首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homology-extended sequence alignment   总被引:5,自引:1,他引:4       下载免费PDF全文
We present a profile–profile multiple alignment strategy that uses database searching to collect homologues for each sequence in a given set, in order to enrich their available evolutionary information for the alignment. For each of the alignment sequences, the putative homologous sequences that score above a pre-defined threshold are incorporated into a position-specific pre-alignment profile. The enriched position-specific profile is used for standard progressive alignment, thereby more accurately describing the characteristic features of the given sequence set. We show that owing to the incorporation of the pre-alignment information into a standard progressive multiple alignment routine, the alignment quality between distant sequences increases significantly and outperforms state-of-the-art methods, such as T-COFFEE and MUSCLE. We also show that although entirely sequence-based, our novel strategy is better at aligning distant sequences when compared with a recent contact-based alignment method. Therefore, our pre-alignment profile strategy should be advantageous for applications that rely on high alignment accuracy such as local structure prediction, comparative modelling and threading.  相似文献   

2.
While most of the recent improvements in multiple sequence alignment accuracy are due to better use of vertical information, which include the incorporation of consistency-based pairwise alignments and the use of profile alignments, we observe that it is possible to further improve accuracy by taking into account alignment of neighboring residues when aligning two residues, thus making better use of horizontal information. By modifying existing multiple alignment algorithms to make use of horizontal information, we show that this strategy is able to consistently improve over existing algorithms on a few sets of benchmark alignments that are commonly used to measure alignment accuracy, and the average improvements in accuracy can be as much as 1–3% on protein sequence alignment and 5–10% on DNA/RNA sequence alignment. Unlike previous algorithms, consistent average improvements can be obtained across all identity levels.  相似文献   

3.
GeMMA (Genome Modelling and Model Annotation) is a new approach to automatic functional subfamily classification within families and superfamilies of protein sequences. A major advantage of GeMMA is its ability to subclassify very large and diverse superfamilies with tens of thousands of members, without the need for an initial multiple sequence alignment. Its performance is shown to be comparable to the established high-performance method SCI-PHY. GeMMA follows an agglomerative clustering protocol that uses existing software for sensitive and accurate multiple sequence alignment and profile–profile comparison. The produced subfamilies are shown to be equivalent in quality whether whole protein sequences are used or just the sequences of component predicted structural domains. A faster, heuristic version of GeMMA that also uses distributed computing is shown to maintain the performance levels of the original implementation. The use of GeMMA to increase the functional annotation coverage of functionally diverse Pfam families is demonstrated. It is further shown how GeMMA clusters can help to predict the impact of experimentally determining a protein domain structure on comparative protein modelling coverage, in the context of structural genomics.  相似文献   

4.
The functions of RNAs, like proteins, are determined by their structures, which, in turn, are determined by their sequences. Comparison/alignment of RNA molecules provides an effective means to predict their functions and understand their evolutionary relationships. For RNA sequence alignment, most methods developed for protein and DNA sequence alignment can be directly applied. RNA 3-dimensional structure alignment, on the other hand, tends to be more difficult than protein structure alignment due to the lack of regular secondary structures as observed in proteins. Most of the existing RNA 3D structure alignment methods use only the backbone geometry and ignore the sequence information. Using both the sequence and backbone geometry information in RNA alignment may not only produce more accurate classification, but also deepen our understanding of the sequence–structure–function relationship of RNA molecules. In this study, we developed a new RNA alignment method based on elastic shape analysis (ESA). ESA treats RNA structures as three dimensional curves with sequence information encoded on additional dimensions so that the alignment can be performed in the joint sequence–structure space. The similarity between two RNA molecules is quantified by a formal distance, geodesic distance. Based on ESA, a rigorous mathematical framework can be built for RNA structure comparison. Means and covariances of full structures can be defined and computed, and probability distributions on spaces of such structures can be constructed for a group of RNAs. Our method was further applied to predict functions of RNA molecules and showed superior performance compared with previous methods when tested on benchmark datasets. The programs are available at http://stat.fsu.edu/ ∼jinfeng/ESA.html.  相似文献   

5.
High‐resolution experimental structural determination of protein–protein interactions has led to valuable mechanistic insights, yet due to the massive number of interactions and experimental limitations there is a need for computational methods that can accurately model their structures. Here we explore the use of the recently developed deep learning method, AlphaFold, to predict structures of protein complexes from sequence. With a benchmark of 152 diverse heterodimeric protein complexes, multiple implementations and parameters of AlphaFold were tested for accuracy. Remarkably, many cases (43%) had near‐native models (medium or high critical assessment of predicted interactions accuracy) generated as top‐ranked predictions by AlphaFold, greatly surpassing the performance of unbound protein–protein docking (9% success rate for near‐native top‐ranked models), however AlphaFold modeling of antibody–antigen complexes within our set was unsuccessful. We identified sequence and structural features associated with lack of AlphaFold success, and we also investigated the impact of multiple sequence alignment input. Benchmarking of a multimer‐optimized version of AlphaFold (AlphaFold‐Multimer) with a set of recently released antibody–antigen structures confirmed a low rate of success for antibody–antigen complexes (11% success), and we found that T cell receptor–antigen complexes are likewise not accurately modeled by that algorithm, showing that adaptive immune recognition poses a challenge for the current AlphaFold algorithm and model. Overall, our study demonstrates that end‐to‐end deep learning can accurately model many transient protein complexes, and highlights areas of improvement for future developments to reliably model any protein–protein interaction of interest.  相似文献   

6.
A benchmark of multiple sequence alignment programs upon structural RNAs   总被引:9,自引:2,他引:9  
To date, few attempts have been made to benchmark the alignment algorithms upon nucleic acid sequences. Frequently, sophisticated PAM or BLOSUM like models are used to align proteins, yet equivalents are not considered for nucleic acids; instead, rather ad hoc models are generally favoured. Here, we systematically test the performance of existing alignment algorithms on structural RNAs. This work was aimed at achieving the following goals: (i) to determine conditions where it is appropriate to apply common sequence alignment methods to the structural RNA alignment problem. This indicates where and when researchers should consider augmenting the alignment process with auxiliary information, such as secondary structure and (ii) to determine which sequence alignment algorithms perform well under the broadest range of conditions. We find that sequence alignment alone, using the current algorithms, is generally inappropriate <50–60% sequence identity. Second, we note that the probabilistic method ProAlign and the aging Clustal algorithms generally outperform other sequence-based algorithms, under the broadest range of applications.  相似文献   

7.

Background

Although Transmembrane Proteins (TMPs) are highly important in various biological processes and pharmaceutical developments, general prediction of TMP structures is still far from satisfactory. Because TMPs have significantly different physicochemical properties from soluble proteins, current protein structure prediction tools for soluble proteins may not work well for TMPs. With the increasing number of experimental TMP structures available, template-based methods have the potential to become broadly applicable for TMP structure prediction. However, the current fold recognition methods for TMPs are not as well developed as they are for soluble proteins.

Methodology

We developed a novel TMP Fold Recognition method, TMFR, to recognize TMP folds based on sequence-to-structure pairwise alignment. The method utilizes topology-based features in alignment together with sequence profile and solvent accessibility. It also incorporates a gap penalty that depends on predicted topology structure segments. Given the difference between α-helical transmembrane protein (αTMP) and β-strands transmembrane protein (βTMP), parameters of scoring functions are trained respectively for these two protein categories using 58 αTMPs and 17 βTMPs in a non-redundant training dataset.

Results

We compared our method with HHalign, a leading alignment tool using a non-redundant testing dataset including 72 αTMPs and 30 βTMPs. Our method achieved 10% and 9% better accuracies than HHalign in αTMPs and βTMPs, respectively. The raw score generated by TMFR is negatively correlated with the structure similarity between the target and the template, which indicates its effectiveness for fold recognition. The result demonstrates TMFR provides an effective TMP-specific fold recognition and alignment method.  相似文献   

8.
John B  Sali A 《Nucleic acids research》2003,31(14):3982-3992
Comparative or homology protein structure modeling is severely limited by errors in the alignment of a modeled sequence with related proteins of known three-dimensional structure. To ameliorate this problem, we have developed an automated method that optimizes both the alignment and the model implied by it. This task is achieved by a genetic algorithm protocol that starts with a set of initial alignments and then iterates through re-alignment, model building and model assessment to optimize a model assessment score. During this iterative process: (i) new alignments are constructed by application of a number of operators, such as alignment mutations and cross-overs; (ii) comparative models corresponding to these alignments are built by satisfaction of spatial restraints, as implemented in our program MODELLER; (iii) the models are assessed by a variety of criteria, partly depending on an atomic statistical potential. When testing the procedure on a very difficult set of 19 modeling targets sharing only 4–27% sequence identity with their template structures, the average final alignment accuracy increased from 37 to 45% relative to the initial alignment (the alignment accuracy was measured as the percentage of positions in the tested alignment that were identical to the reference structure-based alignment). Correspondingly, the average model accuracy increased from 43 to 54% (the model accuracy was measured as the percentage of the Cα atoms of the model that were within 5 Å of the corresponding Cα atoms in the superposed native structure). The present method also compares favorably with two of the most successful previously described methods, PSI-BLAST and SAM. The accuracy of the final models would be increased further if a better method for ranking of the models were available.  相似文献   

9.
DNA–protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA–protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA–protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA–protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA–protein interaction modes exhibit some similarity to specific DNA–protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Cα deviation from native is up to 5 Å from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA–protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein.  相似文献   

10.
BCL::Align is a multiple sequence alignment tool that utilizes the dynamic programming method in combination with a customizable scoring function for sequence alignment and fold recognition. The scoring function is a weighted sum of the traditional PAM and BLOSUM scoring matrices, position-specific scoring matrices output by PSI-BLAST, secondary structure predicted by a variety of methods, chemical properties, and gap penalties. By adjusting the weights, the method can be tailored for fold recognition or sequence alignment tasks at different levels of sequence identity. A Monte Carlo algorithm was used to determine optimized weight sets for sequence alignment and fold recognition that most accurately reproduced the SABmark reference alignment test set. In an evaluation of sequence alignment performance, BCL::Align ranked best in alignment accuracy (Cline score of 22.90 for sequences in the Twilight Zone) when compared with Align-m, ClustalW, T-Coffee, and MUSCLE. ROC curve analysis indicates BCL::Align's ability to correctly recognize protein folds with over 80% accuracy. The flexibility of the program allows it to be optimized for specific classes of proteins (e.g. membrane proteins) or fold families (e.g. TIM-barrel proteins). BCL::Align is free for academic use and available online at http://www.meilerlab.org/.  相似文献   

11.
Dong E  Smith J  Heinze S  Alexander N  Meiler J 《Gene》2008,422(1-2):41-46
BCL::Align is a multiple sequence alignment tool that utilizes the dynamic programming method in combination with a customizable scoring function for sequence alignment and fold recognition. The scoring function is a weighted sum of the traditional PAM and BLOSUM scoring matrices, position-specific scoring matrices output by PSI-BLAST, secondary structure predicted by a variety of methods, chemical properties, and gap penalties. By adjusting the weights, the method can be tailored for fold recognition or sequence alignment tasks at different levels of sequence identity. A Monte Carlo algorithm was used to determine optimized weight sets for sequence alignment and fold recognition that most accurately reproduced the SABmark reference alignment test set. In an evaluation of sequence alignment performance, BCL::Align ranked best in alignment accuracy (Cline score of 22.90 for sequences in the Twilight Zone) when compared with Align-m, ClustalW, T-Coffee, and MUSCLE. ROC curve analysis indicates BCL::Align's ability to correctly recognize protein folds with over 80% accuracy. The flexibility of the program allows it to be optimized for specific classes of proteins (e.g. membrane proteins) or fold families (e.g. TIM-barrel proteins). BCL::Align is free for academic use and available online at http://www.meilerlab.org/.  相似文献   

12.
In recent years we have witnessed a growth in sequencing yield, the number of samples sequenced, and as a result–the growth of publicly maintained sequence databases. The increase of data present all around has put high requirements on protein similarity search algorithms with two ever-opposite goals: how to keep the running times acceptable while maintaining a high-enough level of sensitivity. The most time consuming step of similarity search are the local alignments between query and database sequences. This step is usually performed using exact local alignment algorithms such as Smith-Waterman. Due to its quadratic time complexity, alignments of a query to the whole database are usually too slow. Therefore, the majority of the protein similarity search methods prior to doing the exact local alignment apply heuristics to reduce the number of possible candidate sequences in the database. However, there is still a need for the alignment of a query sequence to a reduced database. In this paper we present the SW#db tool and a library for fast exact similarity search. Although its running times, as a standalone tool, are comparable to the running times of BLAST, it is primarily intended to be used for exact local alignment phase in which the database of sequences has already been reduced. It uses both GPU and CPU parallelization and was 4–5 times faster than SSEARCH, 6–25 times faster than CUDASW++ and more than 20 times faster than SSW at the time of writing, using multiple queries on Swiss-prot and Uniref90 databases  相似文献   

13.
Zhou H  Zhou Y 《Proteins》2005,58(2):321-328
Recognizing structural similarity without significant sequence identity has proved to be a challenging task. Sequence-based and structure-based methods as well as their combinations have been developed. Here, we propose a fold-recognition method that incorporates structural information without the need of sequence-to-structure threading. This is accomplished by generating sequence profiles from protein structural fragments. The structure-derived sequence profiles allow a simple integration with evolution-derived sequence profiles and secondary-structural information for an optimized alignment by efficient dynamic programming. The resulting method (called SP(3)) is found to make a statistically significant improvement in both sensitivity of fold recognition and accuracy of alignment over the method based on evolution-derived sequence profiles alone (SP) and the method based on evolution-derived sequence profile and secondary structure profile (SP(2)). SP(3) was tested in SALIGN benchmark for alignment accuracy and Lindahl, PROSPECTOR 3.0, and LiveBench 8.0 benchmarks for remote-homology detection and model accuracy. SP(3) is found to be the most sensitive and accurate single-method server in all benchmarks tested where other methods are available for comparison (although its results are statistically indistinguishable from the next best in some cases and the comparison is subjected to the limitation of time-dependent sequence and/or structural library used by different methods.). In LiveBench 8.0, its accuracy rivals some of the consensus methods such as ShotGun-INBGU, Pmodeller3, Pcons4, and ROBETTA. SP(3) fold-recognition server is available on http://theory.med.buffalo.edu.  相似文献   

14.
PASS2 is a nearly automated version of CAMPASS and contains sequence alignments of proteins grouped at the level of superfamilies. This database has been created to fall in correspondence with SCOP database (1.53 release) and currently consists of 110 multi-member superfamilies and 613 superfamilies corresponding to single members. In multi-member superfamilies, protein chains with no more than 25% sequence identity have been considered for the alignment and hence the database aims to address sequence alignments which represent 26 219 protein domains under the SCOP 1.53 release. Structure-based sequence alignments have been obtained by COMPARER and the initial equivalences are provided automatically from a MALIGN alignment and subsequently augmented using STAMP4.0. The final sequence alignments have been annotated for the structural features using JOY4.0. Several interesting links are provided to other related databases and genome sequence relatives. Availability of reliable sequence alignments of distantly related proteins, despite poor sequence identity and single-member superfamilies, permit better sampling of structures in libraries for fold recognition of new sequences and for the understanding of protein structure–function relationships of individual superfamilies. The database can be queried by keywords and also by sequence search, interfaced by PSI-BLAST methods. Structure-annotated sequence alignments and several structural accessory files can be retrieved for all the superfamilies including the user-input sequence. The database can be accessed from http://www.ncbs.res.in/%7Efaculty/mini/campass/pass.html.  相似文献   

15.
Zhou H  Zhou Y 《Proteins》2004,55(4):1005-1013
An elaborate knowledge-based energy function is designed for fold recognition. It is a residue-level single-body potential so that highly efficient dynamic programming method can be used for alignment optimization. It contains a backbone torsion term, a buried surface term, and a contact-energy term. The energy score combined with sequence profile and secondary structure information leads to an algorithm called SPARKS (Sequence, secondary structure Profiles and Residue-level Knowledge-based energy Score) for fold recognition. Compared with the popular PSI-BLAST, SPARKS is 21% more accurate in sequence-sequence alignment in ProSup benchmark and 10%, 25%, and 20% more sensitive in detecting the family, superfamily, fold similarities in the Lindahl benchmark, respectively. Moreover, it is one of the best methods for sensitivity (the number of correctly recognized proteins), alignment accuracy (based on the MaxSub score), and specificity (the average number of correctly recognized proteins whose scores are higher than the first false positives) in LiveBench 7 among more than twenty servers of non-consensus methods. The simple algorithm used in SPARKS has the potential for further improvement. This highly efficient method can be used for fold recognition on genomic scales. A web server is established for academic users on http://theory.med.buffalo.edu.  相似文献   

16.
Elofsson A 《Proteins》2002,46(3):330-339
One of the most central methods in bioinformatics is the alignment of two protein or DNA sequences. However, so far large-scale benchmarks examining the quality of these alignments are scarce. On the other hand, recently several large-scale studies of the capacity of different methods to identify related sequences has led to new insights about the performance of fold recognition methods. To increase our understanding about fold recognition methods, we present a large-scale benchmark of alignment quality. We compare alignments from several different alignment methods, including sequence alignments, hidden Markov models, PSI-BLAST, CLUSTALW, and threading methods. For most methods, the alignment quality increases significantly at about 20% sequence identity. The difference in alignment quality between different methods is quite small, and the main difference can be seen at the exact positioning of the sharp rise in alignment quality, that is, around 15-20% sequence identity. The alignments are improved by using structural information. In general, the best alignments are obtained by methods that use predicted secondary structure information and sequence profiles obtained from PSI-BLAST. One interesting observation is that for different pairs many different methods create the best alignments. This finding implies that if a method that could select the best alignment method for each pair existed, a significant improvement of the alignment quality could be gained.  相似文献   

17.

Background  

Protein sequence alignment is one of the basic tools in bioinformatics. Correct alignments are required for a range of tasks including the derivation of phylogenetic trees and protein structure prediction. Numerous studies have shown that the incorporation of predicted secondary structure information into alignment algorithms improves their performance. Secondary structure predictors have to be trained on a set of somewhat arbitrarily defined states (e.g. helix, strand, coil), and it has been shown that the choice of these states has some effect on alignment quality. However, it is not unlikely that prediction of other structural features also could provide an improvement. In this study we use an unsupervised clustering method, the self-organizing map, to assign sequence profile windows to "structural states" and assess their use in sequence alignment.  相似文献   

18.
We use evolutionary conservation derived from structure alignment of polypeptide sequences along with structural and physicochemical attributes of protein–RNA interfaces to probe the binding hot spots at protein–RNA recognition sites. We find that the degree of conservation varies across the RNA binding proteins; some evolve rapidly compared to others. Additionally, irrespective of the structural class of the complexes, residues at the RNA binding sites are evolutionary better conserved than those at the solvent exposed surfaces. For recognitions involving duplex RNA, residues interacting with the major groove are better conserved than those interacting with the minor groove. We identify multi-interface residues participating simultaneously in protein–protein and protein–RNA interfaces in complexes where more than one polypeptide is involved in RNA recognition, and show that they are better conserved compared to any other RNA binding residues. We find that the residues at water preservation site are better conserved than those at hydrated or at dehydrated sites. Finally, we develop a Random Forests model using structural and physicochemical attributes for predicting binding hot spots. The model accurately predicts 80% of the instances of experimental ΔΔG values in a particular class, and provides a stepping-stone towards the engineering of protein–RNA recognition sites with desired affinity.  相似文献   

19.

Background  

The detection of relationships between a protein sequence of unknown function and a sequence whose function has been characterised enables the transfer of functional annotation. However in many cases these relationships can not be identified easily from direct comparison of the two sequences. Methods which compare sequence profiles have been shown to improve the detection of these remote sequence relationships. However, the best method for building a profile of a known set of sequences has not been established. Here we examine how the type of profile built affects its performance, both in detecting remote homologs and in the resulting alignment accuracy. In particular, we consider whether it is better to model a protein superfamily using a single structure-based alignment that is representative of all known cases of the superfamily, or to use multiple sequence-based profiles each representing an individual member of the superfamily.  相似文献   

20.
Looking into DNA recognition: zinc finger binding specificity   总被引:5,自引:2,他引:3       下载免费PDF全文
We present a quantitative, theoretical analysis of the recognition mechanisms used by two zinc finger proteins: Zif268, which selectively binds to GC-rich sequences, and a Zif268 mutant, which binds to a TATA box site. This analysis is based on a recently developed method (ADAPT), which allows binding specificity to be analyzed via the calculation of complexation energies for all possible DNA target sequences. The results obtained with the zinc finger proteins show that, although both mainly select their targets using direct, pairwise protein–DNA interactions, they also use sequence-dependent DNA deformation to enhance their selectivity. A new extension of our methodology enables us to determine the quantitative contribution of these two components and also to measure the contributions of individual residues to overall specificity. The results show that indirect recognition is particularly important in the case of the TATA box binding mutant, accounting for 30% of the total selectivity. The residue-by-residue analysis of the protein–DNA interaction energy indicates that the existence of amino acid–base contacts does not necessarily imply sequence selectivity, and that side chains without contacts can nevertheless contribute to defining the protein's target sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号