首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The movement of the bacterial insertion sequence IS50 and of composite elements containing direct terminal repeats of IS50 involves the two ends of IS50, designated O (outside) and I (inside), which are weakly matched in DNA sequence, and an IS50 encoded protein, transposase, which recognizes the O and I ends and acts preferentially in cis. Previous data had suggested that, initially, transposase interacts preferentially with the O end sequence and then, in a second step, with either an O or an I end. To better understand the cis action of transposase and how IS50 ends are selected, we generated a series of composite transposons which contain direct repeats of IS50 elements. In each transposon, one IS50 element encoded transposase (tnp+), and the other contained a null (tnp-) allele. In each of the five sets of composite transposons studied, the transposon for which the tnp+ IS50 element contained its O end was more active than a complementary transposon for which the tnp- IS50 element contained its O end. This pattern of O end use suggests models in which the cis action of transposase and its choice of ends is determined by protein tracking along DNA molecules.  相似文献   

2.
The Escherichia coli insertion sequence, IS 2 , is a member of the IS 3 family of bacterial transposable elements. Its transposase is a fusion protein, OrfAB, made by a programmed −1 translational frameshift near to the end of orfA and just after the start of orfB . We have characterized two major products of IS 2 intramolecular transposition, which accumulate in cells that express the IS 2 OrfAB fusion protein at elevated levels. The more abundant product is a minicircle composed of the complete IS 2 with just a single basepair (occasionally 2 bp) separating the two IS ends. In all cases, this basepair is derived from the vector sequence immediately adjacent to the left IS 2 end (IRL). The second product is a figure-eight molecule that contains all the IS 2 and vector sequences present in the parental plasmid. One DNA strand contains the parental sequences unrearranged. The other contains a single-stranded version of the minicircle junction — the precise 3' end of IRR has been cleaved and joined to a target just outside the 5' end of IRL; the remaining vector sequences have a free 5' end, derived from cleavage at the 3' end of IRR, and a free 3' end, released upon cleavage of the target site adjacent to IRL. We propose that figure-eight molecules are the precursor to IS 2 minicircles and that the formation of these two products is the initial step in IS 2 intermolecular transposition. This proposed transposition pathway provides a means for a transposase that can cleave only one strand at each IS end to produce simple insertions and avoid forming co-integrates.  相似文献   

3.
The Synechocystis sp. PCC6803 insertion sequence ISY100 (ISTcSa) belongs to the Tc1/mariner/IS630 family of transposable elements. ISY100 transposase was purified and shown to promote transposition in vitro. Transposase binds specifically to ISY100 terminal inverted repeat sequences via an N-terminal DNA-binding domain containing two helix-turn-helix motifs. Transposase is the only protein required for excision and integration of ISY100. Transposase made double-strand breaks on a supercoiled DNA molecule containing a mini-ISY100 transposon, cleaving exactly at the transposon 3' ends and two nucleotides inside the 5' ends. Cleavage of short linear substrates containing a single transposon end was less precise. Transposase also catalysed strand transfer, covalently joining the transposon 3' end to the target DNA. When a donor plasmid carrying a mini-ISY100 was incubated with a target plasmid and transposase, the most common products were insertions of one transposon end into the target DNA, but insertions of both ends at a single target site could be recovered after transformation into Escherichia coli. Insertions were almost exclusively into TA dinucleotides, and the target TA was duplicated on insertion. Our results demonstrate that there are no fundamental differences between the transposition mechanisms of IS630 family elements in bacteria and Tc1/mariner elements in higher eukaryotes.  相似文献   

4.
The 37 kb transposable bacteriophage Mu genome encodes a transposase protein which can recognize and bind to a consensus sequence repeated three times at each extremity of its genome. A subset of this consensus sequence (5'-PuCGAAA(A)-3') is found in the ends of many class II prokaryotic transposable elements. These elements, like phage Mu, cause 5 bp duplications at the site of element insertion, and transpose by a cointegrate mechanism. Using the band retardation assay, we have found that crude protein extracts containing overexpressed Mu transposase can form high-affinity protein-DNA complexes with Mu att R and the ends of the class II elements Tn 3 (right) and IS101. No significant protein-DNA complex formation was observed with DNA fragments containing the right end of the element IS102, or a non-specific pBR322 fragment of similar size. These results suggest that the Mu transposase protein can specifically recognize the ends of other class II transposable elements and that these elements may be evolutionarily related.  相似文献   

5.
In the first step of IS2 transposition, the formation of an IS2 minicircle, the roles of the two IS ends differ. Terminal cleavage initiates exclusively at the right inverted repeat (IRR) - the donor end - whereas IRL is always the target. At the resulting minicircle junction, the two abutted ends are separated by a spacer of 1 or 2 basepairs. In this study, we have identified the determinants of donor and target function. The inability of IRL to act as a donor results largely from two sequence differences between IRL and IRR - an extra basepair between the conserved transposase binding sequences and the end of the element, and a change of the terminal dinucleotide from CA-3' to TA-3'. These two changes also impose a characteristic size on the minicircle junction spacer. The only sequences required for the efficient target function of IRL appear to be contained within the segment from position 11-42. Although IRR can function as a target, its shorter length and additional contacts with transposase (positions 1-7) result in minicircles with longer, and inappropriate, spacers. We propose a model for the synaptic complex in which the terminus of IRL makes different contacts with the transposase for the initial and final strand transfer steps. The sequence differences between IRR and IRL, and the behavioural characteristics of IRL that result from them, have probably been selected because they optimize expression of transposase from the minicircle junction promoter, Pjunc.  相似文献   

6.
Orientation of IS50 transposase gene and IS50 transposition.   总被引:2,自引:2,他引:0       下载免费PDF全文
Reversal of transposase gene orientation with respect to the nonidentical ends of IS50 strongly decreased IS50 transposition in both Dam- and Dam+ hosts. In either orientation, IS50 transposase expression was unaffected. These effects were independent of the surrounding DNA context. This shows that the efficiency of IS50 transposition is dependent on transposase gene orientation. The transposition frequencies of transposons utilizing inverted IS50 inside ends (IE), IE-IE transposons, were lower than either outside end (OE)-IE or OE-OE transposons.  相似文献   

7.
Sequences essential for IS50 transposition. The first base-pair   总被引:2,自引:0,他引:2  
Sequences near the ends of the insertion element IS50 are essential for its transposition, probably because they serve as sites upon which the IS50-encoded transposase protein acts. To determine if these essential sequences include the first base-pair at each end of IS50 we generated 5'C to 5'G transversions at these positions. Each mutation reduced the transposition frequency to 1% to 2% of wild-type. DNA sequence analyses showed that the mutant 5'G is preserved during transposition.  相似文献   

8.
Assembly of the Mu transpososome is dependent on specific binding sites for the MuA transposase near the ends of the phage genome. MuA also contacts terminal nucleotides but only upon transpososome assembly, and base-specific recognition of the terminal nucleotides is critical for assembly. We show that Mu ends lacking the terminal 5 bp can form transpososomes, while longer DNA substrates with mutated terminal nucleotides cannot. The impact of the mutations can be suppressed by base mismatches near the end of Mu. Deletion of the flanking strands or mutation of the terminal nucleotides has differential effects on the cleavage and strand transfer reactions. These results show that the terminal nucleotides control the assembly and activation of transpososomes by influencing conformational changes around the active site.  相似文献   

9.
IS3 transposase has been shown to promote production of characteristic circular and linear IS3 molecules from the IS3-carrying plasmid; IS3 circles have the entire IS3 sequence with terminal inverted repeats, IRL and IRR, which are separated by a three base-pair sequence originally flanking either end in the parental plasmid, whereas linear IS3 molecules have three nucleotide overhangs at their 5' ends. Here, we showed that a plasmid carrying an IS3 derivative, which is flanked by different sequences at both ends, generated IS3 circles and linear IS3 molecules owing to the action of transposase. Cloning and sequencing analyses of the linear molecules showed that each had the same 5'-protruding three nucleotide overhanging sequences at both ends, suggesting that the linear molecules were not generated from the parental plasmid by the two double-strand breaks at both end regions of IS3. The plasmid carrying IS3 with a two base-pair mutation in the terminal dinucleotide, which would be required for transposase to cleave the 3' end of IS3, could still generate linear molecules as well as circles. Plasmids bearing an IS3 circle were cleaved by transposase and gave linear molecules with the same 5'-protruding three nucleotide overhanging sequences. These show that the linear molecules are generated from IS3 circles via a double-strand break at the three base-pair intervening sequence. Plasmids carrying an IS3 circle with the two base-pair end mutation still were cleaved by transposase, though with reduced efficiencies, suggesting that IS3 transposase has the ability to cleave not only the 3' end of IS3, but a site three nucleotides from the 5' end of IS3. IS3 circles also were shown to transpose to the target plasmids. The end mutation almost completely inhibited this transposition, showing that the terminal dinucleotides are important for the transfer of the 3' end of IS3 to the target as well as for the end cleavage.  相似文献   

10.
D Morisato  N Kleckner 《Cell》1984,39(1):181-190
We present evidence that Tn10 transposase promotes double strand breaks and single strand joints at Tn10 termini in vivo. Plasmids containing a shortened Tn10 element and a transposase overproducer fusion give rise, upon transposase induction, to new DNA species. The most prominent class is a circularized transposon molecule whose structure suggests that it arises from double strand breakage at the two transposon ends followed by covalent joining between the 3' and 5' ends of one of the two strands. We have used formation of the circularized transposon as a physical assay for the interaction between transposase and different mutant and wild-type termini. These experiments show that transposase protein interacts preferentially with the genetically most active termini in a way that suppresses productive interaction with weaker termini present on the same substrate molecule.  相似文献   

11.
The genome of the cyanobacterium Synechocystis sp. strain PCC6803 has nine kinds of insertion sequence (IS) elements, of which ISY100 in 22 copies is the most abundant. A typical ISY100 member is 947 bp long and has imperfect terminal inverted repeat sequences. It has an open reading frame encoding a 282-amino-acid protein that appears to have partial homology with the transposase encoded by a bacterial IS, IS630, indicating that ISY100 belongs to the IS630 family. To determine whether ISY100 has transposition ability, we constructed a plasmid carrying the IPTG (isopropyl-beta-D-thiogalactopyranoside)-inducible transposase gene at one site and mini-ISY100 with the chloramphenicol resistance gene, substituted for the transposase gene of ISY100, at another site and introduced the plasmid into an Escherichia coli strain already harboring a target plasmid. Mini-ISY100 transposed to the target plasmid in the presence of IPTG at a very high frequency. Mini-ISY100 was inserted into the TA sequence and duplicated it upon transposition, as do IS630 family elements. Moreover, the mini-ISY100-carrying plasmid produced linear molecules of mini-ISY100 with the exact 3' ends of ISY100 and 5' ends lacking two nucleotides of the ISY100 sequence. No bacterial insertion elements have been shown to generate such molecules, whereas the eukaryotic Tc1/mariner family elements, Tc1 and Tc3, which transpose to the TA sequence, have. These findings suggest that ISY100 transposes to a new site through the formation of linear molecules, such as Tc1 and Tc3, by excision. Some Tc1/mariner family elements leave a footprint with an extra sequence at the site of excision. No footprints, however, were detected in the case of ISY100, suggesting that eukaryotes have a system that repairs a double strand break at the site of excision by an end-joining reaction, in which the gap is filled with a sequence of several base pairs, whereas prokaryotes do not have such a system. ISY100 transposes in E. coli, indicating that it transposes without any host factor other than the transposase encoded by itself. Therefore, it may be able to transpose in other biological systems.  相似文献   

12.
High levels of expression of the transposase OrfAB of bacterial insertion sequence IS911 leads to the formation of excised transposon circles, in which the two abutted ends are separated by 3 bp. Initially, OrfAB catalyses only single-strand cleavage at one 3' transposon end and strand transfer of that end to the other. It is believed that this molecule, in which both transposon ends are held together in a single-strand bridge, is then converted to the circular form by the action of host factors. The transposon circles can be integrated efficiently into an appropriate target in vivo and in vitro in the presence of OrfAB and a second IS911 protein OrfA. In the results reported here, we have identified linear transposon forms in vivo from a transposon present in a plasmid, raising the possibility that IS911 can also transpose using a cut-and-paste mechanism. However, the linear species appeared not to be derived directly from the plasmid-based copy by direct double-strand cleavages at both ends, but from preformed excised transposon circles. This was confirmed further by the observation that OrfAB can cleave a cloned circle junction both in vivo and in vitro by two single-strand cleavages at the 3' transposon ends to generate a linear transposon form with a 3'-OH and a three-nucleotide 5' overhang at the ends. Moreover, while significantly less efficient than the transposon circle, a precleaved linear transposon underwent detectable levels of integration in vitro. The possible role of such molecules in the IS911 transposition pathway is discussed.  相似文献   

13.
Pogo is a transposable element with short terminal inverted repeats. It contains two open reading frames that are joined by splicing and code for the putative pogo transposase, the sequence of which indicates that it is related to the transposases of members of the Tc1/mariner family as well as proteins that have no known transposase activity including the centromere binding protein CENP-B. We have shown that the N-terminal region of pogo transposase binds in a sequence-specific manner to the ends of pogo and have identified residues essential for this. The results are consistent with a prediction that DNA binding is due to a helix-turn-helix motif within this region. The transposase recognises a 12 bp sequence, two copies of which are present at each end of pogo DNA. The outer two copies occur as inverted repeats 14 nucleotides from each end of the element, and contain a single base mismatch and indicate the inverted repeats of pogo are 26 nucleotides long. The inner copies occur as direct repeats, also with a single mismatch.  相似文献   

14.
15.
Using a combined in vivo and in vitro approach, we demonstrated that the transposition products generated by IS911 from a dimeric donor plasmid are different from those generated from a plasmid monomer. When carried by a monomeric plasmid donor, free IS911 transposon circles are generated by intra-IS recombination in which one IS end undergoes attack by the other. These represent transposition intermediates that undergo integration using the abutted left (IRL) and right (IRR) ends of the element, the active IRR-IRL junction, to generate simple insertions. In contrast, the two IS911 copies carried by a dimeric donor plasmid not only underwent intra-IS recombination to generate transposon circles but additionally participated in inter-IS recombination. This also creates an active IRR-IRL junction by generating a head-to-tail IS tandem dimer ([IS]2) in which one of the original plasmid backbone copies is eliminated in the formation of the junction. Both transposon circles and IS tandem dimers are generated from an intermediate in which two transposon ends are retained by a single strand joint to generate a figure 8 molecule. Inter-IS figure 8 molecules generated in vitro could be resolved into the [IS]2 form following introduction into a host strain by transformation. Resolution did not require IS911 transposase. The [IS]2 structure was stable in the absence of transposase but was highly unstable in its presence both in vivo and in vitro. Previous studies had demonstrated that the IRR-IRL junction promotes efficient intermolecular integration and intramolecular deletions both in vivo and in vitro. Integration of the [IS]2 derivative would result in a product that resembles a co-integrate structure. It is also shown here that the IRR-IRL junction of the [IS]2 form and derivative structures can specifically target one of the other ends in an intramolecular transposition reaction to generate transposon circles in vitro. These results not only demonstrate that IS911 (and presumably other members of the IS3 family) is capable of generating a range of transposition products, it also provides a mechanistic framework which explains the formation and activity of such structures previously observed for several other unrelated IS elements. This behaviour is probably characteristic of a large number of IS elements.  相似文献   

16.
Nucleotide sequence of the prokaryotic mobile genetic element IS30   总被引:14,自引:2,他引:12       下载免费PDF全文
  相似文献   

17.
P elements are a family of transposable elements found in Drosophila that move by using a cut-and-paste mechanism and that encode a transposase protein that uses GTP as a cofactor for transposition. Here we used atomic force microscopy to visualize the initial interaction of transposase protein with P element DNA. The transposase first binds to one of the two P element ends, in the presence or absence of GTP, prior to synapsis. In the absence of GTP, these complexes remain stable but do not proceed to synapsis. In the presence of GTP or nonhydrolyzable GTP analogs, synapsis happens rapidly, whereas DNA cleavage is slow. Both atomic force microscopy and standard biochemical methods have been used to show that the P element transposase exists as a pre-formed tetramer that initially binds to either one of the two P element ends in the absence of GTP prior to synapsis. This initial single end binding may explain some of the aberrant P element-induced rearrangements observed in vivo, such as hybrid end insertion. The allosteric effect of GTP in promoting synapsis by P element transposase may be to orient a second site-specific DNA binding domain in the tetramer allowing recognition of a second high affinity transposase-binding site at the other transposon end.  相似文献   

18.
The organization of the outside end of transposon Tn5.   总被引:3,自引:0,他引:3       下载免费PDF全文
The end sequences of the IS50 insertion sequence are known as the outside end (OE) and inside end. These complex ends are related but nonidentical 19-bp sequences that serve as substrates for the activity of the Tn5 transposase. Besides providing the binding site of the transposase, the end sequences of a transposon contain additional types of information necessary for transposition. These additional properties include but are not limited to host protein interaction sites and sites that program synapsis and cleavage events. In order to delineate the properties of the IS50 ends,the base pairs involved in the transposase binding site have been defined. This has been approached through performing a variety of in vitro analyses: a ++hydroxyl radical missing-nucleoside interference experiment, a dimethyl sulfate interference experiment, and an examination of the relative binding affinities of single-site end substitutions. These approaches have led to the conclusion that the transposase binds to two nonsymmetrical regions of the OE, including positions 6 to 9 and 13 to 19. Proper binding occurs along one face of the helix, over two major and minor grooves, and appears to result in a significant bending of the DNA centered approximately 3 bp from the donor DNA-OE junction.  相似文献   

19.
J. Sakai  N. Kleckner 《Genetics》1996,144(3):861-870
Tn10 transposition requires IS10 transposase and essential sequences at the two ends of the element. Mutations in terminal basepairs 6-13 confer particularly strong transposition defects. We describe here the identification of transposase mutations that suppress the transposition defects of such terminus mutations. These mutations are named ``SEM'''' for suppression of ends mutations. All of the SEM mutations suppress more than a single terminus mutation and thus are not simple alterations of transposase/end recognition specificity. The mutations identified fall into two classes on the basis of genetic tests, location within the protein and nature of the amino acid substitution. Class I mutations, which are somewhat allele specific, appear to define a small structural and functional domain of transposase in which hydrophobic interactions are important at an intermediate stage of the transposition reaction, after an effective interaction between the ends but before transposon excision. Class II mutations, which are more general in their effects, occur at a single residue in a small noncritical amino-terminal proteolytic domain of transposase and exert their affects by altering a charge interaction; these mutations may affect act early in the reaction, before or during establishment of an effective interaction between the ends.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号