, which was obstructed by TWIST1 increasing. Moreover, hsa_circ_0001681 acted as a miRNA sponge and completed with TWIST1 mRNA for binding to miR-942-5p, thus downregulation of hsa_circ_0001681 repressed EMT and subsequent malignant phenotype of TC cells through targeting miR-942-5p/TWIST1 signaling pathway. Finally, the studies in vivo showed that decreasing of hsa_circ_0001681 effectively inhibited the growth of tumor via repressing EMT by regulating miR-942-5p/TWIST1 signaling pathway. Overall, silencing of hsa_circ_0001681 significantly suppressed TC progression through inhibiting EMT via acting as a miR-942-5p sponge to facilitate the expression of TWIST1. Our data provided a reliable evidence for hsa_circ_0001681 is a potential treatment target in TC.

  相似文献   

11.
12.
Circular RNAs have been reported to play significant roles in regulating pathophysiological processes while also guiding clinical diagnosis and treatment of hepatocellular carcinoma (HCC). However, only a few circRNAs have been identified thus far. Herein, we investigated the role of a specific closed-loop structure of hsa_circ_101555 that was generated by back-splicing of the host gene casein kinase 1 gamma 1 (CSNK1G1) in the development and proliferation of HCC. We investigated the expression of Hsa_circ_101555 in HCC and normal tissues using bioinformatics. The expression level of hsa_circ_101555 was further detected by fluorescence in situ hybridization and qRT-PCR in ten HCC patients. Transwell, migration, WST-1 assays, and colony formation assays were used to evaluate the role of hsa_circ_101555 in HCC development and proliferation. The regulatory mechanisms of hsa_circ_101555 in miR-145-5p and CDCA3 were determined by dual luciferase reporter assay. A mouse xenograft model was also used to determine the effect of hsa_circ_101555 on HCC growth in vivo. hsa_circ_101555 showed greater stability than the linear RNA; while in vitro and in vivo results demonstrated that hsa_circ_101555 silencing significantly suppressed cell proliferation, migration, and invasion of HCC cells. Rescue experiments further demonstrated that suppression of miR-145-5p significantly attenuated the biological effects of hsa_circ_101555 knockdown in HCC cells. We also identified a putative oncogene CDCA3 as a potential miR-145-5p target. Thus, our results demonstrated that hsa_circ_101555 might function as a competing endogenous RNA of miR-145-5p to upregulate CDCA3 expression in HCC. These findings suggest that hsa_circ_101555 may be a potential therapeutic target for patients with HCC.Subject terms: Liver cancer, Long non-coding RNAs  相似文献   

13.
Long-term culture of human mesenchymal stromal cells (MSC) has implications on their proliferation and differentiation potential and we have demonstrated that this is associated with up-regulation of the five microRNAs miR-29c, miR-369-5p, miR-371, miR-499, and let-7f. In this study, we examined the role of these senescence-associated microRNAs for cellular aging and differentiation of MSC. Proliferation was reduced upon transfection with miR-369-5p, miR-371, and miR-499. Adipogenic differentiation was impaired by miR-369-5p whereas it was highly increased by miR-371. This was accompanied by respective gene expression changes of some adipogenic key molecules (adiponectin and fatty acid-binding protein 4 [FABP4]). Furthermore luciferase reporter assay indicated that FABP4 is a direct target of miR-369-5p. Microarray analysis upon adipogenic or osteogenic differentiation revealed down-regulation of several microRNAs albeit miR-369-5p and miR-371 were not affected. Expression of the de novo DNA methyltransferases DNMT3A and DNMT3B was up-regulated by transfection of miR-371 whereas expression of DNMT3A was down-regulated by miR-369-5p. In summary, we identified miR-369-5p and miR-371 as antagonistic up-stream regulators of adipogenic differentiation and this might be indirectly mediated by epigenetic modifications.  相似文献   

14.
Accumulating research findings have shown that circular RNAs (circRNAs) play an indispensable role in tumorigenesis and tumor progression. The current study aimed to explore the role and modulatory mechanism of hsa_circ_0003596 in clear cell renal cell carcinoma (ccRCC). Quantitative real-time polymerase chain reaction was adopted to detect the expression of hsa_circ_0003596 in ccRCC tissue and cell lines. 5-Ethynyl-2′-deoxyuridine, cell counting kit 8 and the colony formation assay were utilized to assess the proliferation potential of the ccRCC cells. Transwell along with wound healing assays were adopted to quantify infiltration coupled with the migration potential of the cells. The current research study found that the circRNA hsa_circ_0003596 was overexpressed in ccRCC tissue and cell lines. Further, result showed that hsa_circ_0003596 was associated with distant metastasis of renal cancer. Notably, the knockdown of hsa_circ_0003596 can lower the proliferation, infiltration and migration potential of ccRCC cells. The results of in vivo experiments found that the reduction of hsa_circ_0003596 significantly hampered the growth of tumors in mice. In addition, it was evident that hsa_circ_0003596 acts as a “molecular sponge” for miR-502-5p to upregulate the expression of the microRNA-502-5p (miR-502-5p) target insulin-like growth factor 1 (IGF1R). Furthermore, it was found that the phosphatidylinositol 3-kinase (PI3K)/AKT signaling was the downstream cascade of hsa_circ_0003596/miR-502-5p/IGF1R cascade, which is partly responsible for the cancer-promoting effect. Overall, the results of the present study showed that hsa_circ_0003596 facilitated the proliferation, infiltration and migration of ccRCC through the miR-502-5p/IGF1R/PI3K/AKT axis. Therefore, it was evident that hsa_circ_0003596 can serve as a possible biomarker and therapeutic target against ccRCC.  相似文献   

15.
The present study shows that nuclear factor erythroid 2-related factor 2 (NRF2) and miR-29b-1-5p are two opposite forces which could regulate the fate of MDA-MB-231 cells, the most studied triple-negative breast cancer (TNBC) cell line. We show that NRF2 activation stimulates cell growth and markedly reduces reactive oxygen species (ROS) generation, whereas miR-29b-1-5p overexpression increases ROS generation and reduces cell proliferation. Moreover, NRF2 downregulates miR-29b-1-5p expression, whereas miR-29b-1-5p overexpression decreases p-AKT and p-NRF2. Furthermore, miR-29b-1-5p overexpression induces both inhibition of DNA N-methyltransferases (DNMT1, DNMT3A, and DNMT3B) expression and re-expression of HIN1, RASSF1A and CCND2. Conversely, NRF2 activation induces opposite effects. We also show that parthenolide, a naturally occurring small molecule, induces the expression of miR-29b-1-5p which could suppress NRF2 activation via AKT inhibition. Overall, this study uncovers a novel NRF2/miR-29b-1-5p/AKT regulatory loop that can regulate the fate (life/death) of MDA-MB-231 cells and suggests this loop as therapeutic target for TNBC.  相似文献   

16.
Ovarian cancer progression is correlated with accumulation of aberrant CpG island methylation. In ovarian cancer, ascites fluid contains numerous Epidermal-Growth-Factor-Receptor (EGFR) activators, which could result in a tumor microenvironment of constant EGFR activation. Signaling pathways downstream of EGFR, such as Ras, regulate DNA methylation. We hypothesized that chronic EGFR activation could alter DNA methylation. We found that EGFR activation increased DNA methyltransferase (DNMT) activity acutely, as well as after long-term EGF treatment or expression of a mutationally activated EGFR. Furthermore, this increase in DNMT activity was dependent on EGFR catalytic activity and resulted in increased global DNA methylation. Additionally, treatment with the DNMT inhibitor/hypomethylating agent 5-Aza-2′-deoxycytidine (AZA) inhibited the EGF induced increase of both DNMT activity and global methylation. These data support a role for EGFR in the process of accumulated DNA methylation during ovarian cancer progression and suggest that epigenetic therapy may be beneficial for the treatment of ovarian cancer.Key words: ovarian cancer, DNA methylation, epidermal growth factor receptor, DNA methyltransferase, epigenetics, E-cadherin  相似文献   

17.
Circular RNAs (circRNAs) is one type of important non-coding RNAs that participate in tumorigenesis and cancer progression. In our previous study, we performed a microarray analysis of circRNAs between the tumor tissues and the adjacent normal tissues of hepatocellular carcinoma (HCC) patients, and found that the circRNA hsa_circ_0007456 is significantly downregulated in the tumor tissues and correlated with the prognosis of HCC. We further investigated the relationship between the expression levels of hsa_circ_0007456 in HCC and the susceptibility of NK cells, and found that the expression levels of hsa_circ_0007456 in HCC cell lines significantly influenced their susceptibility to NK cells. Through a series of screening and validation, we found that hsa_circ_0007456 mainly functioned through sponging miR-6852-3p and regulating the expression of intercellular adhesion molecule-1 (ICAM-1) in HCC. The miR-6852-3p/ICAM-1 axis is essential for the NK cytotoxicity toward HCC mediated by hsa_circ_0007456. In conclusion, we identify here hsa_circ_0007456 as a promising biomarker of HCC, and highlight hsa_circ_0007456/miR-6852-3p/ICAM-1 axis as an important signaling pathway in the process of tumor immune evasion and the tumorigenesis of HCC.Subject terms: Tumour biomarkers, Liver cancer  相似文献   

18.
《Reproductive biology》2022,22(2):100648
Cervical cancer (CC) is a common gynecological malignant tumor, causing poor survival rate. Circular RNAs (circRNAs) are abundantly expressed in CC with their stable loop structure. However, the underlying mechanism and biological function of circRNAs remained unclear. Using quantitative real-time polymerase chain reaction (qRT-PCR) or western blot assay, we measured the expression of hsa_circ_0001495, miR-526b-3p, and transmembrane Bax inhibitor motif containing 6 (TMBIM6) in CC tissues and cells. The relationship between miR-526b-3p and hsa_circ_0001495 or TMBIM6 was investigated by bioinformatics analysis, dual-luciferase and RIP analysis. Enzyme linked immunosorbent assay (ELISA) was conducted to evaluate glucose consumption and lactate production. 5-ethynyl-2′-deoxyuridine (EDU) assay were used to test cell proliferation. Cell apoptosis was analyzed by using flow cytometry assay. Transwell and wound-healing assays were used to measure cell invasion and migration. The expression of proteins was examined by western blot. Xenograft assay was applied to detect the effect of hsa_circ_0001495 in vivo. Our finding showed that hsa_circ_0001495 and TMBIM6 expression were upregulated, while miR-526b-3p was downregulated in CC tissues and cell lines. Hsa_circ_0001495 knockdown or TMBIM6 knockdown suppressed cell proliferation, migration, glycolysis, while promoted cell apoptosis in vitro, and hsa_circ_0001495 silence curbed tumor growth in vivo. Beside, hsa_circ_0001495 exerted its function in CC by positively regulating TMBIM6. Furthermore, hsa_circ_0001495 acted as a sponge for miR-526b-3p to regulate TMBIM6 expression. Hsa_circ_0001495/miR-526b-3p/TMBIM6 axis also regulated the phosphorylation of mammalian target of rapamycin (mTOR) in CC cells. In summary, hsa_circ_0001495 regulated the progression of CC by regulating miR-526b-3p/TMBIM6/mTOR pathway.  相似文献   

19.
miRNAs have emerged as crucial regulators in the regulation of development as well as human diseases, especially tumorigenesis. The aims of this study are to evaluate miR-30b-5p expression pattern and mechanism in gastric carcinogenesis due to which remains to be determined. Expression of miR-30b-5p was analyzed in 51 gastric cancer cases and 4 cell lines by qRT-PCR. The effect of DNA methylation on miR-30b-5p expression was assessed by MSP and BGS. In order to know whether DNMT1 increased miR-30b-5p promoter methylation, DNMT1 was depleted in cell lines AGS and BGC-823. The role of miR-30b-5p on cell migration was evaluated by wound healing assays. Decreased expression of miR-30b-5p was found in gastric cancer samples. In tumor, the expression level of miR-30b-5p was profound correlated with lymph node metastasis (P = 0.019). The level of miR-30b-5p may be restored by DNA demethylation and DNMT1 induced miR-30b-5p promoter methylation. In vitro functional assays implied that enforced miR-30b-5p expression affected cell migration, consistent with tissues analysis. Our findings uncovered that miR-30b-5p is significantly diminished in gastric cancer tissues, providing the first insight into the epigenetic mechanism of miR-30b-5p down-regulation, induced by DNMT1, and the role of miR-30b-5p in gastric cancer carcinogenesis. Overexpression of miR-30b-5p inhibited cell migration. Thus, miR-30b-5p may represent a potential therapeutic target for gastric cancer therapy.  相似文献   

20.
The occurrence of radioresistance is a clinical obstacle to endometrial cancer (EC) treatment and induces tumor relapse. In this study, we found that tumor-associated macrophages (TAMs) enriched in EC specimens were determined to present an M2-like phenotype. In vitro, the coculture of M2-polarized macrophages significantly downregulated the radiosensitivity of EC cells by releasing exosomes. Hsa_circ_0001610 was found to be abundant in exosomes derived from M2-polarized macrophages (EXOs), and hsa_circ_0001610 knockdown eliminated the reduction effect of EXOs on the radiosensitivity of EC cells. The following mechanism research revealed that hsa_circ_0001610 functioned as the competing endogenous RNA of miR-139-5p, thereby upregulating cyclin B1 expression, which is a vital pusher of radioresistance in several types of cancer by regulating the cell cycle. Hsa_circ_0001610 overexpression reduced the radiosensitivity of EC cells, which was then reversed by miR-139-5p overexpression. In vivo, the promotion effect of EXOs on xenograft tumor growth in nude mice treated with irradiation was further reinforced after hsa_circ_0001610 overexpression. In conclusion, TAM-derived exosomes transferred hsa_circ_0001610 to EC cells, and the overexpressed hsa_circ_0001610 in EC cells released cyclin B1 expression through adsorbing miR-139-5p, thereby weakening the radiosensitivity of EC cells.Subject terms: Cancer, Cell biology  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号