首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Large Hydrophobic Residues (LHR) such as phenylalanine, isoleucine, leucine, methionine and valine play an important role in protein structure and activity. We describe the role of LHR in complete set of protein sequences in 15 different species. That is the distribution of LHR in different proteins of different species is reported. It is observed that the proteins prefer to have 27% of large hydrophobic residues in total and all along the sequence. It is also observed that proteins accumulate more LHR in its active sites. A window analysis on these protein sequences shows that the 27% of LHR is more frequent at window length of 45 amino acids. The influenza virus and P. falciparum show a random distribution of LHR in its proteins compared to other model organisms.  相似文献   

2.
N Nagano  M Ota  K Nishikawa 《FEBS letters》1999,458(1):69-71
The differences between disulfide-bonding cystine (Cys_SS) and free cysteine (Cys_SH) residues were examined by analyzing the statistical distribution of both types of residue in proteins of known structure. Surprisingly, Cys_SH residues display stronger hydrophobicity than Cys_SS residues. A detailed survey of atoms which come into contact with the sulfhydryl group (sulfur atom) of Cys_SH revealed those atoms are essentially the same in number and variety as those of the methyl group of isoleucine, but are quite different to those of the hydroxyl group of serine. Moreover, the relationships among amino acids were also determined using the 3D-profile table of known protein structures. Cys_SH was located in the hydrophobic cluster, along with residues such as Met, Trp and Tyr, and was clearly separated from Ser and Thr in the polar cluster. These results imply that free cysteines behave as strongly hydrophobic, and not hydrophilic, residues in proteins.  相似文献   

3.
The nature of the unfolded state plays a great role in our understanding of proteins. However, accurately studying the unfolded state with computer simulation is difficult, due to its complexity and the great deal of sampling required. Using a supercluster of over 10,000 processors we have performed close to 800 micros of molecular dynamics simulation in atomistic detail of the folded and unfolded states of three polypeptides from a range of structural classes: the all-alpha villin headpiece molecule, the beta hairpin tryptophan zipper, and a designed alpha-beta zinc finger mimic. A comparison between the folded and the unfolded ensembles reveals that, even though virtually none of the individual members of the unfolded ensemble exhibits native-like features, the mean unfolded structure (averaged over the entire unfolded ensemble) has a native-like geometry. This suggests several novel implications for protein folding and structure prediction as well as new interpretations for experiments which find structure in ensemble-averaged measurements.  相似文献   

4.
The driving force for folding of polypeptide chains into their threedimensional compact units has been designated as being hydrophobic and a measure of the hydrophobic character of the constituent amino acids has been determined by relative solubility measurements. It has been found however that the hydrophobic character of a protein is not sufficient to account for the complete stabilization of the tertiary structure of proteins. It is suggested that if the free energy of mixing of the hydrophobic side chains in the interior of the protein is added to the free energy of desolvation, i.e. the hydrophobic free energy, then the total free energy of mixing and desolvation can account for the known stability of the tertiary structure of proteins.  相似文献   

5.
We performed a conformational analysis of the central residues of three tripeptides glycyl‐L ‐isoleucyl‐glycine (GIG), glycyl‐L ‐tyrosyl‐glycine (GYG) and glycyl‐L ‐arginyl‐glycine (GRG) in aqueous solution, based on a global analysis of amide I′ band profiles and NMR J‐coupling constants. The results are compared with recently reported distributions of GVG, GFG and GEG. For GIG and GYG, we found that even though the polyproline II (pPII) fraction is below 0.5, it is still the most populated conformation, whereas GVG and GFG show both a larger β‐strand fraction. For GRG, we observed a clear dominance of pPII over β‐strand, reminiscent of observations for GEG and GKG. This finding indicates that terminal charges on otherwise hydrophobic residue side chains stabilize pPII over β‐strand conformations. For all peptides investigated we found that a variety of compact and turn‐like conformations constitute nearly 20 percent of their conformational distributions. Attempts to analyze our data with a simple two‐state pPII??β model therefore do not yield any satisfactory reproduction of experimental results. A comparison of the obtained GxG ensembles with conformational distributions of GxG segments in truncated coil libraries (helices and sheets omitted) revealed a much larger fraction of type II βi+2 and type III β like conformations for the latter. Thus, a comparison of conformational distributions of unfolded peptide segments in solution and in coil libraries reveal interesting information on how the interplay between intrinsic propensities of amino acid residues and non‐local interactions in polypeptide chains determine the conformations of loop segments in proteins. Proteins 2013; © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Yamanaka M  Masanari M  Sambongi Y 《Biochemistry》2011,50(12):2313-2320
Hyperthermophilic Aquifex aeolicus cytochrome c(555) (AA c(555)) exceptionally folds even in the apo state, unlike general cytochromes c including mesophilic Pseudomonas aeruginosa cytochrome c(551) (PA c(551)), which is structurally homologous to AA c(555) in the holo state. Here we hypothesized that the exceptional apo AA c(555) folding can be attributed to nine hydrophobic amino acid residues and proved this using a PA c(551) variant (denoted as PA-nh) carrying the nine hydrophobic residues at structurally corresponding positions. Circular dichroism experiments showed that the apo PA-nh variant became folded, unlike the wild-type apo PA c(551), and exhibited much higher stability than the wild type. Another difference between the holo forms of AA c(555) and PA c(551) is the existence of an extra helix in the former. Introduction of the amino acid residues forming the extra helix of AA c(555) into the PA-nh variant did not significantly affect its folding ability in the apo state. Therefore, the nine hydrophobic residues introduced into the apo PA-nh variant were enough to confer the folding ability. PA c(551) represents the first example of the conversion of an intrinsically unfolded apocytochrome c into an autonomously folded one, which was revealed by means of a protein engineering method without heme. Although heme is generally considered to be a trigger of apocytochrome c folding, the present results demonstrate a new heme-independent folding mechanism.  相似文献   

7.
The unfolded states of three homologous proteins with a very similar fold have been investigated by heteronuclear NMR spectroscopy. Secondary structure propensities as derived from interpretation of chemical shifts and motional restrictions as evidenced by heteronuclear (15)N relaxation rates have been analyzed in the reduced unfolded states of hen lysozyme and the calcium-binding proteins bovine alpha-lactalbumin and human alpha-lactalbumin. For all three proteins, significant deviations from random-coil predictions can be identified; in addition, the unfolded states also differ from each other, despite the fact that they possess very similar structures in their native states. Deviations from random-coil motional properties are observed in the alpha- and the beta-domain in bovine alpha-lactalbumin and lysozyme, while only regions within the alpha-domain deviate in human alpha-lactalbumin. The motional restrictions and residual secondary structure are determined both by the amino acid sequence of the protein and by residual long-range interactions. Even a conservative single point mutation from I to L in a highly conserved region between the two alpha-lactalbumins results in considerable differences in the motional properties. Given the differences in oxidative folding between hen lysozyme and alpha-lactalbumin, the results obtained on the unfolded states suggest that residual long-range interactions, i.e., those between the alpha- and the beta-domain of lysozyme, may act as nucleation sites for protein folding, while this property of residual structure is replaced by the calcium-binding site between the domains in alpha-lactalbumin.  相似文献   

8.
Relationships between protein structure and ionization of carboxyl groups were investigated in 24 proteins of known structure and for which 115 aspartate and 97 glutamate pK(a) values are known. Mean pK(a) values for aspartates and glutamates are < or = 3.4 (+/-1.0) and 4.1 (+/-0.8), respectively. For aspartates, mean pK(a) values are 3.9 (+/-1.0) and 3.1 (+/-0.9) in acidic (pI < 5) and basic (pI > 8) proteins, respectively, while mean pK(a) values for glutamates are approximately 4.2 for acidic and basic proteins. Burial of carboxyl groups leads to dispersion in pK(a) values: pK(a) values for solvent-exposed groups show narrow distributions while values for buried groups range from < 2 to 6.7. Calculated electrostatic potentials at the carboxyl groups show modest correlations with experimental pK(a) values and these correlations are not improved by including simple surface-area-based terms to account for the effects of desolvation. Mean aspartate pK(a) values decrease with increasing numbers of hydrogen bonds but this is not observed at glutamates. Only 10 pK(a) values are > 5.5 and most are found in active sites or ligand-binding sites. These carboxyl groups are buried and usually accept no more than one hydrogen bond. Aspartates and glutamates at the N-termini of helices have mean pK(a) values of 2.8 (+/-0.5) and 3.4 (+/-0.6), respectively, about 0.6 units less than the overall mean values.  相似文献   

9.
Vranken W  Tolkatchev D  Xu P  Tanha J  Chen Z  Narang S  Ni F 《Biochemistry》2002,41(27):8570-8579
The three-dimensional structure of a llama single-domain antibody BrucD4-4 was established by use of solution NMR spectroscopy. BrucD4-4 has Val, Gly, Leu, and Trp residues at positions 37, 44, 45, and 47, which are considered to be a hallmark to distinguish llama VH from V(H)H fragments at the germline level. In contrast to the murine and human VHs, BrucD4-4 has sufficient solubility, is monomeric in solution, and displays high-quality NMR spectra characteristic of well-structured proteins. Amide proton/deuterium exchange and the (15)N relaxation data showed that BrucD4-4 has a classic protein structure with a well-packed core and comparatively mobile surface loops. The three-dimensional architecture of BrucD4-4 is analogous to that of VHs from murine and human F(v)s and camelid V(H)Hs with two pleated beta-sheets formed by four and five beta-strands. A canonical and undistorted beta-barrel exposes a number of hydrophobic residues into the solvent on the surface of the three-dimensional structure. The eight-residue H3 loop folds over the side chain of Val37 similarly to that in llama V(H)Hs; however, this interaction may be transient due to the H3 conformational flexibility. Overall, the surface characteristics of BrucD4-4 with respect to hydrophobicity appear to lie between the human VH domain from Fv Pot and the llama V(H)H fragment HC-V, which may explain its enhanced solubility allowing NMR structural analysis.  相似文献   

10.
Patterns of alternation of hydrophobic and polar residues are a profound aspect of amino acid sequences, but a feature not easily interpreted for soluble proteins. Here we report statistics of hydrophobicity patterns in proteins of known structure in a current protein database as compared with results from earlier, more limited structure sets. Previous studies indicated that long hydrophobic runs, common in membrane proteins, are underrepresented in soluble proteins. Long runs of hydrophobic residues remain significantly underrepresented in soluble proteins, with none longer than 16 residues observed. These long runs most commonly occur as buried alpha helices, with extended hydrophobic strands less common. Avoiding aggregation of partially folded intermediates during intracellular folding remains a viable explanation for the rarity of long hydrophobic runs in soluble proteins. Comparison between database editions reveals robustness of statistics on aqueous proteins despite an approximately twofold increase in nonredundant sequences. The expanded database does now allow us to explain several deviations of hydrophobicity statistics from models of random sequence in terms of requirements of specific secondary structure elements. Comparison to prior membrane-bound protein sequences, however, shows significant qualitative changes, with the average hydrophobicity and frequency of long runs of hydrophobic residues noticeably increasing between the database editions. These results suggest that the aqueous proteins of solved structure may represent an essentially complete sample of the universe of aqueous sequences, while the membrane proteins of known structure are not yet representative of the universe of membrane-associated proteins, even by relatively simple measures of hydrophobic patterns.  相似文献   

11.
Copolypeptides with alternating hydrophilic and hydrophobic residues were prepared, and their ability to form beta-structures in aqueous solutions was investigated by circular dichroism. Optically pure samples of poly (Lys-Leu-Lys-Leu) and poly (Leu-Glu-Leu-Glu), obtained via the 2-hydroxyphenyl esters, undergo a coil-to-beta transition in presence of salt. The beta-structures obtained under identical conditions with partially racemized samples of poly (Leu-Lys)Np and poly (Leu-Glu)Np, prepared by polycondensation of the corresponding dipeptide p-nitrophenyl esters, appear to be less regular. Non-alternating poly (Gly-Lys-Leu-Lys-Leu) does not form beta-structures in presence of NaCl as does alternating poly (Lys-Leu-Lys-Leu) indicating that the amino acid sequence can dramatically change the tendency to form beta-structures.  相似文献   

12.
13.
We have recently shown that one can construct the enthalpy distribution for protein molecules from experimental knowledge of the temperature dependence of the heat capacity. For many proteins the enthalpy distribution evaluated at the midpoint of the denaturation transition (corresponding to the maximum in the heat capacity vs temperature curve) is broad and biphasic, indicating two different populations of molecules (native and unfolded) with distinctly different enthalpies. At temperatures above the denaturation point, the heat capacity for the unfolded state in many proteins is quite large and using the analysis just mentioned, we obtain a gaussian-like enthalpy distribution that is very broad. A large value of the heat capacity indicates that there are structural changes going on in the unfolded state above the transition temperature. In the present paper we investigate the origin of this large heat capacity by considering the presence of changing amounts of secondary structure (specifically, alpha-helix) in the unfolded state. For this purpose we use the empirical estimates of the Zimm-Bragg sigma and s factors for all of the native amino acids in water as determined by Scheraga and co-workers. Using myoglobin as an example, we calculate probability profiles and distribution functions for the total number of helix states in the specific-sequence molecule. Given the partition function for the specific-sequence molecule, we can then calculate a set of enthalpy moments for the molecule from which we obtain a good estimate of the enthalpy distribution in the unfolded state. This distribution turns out to be quite narrow when compared with the distribution obtained from the raw heat capacity data. We conclude that there must be other major structural changes (backbone and solvent) that are not accounted for by the inclusion of alpha-helix in the unfolded state.  相似文献   

14.
Stabilization of secondary structure elements by specific combinations of hydrophobic and hydrophilic amino acids has been studied by the way of analysis of pentapeptide fragments from twelve partial bacterial proteomes. PDB files describing structures of proteins from species with extremely high and low genomic GC-content, as well as with average G + C were included in the study. Amino acid residues in 78,009 pentapeptides from alpha helices, beta strands and coil regions were classified into hydrophobic and hydrophilic ones. The common propensity scale for 32 possible combinations of hydrophobic and hydrophilic amino acid residues in pentapeptide has been created: specific pentapeptides for helix, sheet and coil were described. The usage of pentapeptides preferably forming alpha helices is decreasing in alpha helices of partial bacterial proteomes with the increase of the average genomic GC-content in first and second codon positions. The usage of pentapeptides preferably forming beta strands is increasing in coil regions and in helices of partial bacterial proteomes with the growth of the average genomic GC-content in first and second codon positions. Due to these circumstances the probability of coil-sheet and helix-sheet transitions should be increased in proteins encoded by GC-rich genes making them prone to form amyloid in certain conditions. Possible causes of the described fact that importance of alpha helix and coil stabilization by specific combinations of hydrophobic and hydrophilic amino acids is growing with the decrease of genomic GC-content have been discussed.  相似文献   

15.
A two amino acid (hydrophobic and polar) scheme is used to perform the design on target conformations corresponding to the native states of 20 single chain proteins. Strikingly, the percentage of successful identification of the nature of the residues benchmarked against naturally occurring proteins and their homologues is around 75%, independent of the complexity of the design procedure. Typically, the lowest success rate occurs for residues such as alanine that have a high secondary structure functionality. Using a simple lattice model, we argue that one possible shortcoming of the model studied may involve the coarse-graining of the 20 kinds of amino acids into just two effective types. Proteins 32:80–87, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
A simple Monte Carlo method was used to generate ensembles of simulated polypeptide conformations that are restricted only by steric repulsion. The models used for these simulations were based on the sequences of four real proteins, ranging in size from 26 to 268 amino acid residues, and included all non-hydrogen atoms. Two sets of calculations were performed, one that included only intra-residue steric repulsion terms and those between adjacent residues, and one that included repulsion terms between all possible atom pairs, so as to explicitly account for the excluded volume effect. Excluded volume was found to increase the average radius of gyration of the chains by 20-40%, with the expansion factor increasing with chain length. Contrary to recent suggestions, however, the excluded volume effect did not greatly restrict the distribution of dihedral angles or favor native-like topologies. The average dimensions of the ensembles calculated with excluded volume were consistent with those measured experimentally for unfolded proteins of similar sizes under denaturing conditions, without introducing any adjustable scaling factor. The simulations also reproduced experimentally determined effective concentrations for the formation of disulfide bonds in reduced and unfolded proteins. The statistically generated ensembles included significant numbers of conformations that were nearly as compact as the corresponding native proteins, as well as many that were as accessible to solvent as a fully extended chain. On the other hand, conformations with as much buried surface area as the native proteins were very rare, as were highly extended conformations. These results suggest that the overall properties of unfolded proteins can be usefully described by a random coil model and that an unfolded polypeptide can undergo significant collapse while losing only a relatively small fraction of its conformational entropy.  相似文献   

17.
Circular dichroism, ellipsometry and radiolabeling techniques were employed to study the induction of changes in the secondary structure of BSA, myoglobin and cytochrome C by a hydrophobic surface. The results showed that adsorbed protein molecules lose their ordered native structure in the initial stage of adsorption and the structure appears to be a random or disordered conformation. Protein molecules adsorbed in later stages adopt a more ordered secondary structure ( helix and structure). The changes of secondary structure of globular proteins induced by a hydrophobic surface can be explained by the steric interaction between adsorbed proteins as well as by hydrophobic interactions during the adsorption process. In addition, there is obviously an intermediate stage in which the protein molecules are mainly in the structure, indicating that for certain proteins, the structure may be a more stable secondary structure than helix on the hydrophobic surface. Correspondence to: S.-F. Sui  相似文献   

18.
19.
H L Monaco  G Zanotti 《Biopolymers》1992,32(4):457-465
We review our work on bovine and human retinol-binding protein (RBP), bovine beta lactoglobulin (BLG), and bovine odorant-binding protein (OBP). These three proteins share a sequence similarity high enough to justify the proposal that their three-dimensional structure ought to be quite similar, and they also share the function of similar or even identical hydrophobic ligand binding, although with a very different degree of specificity. Thus they constitute an ideal system to exhaustively explore the question of three-dimensional structure prediction from sequence similarity and the related question of binding site prediction for similar ligands. We have used x-ray diffraction techniques on single crystals of human and bovine RBP, bovine milk BLG, and bovine nasal mucosa OBP to investigate this problem. The results of these crystallographic studies indicate that to the level of resolution so far attained, the three-dimensional structure of these three proteins is reasonably predicted from the sequence similarity. The fold is the same and structural differences are rather subtle. Finally, we present experimental evidence that the binding sites of RBP, BLG, and OBP are in different regions of the molecules. Thus, it appears that although sequence alignment has correctly predicted the protein fold, it has incorrectly predicted the hydrophobic ligand-binding sites.  相似文献   

20.
Hydrophobic cluster analysis (HCA) is a protein sequence comparison method based on alpha-helical representations of the sequences where the size, shape and orientation of the clusters of hydrophobic residues are primarily compared. The effectiveness of HCA has been suggested to originate from its potential ability to focus on the residues forming the hydrophobic core of globular proteins. We have addressed the robustness of the bidimensional representation used for HCA in its ability to detect the regular secondary structure elements of proteins. Various parameters have been studied such as those governing cluster size and limits, the hydrophobic residues constituting the clusters as well as the potential shift of the cluster positions with respect to the position of the regular secondary structure elements. The following results have been found to support the alpha-helical bidimensional representation used in HCA: (i) there is a positive correlation (clearly above background noise) between the hydrophobic clusters and the regular secondary structure elements in proteins; (ii) the hydrophobic clusters are centred on the regular secondary structure elements; (iii) the pitch of the helical representation which gives the best correspondence is that of an alpha-helix. The correspondence between hydrophobic clusters and regular secondary structure elements suggests a way to implement variable gap penalties during the automatic alignment of protein sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号