共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Protein-DNA chimeras for single molecule mechanical folding studies with the optical tweezers 总被引:1,自引:0,他引:1
Cecconi C Shank EA Dahlquist FW Marqusee S Bustamante C 《European biophysics journal : EBJ》2008,37(6):729-738
Here we report on a method that extends the study of the mechanical behavior of single proteins to the low force regime of optical tweezers. This experimental approach relies on the use of DNA handles to specifically attach the protein to polystyrene beads and minimize the non-specific interactions between the tethering surfaces. The handles can be attached to any exposed pair of cysteine residues. Handles of different lengths were employed to mechanically manipulate both monomeric and polymeric proteins. The low spring constant of the optical tweezers enabled us to monitor directly refolding events and fluctuations between different molecular structures in quasi-equilibrium conditions. This approach, which has already yielded important results on the refolding process of the protein RNase H (Cecconi et al. in Science 309: 2057-2060, 2005), appears robust and widely applicable to any protein engineered to contain a pair of reactive cysteine residues. It represents a new strategy to study protein folding at the single molecule level, and should be applicable to a range of problems requiring tethering of protein molecules. 相似文献
4.
Type II collagen and hyaluronan are the two major components of extracellular molecules in cartilage and play an important role in mechanical functions of extracellular matrix. Currently, their mechanical properties have been investigated only at the gross-level. In this study, the mechanical properties of single type II collagen and hyaluronan molecules were directly measured using optical tweezers technique. The persistence length was found to be 11.2+/-8.4 nm in type II collagen and 4.5+/-1.2 nm in hyaluronan. This result suggested that type II collagen is stiffer than hyaluronan at the individual molecule level, which supports the general concept that collagen is responsible for resisting tensile force. The experimental system developed here also provides a powerful tool for quantifying mechanical properties of extracellular matrix at the single molecule level. 相似文献
5.
A simple DNA handle attachment method for single molecule mechanical manipulation experiments 下载免费PDF全文
Duyoung Min Mark A. Arbing Robert E. Jefferson James U. Bowie 《Protein science : a publication of the Protein Society》2016,25(8):1535-1544
Manipulating single molecules and systems of molecules with mechanical force is a powerful technique to examine their physical properties. Applying force requires attachment of the target molecule to larger objects using some sort of molecular tether, such as a strand of DNA. DNA handle attachment often requires difficult manipulations of the target molecule, which can preclude attachment to unstable, hard to obtain, and/or large, complex targets. Here we describe a method for covalent DNA handle attachment to proteins that simply requires the addition of a preprepared reagent to the protein and a short incubation. The handle attachment method developed here provides a facile approach for studying the biomechanics of biological systems. 相似文献
6.
7.
Chain conformation in the collagen molecule. 总被引:1,自引:0,他引:1
Quantitative X-ray diffraction data have been collected from stretched kangaroo tail tendon and used to test models for the conformation of the polypeptide chains in the collagen molecule. The magnitude of the unit twist of the molecular helix was estimated to be 107.1 ° ± 0.6 °, which is close to the value expected for a helix with ten units in three turns. The intensity data were used to carry out a linked-atom least-squares refinement of models based on two possible interchain hydrogen bonding schemes suggested by Rich &; Crick (1955, 1961). No stereochemically acceptable solution could be found for the hydrogen bonding scheme of model I, but a stereochemically satisfactory solution was found for the scheme of model II which gave a crystallographic R factor of 0.272. 相似文献
8.
9.
Step-by-step computations of octapeptide structures was performed for human collagens I and III. It was shown that computational results (coordinates of atoms) practically coincide with X-ray data for the collagen fragment. 相似文献
10.
Batters C Wallace MI Coluccio LM Molloy JE 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2004,359(1452):1895-1905
We have used an optical tweezers-based apparatus to perform single molecule mechanical experiments using the unconventional myosins, Myo1b and Myo1c. The single-headed nature and slow ATPase kinetics of these myosins make them ideal for detailed studies of the molecular mechanism of force generation by acto-myosin. Myo1c exhibits several features that have not been seen using fast skeletal muscle myosin II. (i) The working stroke occurs in two, distinct phases, producing an initial 3 nm and then a further 1.5 nm of movement. (ii) Two types of binding interaction were observed: short-lived ATP-independent binding events that produced no movement and longer-lived, ATP-dependent events that produced a full working stroke. The stiffness of both types of interaction was similar. (iii) In a new type of experiment, using feedback to apply controlled displacements to a single acto-myosin cross-bridge, we found abrupt changes in force during attachment of the acto-Myo1b cross-bridge, a result that is consistent with the classical 'T2' behaviour of single muscle fibres. Given that these myosins might exhibit the classical T2 behaviour, we propose a new model to explain the slow phase of sensory adaptation of the hair cells of the inner ear. 相似文献
11.
12.
The behaviour of BHK cells and neutrophil leukocytes on collagen gels of defined mechanical strength 总被引:2,自引:0,他引:2
This study demonstrates how the mechanical strength of a series of collagen/composite gels can be measured using a penetrometer. It was found that the presence of fibrin in collagen gels resulted in increased gel strength. Similarly hyaluronic acid was found to increase the strength of collagen gels. Addition of heparin weakened collagen gels as did chondroitin-6-sulphate. Neutrophil migration into collagen gels was found to be inversely proportional to gel strength. Fibrin and hyaluronic acid containing gels inhibited neutrophil migration while the presence of heparin and chondroitin sulphate increased neutrophil migration. BHK gel contraction experiments demonstrated how the presence of fibrin prevents gel contraction. Despite increasing gel strength the presence of hyaluronic acid appeared to have no effect on BHK contraction of collagen gels. Similarly the presence of heparin or chondroitin sulphate had no effect on gel contraction by BHK cells. 相似文献
13.
Mariska G. M. van Rosmalen Glen R. Nemerow Gijs J. L. Wuite Wouter H. Roos 《Journal of biological physics》2018,44(2):119-132
Viruses are extensively studied as vectors for vaccine applications and gene therapies. For these applications, understanding the material properties of viruses is crucial for creating optimal functionality. Using atomic force microscopy (AFM) nanoindentation, we studied the mechanical properties of human adenovirus type 5 with the fiber of type 35 (Ad5F35) and compared it to viral capsids with a single point mutation in the protein VI precursor protein (pVI-S28C). Surprisingly, the pVI-S28C mutant turned out to be twice as stiff as the Ad5F35 capsids. We suggest that this major increase in strength is the result of the DNA crosslinking activity of precursor protein VII, as this protein was detected in the pVI-S28C mutant capsids. The infectivity was similar for both capsids, indicating that mutation did not affect the ability of protein VI to lyse the endosomal membrane. This study highlights that it is possible to increase the mechanical stability of a capsid even with a single point mutation while not affecting the viral life cycle. Such insight can help enable the development of more stable vectors for therapeutic applications. 相似文献
14.
Mechanical properties of animal tissues are mainly provided by the assembly of single elastomeric proteins into a complex network of filaments. Even if the overall elastic properties of such a reticulated structure depend on the mechanical characteristics of the constituents, it is not the only aspect to be considered. In addition, the aggregation mechanism has to be clarified to attain a full knowledge of the molecular basis of the elastic properties of natural nanostructured materials. This aim is even more crucial in the process of rational design of biomaterials with selected mechanical properties, in which not only the mechanics of single molecules but also of their assemblies has to be cared of. In this study, this aspect was approached by means of single molecule stretching experiments. In particular, the effect of chemical cross-linking on the mechanical properties of a naturally inspired elastomeric peptide was investigated. Accordingly, we observed that, in order to preserve the elastic properties of the single filament, the two strands of the dimer have to interact with each other. The results thus confirm that the influence of the aggregation process on the mechanical properties of a molecular assembly cannot be neglected. 相似文献
15.
16.
Dekker NH Viard T de La Tour CB Duguet M Bensimon D Croquette V 《Journal of molecular biology》2003,329(2):271-282
Control of DNA topology is critical in thermophilic organisms in which heightened ambient temperatures threaten the stability of the double helix. An important role in this control is played by topoisomerase I, a member of the type IA family of topoisomerases. We investigated the binding and activity of this topoisomerase from the hyperthermophilic bacterium Thermotoga maritima on duplex DNA using single molecule techniques, presenting it with various substrates such as (+) plectonemes, (-) plectonemes, and denaturation bubbles. We found the topoisomerase inactive on both types of plectonemes, but active on denaturation bubbles produced at increased stretching forces in underwound DNA. The relaxation rate depended sensitively on the applied force and the protein concentration. These observations could be understood in terms of a preference of the topoisomerase for single-stranded DNA over double-stranded DNA and allowed for a better understanding of activity of the topoisomerase in bulk experiments on circular plasmids. Binding experiments on a single duplex molecule using a mutant unable to perform cleavage confirmed this interpretation and suggested that T.maritima topoisomerase I behaves like an SSB by lowering the denaturation threshold of underwound DNA. Finally, experiments with a unique single-stranded DNA showed that both ends of the cleaved DNA are tightly maintained by the enzyme, supporting an enzyme-bridged mechanism for this topoisomerase. 相似文献
17.
It is shown that in 0,5 M NaCl 8 M CH3COOH heat absorption and the second structure alteration in a heated solution proceed between two stages following one another, and besides, salts not only decrease the macromolecule denaturation temperature in total, but produce different destabilization effect on different regions. The presence of the thermostable domain in the macromolecule helical part permits investigation of the folding mechanism of the triple collagen helix under partial denaturation. The localization and biological role of the stable domain in the triple helix formation are suggested. 相似文献
18.
Topography and mechanical properties of single molecules of type I collagen using atomic force microscopy 下载免费PDF全文
Although the mechanical behavior of tendon and bone has been studied for decades, there is still relatively little understanding of the molecular basis for their specific properties. Thus, despite consisting structurally of the same type I collagen, bones and tendons have evolved to fulfill quite different functions in living organisms. In an attempt to understand the links between the mechanical properties of these collageneous structures at the macro- and nanoscale, we studied trimeric type I tropocollagen molecules by atomic force microscopy, both topologically and by force spectroscopy. High-resolution imaging demonstrated a mean (+/- SD) contour length of (287 +/- 35) nm and height of (0.21 +/- 0.03) nm. Submolecular features, namely the coil-pitch of the molecule, were also observed, appearing as a repeat pattern along the length of the molecule, with a length of approximately 8 nm that is comparable to the theoretical value. Using force spectroscopy, we established the stretching pattern of the molecule, where both the mechanical response of the molecule and pull-off peak are convoluted in a single feature. By interpreting this response with a wormlike chain model, we extracted the value of the effective contour length of the molecule at (202 +/- 5) nm. This value was smaller than that given by direct measurement, suggesting that the entire molecule was not being stretched during the force measurements; this is likely to be related to the absence of covalent binding between probe, sample, and substrate in our experimental procedure. 相似文献
19.
20.