共查询到20条相似文献,搜索用时 15 毫秒
1.
Priya Upadhyay Nitesh K. Singh Rasika Tupe Annamma Odenath 《Preparative biochemistry & biotechnology》2020,50(4):341-348
AbstractFerulic acid is a fraction of the phenolics present in cereals such as rice and corn as a component of the bran. Substantial amounts of waste bran are generated by the grain processing industry and this can be valorized via extraction, purification and conversion of phenolics to value added chemical products. Alkaline alcohol based extracted and purified ferulic acid from corn bran was converted to vanillic acid using engineered Pseudomonas putida KT2440. The strain was engineered by rendering the vanAB gene nonfunctional and obtaining the mutant defective in vanillic acid metabolism. Biotransformation of ferulic acid using resting Pseudomonas putida KT2440 mutant cells resulted in more than 95?±?1.4% molar yield from standard ferulic acid; while the corn bran derived ferulic acid gave 87?±?0.38% molar yield. With fermentation time of less than 24?h the mutant becomes a promising candidate for the stable biosynthesis of vanillic acid at industrial scale. 相似文献
2.
Bio-upcycling of plastics is an upcoming alternative approach for the valorization of diverse polymer waste streams that are too contaminated for traditional recycling technologies. Adipic acid and other medium-chain-length dicarboxylates are key components of many plastics including polyamides, polyesters, and polyurethanes. This study endows Pseudomonas putida KT2440 with efficient metabolism of these dicarboxylates. The dcaAKIJP genes from Acinetobacter baylyi, encoding initial uptake and activation steps for dicarboxylates, were heterologously expressed. Genomic integration of these dca genes proved to be a key factor in efficient and reliable expression. In spite of this, adaptive laboratory evolution was needed to connect these initial steps to the native metabolism of P. putida, thereby enabling growth on adipate as sole carbon source. Genome sequencing of evolved strains revealed a central role of a paa gene cluster, which encodes parts of the phenylacetate metabolic degradation pathway with parallels to adipate metabolism. Fast growth required the additional disruption of the regulator-encoding psrA, which upregulates redundant β-oxidation genes. This knowledge enabled the rational reverse engineering of a strain that can not only use adipate, but also other medium-chain-length dicarboxylates like suberate and sebacate. The reverse engineered strain grows on adipate with a rate of 0.35 ± 0.01 h−1, reaching a final biomass yield of 0.27 ± 0.00 gCDW gadipate−1. In a nitrogen-limited medium this strain produced polyhydroxyalkanoates from adipate up to 25% of its CDW. This proves its applicability for the upcycling of mixtures of polymers made from fossile resources into biodegradable counterparts. 相似文献
3.
Pseudomonas putida KT2440 (hereafter KT2440) is a well-studied platform bacterium for the production of industrially valuable chemicals from heterogeneous mixtures of aromatic compounds obtained from lignin depolymerization. KT2440 can grow on lignin-related monomers, such as ferulate (FA), 4-coumarate (4CA), vanillate (VA), 4-hydroxybenzoate (4HBA), and protocatechuate (PCA). Genes associated with their catabolism are known, but knowledge about the uptake systems remains limited. In this work, we studied the KT2440 transporters of lignin-related monomers and their substrate selectivity. Based on the inhibition by protonophores, we focused on five genes encoding aromatic acid/H+ symporter family transporters categorized into major facilitator superfamily that uses the proton motive force. The mutants of PP_1376 (pcaK) and PP_3349 (hcnK) exhibited significantly reduced growth on PCA/4HBA and FA/4CA, respectively, while no change was observed on VA for any of the five gene mutants. At pH 9.0, the conversion of these compounds by hcnK mutant (FA/4CA) and vanK mutant (VA) was dramatically reduced, revealing that these transporters are crucial for the uptake of the anionic substrates at high pH. Uptake assays using 14C-labeled substrates in Escherichia coli and biosensor-based assays confirmed that PcaK, HcnK, and VanK have ability to take up PCA, FA/4CA, and VA/PCA, respectively. Additionally, analyses of the predicted protein structures suggest that the size and hydropathic properties of the substrate-binding sites of these transporters determine their substrate preferences. Overall, this study reveals that at physiological pH, PcaK and HcnK have a major role in the uptake of PCA/4HBA and FA/4CA, respectively, and VanK is a VA/PCA transporter. This information can contribute to the engineering of strains for the efficient conversion of lignin-related monomers to value-added chemicals. 相似文献
4.
Yang Songyuan Li Suhang Jia Xiaoqiang 《Journal of industrial microbiology & biotechnology》2019,46(6):793-800
Journal of Industrial Microbiology & Biotechnology - Pseudomonas putida was metabolically engineered to produce medium chain length polyhydroxyalkanoate (mcl-PHA) from acetate, a promising... 相似文献
5.
A methodology was developed for the extraction of medium-chain-length poly-3-hydroxyalkanoates (mcl-PHA) from Pseudomonas putida. It was determined that if dry P. putida biomass containing mcl-PHA was washed in 20 volumes of methanol for 5 min followed by Soxhlet extraction in 10 volumes of acetone for 5 h, almost all of the PHA could be recovered with no detectable loss of molecular weight. Biomass containing higher amounts of PHA required less methanol during the pretreatment step but more acetone in the solvent extraction step than biomass containing less PHA. Further purification could be achieved by redissolving the PHA in acetone and reprecipitating in cold methanol. UV spectroscopy at 241 and 275 nm could be used as an indication of product purity. 相似文献
6.
7.
Andreas Wittgens Till Tiso Torsten T Arndt Pamela Wenk Johannes Hemmerich Carsten Müller Rolf Wichmann Benjamin Küpper Michaela Zwick Susanne Wilhelm Rudolf Hausmann Christoph Syldatk Frank Rosenau Lars M Blank 《Microbial cell factories》2011,10(1):1-18
Background
The expression of human virus surface proteins, as well as other mammalian glycoproteins, is much more efficient in cells of higher eukaryotes rather than yeasts. The limitations to high-level expression of active viral surface glycoproteins in yeast are not well understood. To identify possible bottlenecks we performed a detailed study on overexpression of recombinant mumps hemagglutinin-neuraminidase (MuHN) and measles hemagglutinin (MeH) in yeast Saccharomyces cerevisiae, combining the analysis of recombinant proteins with a proteomic approach.Results
Overexpressed recombinant MuHN and MeH proteins were present in large aggregates, were inactive and totally insoluble under native conditions. Moreover, the majority of recombinant protein was found in immature form of non-glycosylated precursors. Fractionation of yeast lysates revealed that the core of viral surface protein aggregates consists of MuHN or MeH disulfide-linked multimers involving eukaryotic translation elongation factor 1A (eEF1A) and is closely associated with small heat shock proteins (sHsps) that can be removed only under denaturing conditions. Complexes of large Hsps seem to be bound to aggregate core peripherally as they can be easily removed at high salt concentrations. Proteomic analysis revealed that the accumulation of unglycosylated viral protein precursors results in specific cytosolic unfolded protein response (UPR-Cyto) in yeast cells, characterized by different action and regulation of small Hsps versus large chaperones of Hsp70, Hsp90 and Hsp110 families. In contrast to most environmental stresses, in the response to synthesis of recombinant MuHN and MeH, only the large Hsps were upregulated whereas sHsps were not. Interestingly, the amount of eEF1A was also increased during this stress response.Conclusions
Inefficient translocation of MuHN and MeH precursors through ER membrane is a bottleneck for high-level expression in yeast. Overexpression of these recombinant proteins induces the UPR's cytosolic counterpart, the UPR-Cyto, which represent a subset of proteins involved in the heat-shock response. The involvement of eEF1A may explain the mechanism by which only large chaperones, but not small Hsps are upregulated during this stress response. Our study highlights important differences between viral surface protein expression in yeast and mammalian cells at the first stage of secretory pathway. 相似文献8.
ABSTRACT: BACKGROUND: Pseudomonas putida KT2440 is able to synthesize large amounts of medium-chain-length polyhydroxyalkanoates (mcl-PHAs). To reduce the substrate cost, which represents nearly 50% of the total PHA production cost, xylose, a hemicellulose derivate, was tested as the growth carbon source in an engineered P. putida KT2440 strain. RESULTS: The genes encoding xylose isomerase (XylA) and xylulokinase (XylB) from Escherichia coli W3110 were introduced into P. putida KT2440. The recombinant KT2440 exhibited a XylA activity of 1.47 U and a XylB activity of 0.97 U when grown on a defined medium supplemented with xylose. The cells reached a maximum specific growth rate of 0.24 h-1 and a final cell dry weight (CDW) of 2.5 g L-1 with a maximal yield of 0.5 g CDW g-1 xylose. Since no mcl-PHA was accumulated from xylose, mcl-PHA production can be controlled by the addition of fatty acids leading to tailor-made PHA compositions. Sequential feeding strategy was applied using xylose as the growth substrate and octanoic acid as the precursor for mcl-PHA production. In this way, up to 20% w w-1 of mcl-PHA was obtained. A yield of 0.37 g mcl-PHA per g octanoic acid was achieved under employed conditions. CONCLUSIONS: Sequential feeding of relatively cheap carbohydrates and expensive fatty acids is a practical way to achieve more cost-effective mcl-PHA production. This study is the first reported attempt to produce mcl-PHA by using xylose as the growth substrate. Further process optimizations to achieve higher cell density and higher productivity of mcl-PHA should be investigated. These scientific exercises will undoubtedly contribute to the economic feasibility of mcl-PHA production from renewable feedstock. 相似文献
9.
10.
Analysis of the catabolic potential of Pseudomonas putida KT2440 against a wide range of natural aromatic compounds and sequence comparisons with the entire genome of this microorganism predicted the existence of at least four main pathways for the catabolism of central aromatic intermediates, that is, the protocatechuate (pca genes) and catechol (cat genes) branches of the beta-ketoadipate pathway, the homogentisate pathway (hmg/fah/mai genes) and the phenylacetate pathway (pha genes). Two additional gene clusters that might be involved in the catabolism of N-heterocyclic aromatic compounds (nic cluster) and in a central meta-cleavage pathway (pcm genes) were also identified. Furthermore, the genes encoding the peripheral pathways for the catabolism of p-hydroxybenzoate (pob), benzoate (ben), quinate (qui), phenylpropenoid compounds (fcs, ech, vdh, cal, van, acd and acs), phenylalanine and tyrosine (phh, hpd) and n-phenylalkanoic acids (fad) were mapped in the chromosome of P. putida KT2440. Although a repetitive extragenic palindromic (REP) element is usually associated with the gene clusters, a supraoperonic clustering of catabolic genes that channel different aromatic compounds into a common central pathway (catabolic island) was not observed in P. putida KT2440. The global view on the mineralization of aromatic compounds by P. putida KT2440 will facilitate the rational manipulation of this strain for improving biodegradation/biotransformation processes, and reveals this bacterium as a useful model system for studying biochemical, genetic, evolutionary and ecological aspects of the catabolism of aromatic compounds. 相似文献
11.
James J. Williamson Nurfariza Bahrin Elizabeth M. Hardiman Timothy D. H. Bugg 《Biotechnology journal》2020,15(7)
Ferulic acid is a renewable chemical found in lignocellulose from grasses such as wheat straw and sugarcane. Pseudomonas putida is able to liberate and metabolize ferulic acid from plant biomass. Deletion of the hydroxycinnamoyl‐CoA hydratase‐lyase gene (ech) produced a strain of P. putida unable to utilize ferulic and p‐coumaric acid, which is able to accumulate ferulic acid and p‐coumaric acid from wheat straw or sugar cane bagasse. Further engineering of this strain saw the replacement of ech with the phenolic acid decarboxylase padC, which converts p‐coumaric and ferulic acid into 4‐vinylphenol and the flavor agent 4‐vinylguaiacol, respectively. The engineered strain containing padC is able to generate 4‐vinylguaiacol and 4‐vinylphenol from media containing lignocellulose or Green Value Protobind lignin as feedstock, and does not require the addition of an exogenous inducer molecule. Biopolymerization of 4‐vinylguaiacol and 4‐vinylcatechol styrene products is also carried out, using Trametes versicolor laccase, to generate “biopolystyrene” materials on small scale. 相似文献
12.
Robert Nitschel Andreas Ankenbauer Ilona Welsch Nicolas T. Wirth Christoph Massner Naveed Ahmad Stephen McColm Frdric Borges Ian Fotheringham Ralf Takors Bastian Blombach 《Engineering in Life Science》2020,20(5-6):148-159
We engineered P. putida for the production of isobutanol from glucose by preventing product and precursor degradation, inactivation of the soluble transhydrogenase SthA, overexpression of the native ilvC and ilvD genes, and implementation of the feedback‐resistant acetolactate synthase AlsS from Bacillus subtilis, ketoacid decarboxylase KivD from Lactococcus lactis, and aldehyde dehydrogenase YqhD from Escherichia coli. The resulting strain P. putida Iso2 produced isobutanol with a substrate specific product yield (YIso/S) of 22 ± 2 mg per gram of glucose under aerobic conditions. Furthermore, we identified the ketoacid decarboxylase from Carnobacterium maltaromaticum to be a suitable alternative for isobutanol production, since replacement of kivD from L. lactis in P. putida Iso2 by the variant from C. maltaromaticum yielded an identical YIso/S. Although P. putida is regarded as obligate aerobic, we show that under oxygen deprivation conditions this bacterium does not grow, remains metabolically active, and that engineered producer strains secreted isobutanol also under the non‐growing conditions. 相似文献
13.
14.
15.
Vílchez S Tunnacliffe A Manzanera M 《Extremophiles : life under extreme conditions》2008,12(2):297-299
Pseudomonas putida dried in the presence of hydroxyectoine or trehalose can withstand exposure to organic solvents and therefore can be encapsulated
inside plastics such as polystyrene. Here we show that P. putida in a plastic-encapsulated dried tablet exhibits remarkable tolerance to chemical stress, comparable to that of spores of
Bacillus subtilis. 相似文献
16.
Carl Brehl Hannah U. C. Brass Clara Lüchtrath Lukas Böckmann Nina Ihling Thomas Classen Jörg Pietruszka Jochen Büchs 《Biotechnology progress》2022,38(3):e3245
The red pigment prodigiosin is of high pharmaceutical interest, due to its potential applications as an antitumor drug and antibiotic agent. As previously demonstrated, Pseudomonas putida KT2440 is a suitable host for prodigiosin production, as it exhibits high tolerance toward the antimicrobial properties of prodigiosin. So far, prodigiosin concentrations of up to 94 mg/L have been achieved in shake flask cultivations. For the characterization and optimization of the prodigiosin production process, the scattered light of P. putida and fluorescence of prodigiosin was measured. The excitation and emission wavelengths for prodigiosin measurement were analyzed by recording 2D fluorescence spectra. The strongest prodigiosin fluorescence was obtained at a wavelength combination of 535/560 nm. By reducing the temperature to 18 °C and using 16 g/L glucose, the prodigiosin concentration was more than doubled compared with the initial cultivation conditions. The obtained results demonstrate the capabilities of parallelized microscale cultivations combined with noninvasive online monitoring of fluorescence for rapid bioprocess development, using prodigiosin as a molecule of current biotechnological interest. 相似文献
17.
Jozef B. J. H. van Duuren Paul J. de Wild Sören Starck Christian Bradtmöller Mirjam Selzer Kerstin Mehlmann Roland Schneider Michael Kohlstedt Ignacio Poblete-Castro Jessica Stolzenberger Nadja Barton Michel Fritz Stephan Scholl Joachim Venus Christoph Wittmann 《Biotechnology and bioengineering》2020,117(5):1381-1393
Lignin is an abundant and heterogeneous waste byproduct of the cellulosic industry, which has the potential of being transformed into valuable biochemicals via microbial fermentation. In this study, we applied a fast-pyrolysis process using softwood lignin resulting in a two-phase bio-oil containing monomeric and oligomeric aromatics without syringol. We demonstrated that an additional hydrodeoxygenation step within the process leads to an enhanced thermochemical conversion of guaiacol into catechol and phenol. After steam bath distillation, Pseudomonas putida KT2440-BN6 achieved a percent yield of cis, cis-muconic acid of up to 95 mol% from catechol derived from the aqueous phase. We next established a downstream process for purifying cis, cis-muconic acid (39.9 g/L) produced in a 42.5 L fermenter using glucose and benzoate as carbon substrates. On the basis of the obtained values for each unit operation of the empirical processes, we next performed a limited life cycle and cost analysis of an integrated biotechnological and chemical process for producing adipic acid and then compared it with the conventional petrochemical route. The simulated scenarios estimate that by attaining a mixture of catechol, phenol, cresol, and guaiacol (1:0.34:0.18:0, mol ratio), a titer of 62.5 (g/L) cis, cis-muconic acid in the bioreactor, and a controlled cooling of pyrolysis gases to concentrate monomeric aromatics in the aqueous phase, the bio-based route results in a reduction of CO2-eq emission by 58% and energy demand by 23% with a contribution margin for the aqueous phase of up to 88.05 euro/ton. We conclude that the bio-based production of adipic acid from softwood lignins brings environmental benefits over the petrochemical procedure and is cost-effective at an industrial scale. Further research is essential to achieve the proposed cis, cis-muconic acid yield from true lignin-derived aromatics using whole-cell biocatalysts. 相似文献
18.
Vanillin is one of the most important flavoring agents used today. That is why many efforts have been made on biotechnological production from natural abundant substrates. In this work, the nonpathogenic Pseudomonas putida strain KT2440 was genetically optimized to convert ferulic acid to vanillin. Deletion of the vanillin dehydrogenase gene (vdh) was not sufficiant to prevent vanillin degradation. Additional inactivation of a molybdate transporter, identified by transposon mutagenesis, led to a strain incapable to grow on vanillin as sole carbon source. The bioconversion was optimized by enhanced chromosomal expression of the structural genes for feruloyl-CoA synthetase (fcs) and enoyl-CoA hydratase/aldolase (ech) by introduction of the strong tac promoter system. Further genetic engineering led to high initial conversion rates and molar vanillin yields up to 86 % within just 3 h accompanied with very low by-product levels. To our knowledge, this represents the highest productivity and molar vanillin yield gained with a Pseudomonas strain so far. Together with its high tolerance for ferulic acid, the developed, plasmid-free P. putida strain represents a promising candidate for the biotechnological production of vanillin. 相似文献
19.
The transformation of 4-hydroxybenzoate (4-HBA) to protocatechuate (PCA) is catalyzed by flavoprotein oxygenases known as para-hydroxybenzoate-3-hydroxylases (PHBHs). In Pseudomonas putida KT2440 (P. putida) strains engineered to convert lignin-related aromatic compounds to muconic acid (MA), PHBH activity is rate-limiting, as indicated by the accumulation of 4-HBA, which ultimately limits MA productivity. Here, we hypothesized that replacement of PobA, the native P. putida PHBH, with PraI, a PHBH from Paenibacillus sp. JJ-1b with a broader nicotinamide cofactor preference, could alleviate this bottleneck. Biochemical assays confirmed the strict preference of NADPH for PobA, while PraI can utilize either NADH or NADPH. Kinetic assays demonstrated that both PobA and PraI can utilize NADPH with comparable catalytic efficiency and that PraI also efficiently utilizes NADH at roughly half the catalytic efficiency. The X-ray crystal structure of PraI was solved and revealed absolute conservation of the active site architecture to other PHBH structures despite their differing cofactor preferences. To understand the effect in vivo, we compared three P. putida strains engineered to produce MA from p-coumarate (pCA), showing that expression of praI leads to lower 4-HBA accumulation and decreased NADP+/NADPH ratios relative to strains harboring pobA, indicative of a relieved 4-HBA bottleneck due to increased NADPH availability. In bioreactor cultivations, a strain exclusively expressing praI achieved a titer of 40 g/L MA at 100% molar yield and a productivity of 0.5 g/L/h. Overall, this study demonstrates the benefit of sampling readily available natural enzyme diversity for debottlenecking metabolic flux in an engineered strain for microbial conversion of lignin-derived compounds to value-added products. 相似文献