首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The C-terminal G3 domains of lecticans mediate crosslinking to diverse extracellular matrix (ECM) proteins during ECM assembly, through their C-type lectin (CLD) subdomains. The structure of the rat aggrecan CLD in a Ca(2+)-dependent complex with fibronectin type III repeats 3-5 of rat tenascin-R provides detailed support for such crosslinking. The CLD loops bind Ca2+ like other CLDs, but no carbohydrate binding is observed or possible. This is thus the first example of a direct Ca(2+)-dependent protein-protein interaction of a CLD. Surprisingly, tenascin-R does not coordinate the Ca2+ ions directly. Electron microscopy confirms that full-length tenascin-R and tenascin-C crosslink hyaluronan-aggrecan complexes. The results are significant for the binding of all lectican CLDs to tenascin-R and tenascin-C. Comparison of the protein interaction surface with that of P-selectin in complex with the PGSL-1 peptide suggests that direct protein-protein interactions of Ca(2+)-binding CLDs may be more widespread than previously appreciated.  相似文献   

2.
This study investigated the functional roles of the N-terminal Ca2+ ion-binding sites, in terms of enzyme catalysis and stability, of peptidylarginine deiminase 4 (PAD4). Amino acid residues located in the N-terminal Ca2+-binding site of PAD4 were mutated to disrupt the binding of Ca2+ ions. Kinetic data suggest that Asp155, Asp157 and Asp179, which directly coordinate Ca3 and Ca4, are essential for catalysis in PAD4. For D155A, D157A and D179A, the k cat/K m,BAEE values were 0.02, 0.63 and 0.01 s−1mM−1 (20.8 s−1mM−1 for WT), respectively. Asn153 and Asp176 are directly coordinated with Ca3 and indirectly coordinated with Ca5 via a water molecule. However, N153A displayed low enzymatic activity with a k cat value of 0.3 s−1 (13.3 s−1 for wild-type), whereas D176A retained some catalytic power with a k cat of 9.7 s−1. Asp168 is the direct ligand for Ca5, and Ca5 coordination by Glu252 is mediated by two water molecules. However, mutation of these two residues to Ala did not cause a reduction in the k cat/K m,BAEE values, which indicates that the binding of Ca5 may not be required for PAD4 enzymatic activity. The possible conformational changes of these PAD4 mutants were examined. Thermal stability analysis of the PAD4 mutants in the absence or presence of Ca2+ indicated that the conformational stability of the enzyme is highly dependent on Ca2+ ions. In addition, the results of urea-induced denaturation for the N153, D155, D157 and D179 series mutants further suggest that the binding of Ca2+ ions in the N-terminal Ca2+-binding site stabilizes the overall conformational stability of PAD4. Therefore, our data strongly suggest that the N-terminal Ca2+ ions play critical roles in the full activation of the PAD4 enzyme.  相似文献   

3.
Immunoglobulin E (IgE) antibodies play a fundamental role in allergic disease and are a target for therapeutic intervention. IgE functions principally through two receptors, FcϵRI and CD23 (FcϵRII). Minute amounts of allergen trigger mast cell or basophil degranulation by cross-linking IgE-bound FcϵRI, leading to an inflammatory response. The interaction between IgE and CD23 on B-cells regulates IgE synthesis. CD23 is unique among Ig receptors in that it belongs to the C-type (calcium-dependent) lectin-like superfamily. Although the interaction of CD23 with IgE is carbohydrate-independent, calcium has been reported to increase the affinity for IgE, but the structural basis for this activity has previously been unknown. We have determined the crystal structures of the human lectin-like head domain of CD23 in its Ca2+-free and Ca2+-bound forms, as well as the crystal structure of the Ca2+-bound head domain of CD23 in complex with a subfragment of IgE-Fc consisting of the dimer of Cϵ3 and Cϵ4 domains (Fcϵ3-4). Together with site-directed mutagenesis, the crystal structures of four Ca2+ ligand mutants, isothermal titration calorimetry, surface plasmon resonance, and stopped-flow analysis, we demonstrate that Ca2+ binds at the principal and evolutionarily conserved binding site in CD23. Ca2+ binding drives Pro-250, at the base of an IgE-binding loop (loop 4), from the trans to the cis configuration with a concomitant conformational change and ordering of residues in the loop. These Ca2+-induced structural changes in CD23 lead to additional interactions with IgE, a more entropically favorable interaction, and a 30-fold increase in affinity of a single head domain of CD23 for IgE. Taken together, these results suggest that binding of Ca2+ brings an extra degree of modulation to CD23 function.  相似文献   

4.
X-ray microanalysis was used to detect elemental changes in the insulin-producing tumor cell-line RINm5F. To improve discrimination between mobile ions and ions bound to macromolecules a new approach was employed, consisting of multivariate statistical analysis of correlations between the concentrations of Na, Mg, P, S, Cl, K, and Ca. RINm5F cells, cultured on Formvar-coated titanium grids, were stimulated with high K+ or ATP, that are both known to stimulate insulin release. The buffers used contained Ca2+ or one of the Ca2+-analogues Sr2+ and Ba2+, to represent Ca2+ uptake in response to stimulation. After stimulation the cells were shock-frozen and freeze-dried overnight. Incubation for 10-20 seconds in a Ca2+-containing buffer did not significantly affect elemental composition, whereas cellular Mg, P and K decreased in a Sr2+-containing buffer. Depolarization with high K+ concentration caused an increase in the cellular Na content, both in Ca2+- and Sr2+-containing buffers, but not in the buffer where Ca2+ had been replaced by Ba2+. X-ray microanalysis is useful for detection of elemental changes subsequent to stimulation of cultured cells. Moreover, multivariate statistical analysis strengthens the idea that stimulation of RINm5F cells causes redistribution of ions possibly due to changes in the state of binding of some elements to cellular proteins.  相似文献   

5.
In eukaryotic Na+/Ca2+ exchangers (NCX) the Ca2+ binding CBD1 and CBD2 domains form a two-domain regulatory tandem (CBD12). An allosteric Ca2+ sensor (Ca3–Ca4 sites) is located on CBD1, whereas CBD2 contains a splice-variant segment. Recently, a Ca2+-driven interdomain switch has been described, albeit how it couples Ca2+ binding with signal propagation remains unclear. To resolve the dynamic features of Ca2+-induced conformational transitions we analyze here distinct splice variants and mutants of isolated CBD12 at varying temperatures by using small angle x-ray scattering (SAXS) and equilibrium 45Ca2+ binding assays. The ensemble optimization method SAXS analysis demonstrates that the apo and Mg2+-bound forms of CBD12 are highly flexible, whereas Ca2+ binding to the Ca3–Ca4 sites results in a population shift of conformational landscape to more rigidified states. Population shift occurs even under conditions in which no effect of Ca2+ is observed on the globally derived Dmax (maximal interatomic distance), although under comparable conditions a normal [Ca2+]-dependent allosteric regulation occurs. Low affinity sites (Ca1–Ca2) of CBD1 do not contribute to Ca2+-induced population shift, but the occupancy of these sites by 1 mm Mg2+ shifts the Ca2+ affinity (Kd) at the neighboring Ca3–Ca4 sites from ∼ 50 nm to ∼ 200 nm and thus, keeps the primary Ca2+ sensor (Ca3–Ca4 sites) within a physiological range. Thus, Ca2+ binding to the Ca3–Ca4 sites results in a population shift, where more constraint conformational states become highly populated at dynamic equilibrium in the absence of global conformational transitions in CBD alignment.  相似文献   

6.
Anticoagulation factor I (ACF I) from the venom of Agkistrodon acutus forms a 1:1 complex with activated coagulation factor X (FXa) in a Ca2+-dependent fashion and thereby prolongs the clotting time. In the present study, the dependence of the binding of ACF I with FXa on the concentration of Ca2+ ions was quantitatively analyzed by HPLC, and the result showed that the maximal binding of ACF I to FXa occurred at concentration of Ca2+ ions of about 1 mM. The binding of Ca2+ ions to ACF I was investigated by equilibrium dialysis and two Ca2+-binding sites with different affinities were identified. At pH 7.6, the apparent association constants K1 and K2 for these two sites were (1.8 ± 0.5) × 105 and (2.7 ± 0.6) × 104 M–1 (mean ± SE, n = 4), respectively. It was evident from the observation of Ca2+-induced changes in the intrinsic fluorescence of ACF I that ACF I underwent a conformational change upon binding of Ca2+ ions. The occupation of both Ca2+-binding sites in ACF I required a concentration of Ca2+ ions of about 1 mM, which is equal to the effective concentration of Ca2+ ions required both for maximal binding of ACF I to FXa and for the maximal enhancement of emission fluorescence of ACF I. It could be deduced from these results that the occupation of both Ca2+-binding sites in ACF I with Ca2+ ions and subsequent conformational rearrangement might be essential for the binding of ACF I to FXa.  相似文献   

7.
The presence of Ca2+ ions in solution is vital for root growth. The plasma membrane is one of the first sites where competition between Ca2+ and other ions occurs. We studied the competition between Ca2+ and Na+ or Mg2+ for sorption sites on the plasma membrane of melon root cells.Sorption of 45Ca2+ to right-side-out PM vesicles of melon (Cucumis melo L.) roots (prepared by aqueous two-phase partitioning) was studied at various Ca2+ concentrations, in the presence of increasing concentrations of Na+ or Mg2+ chlorides. Experimentally determined amounts of Ca2+ sorbed to the plasma membrane vesicles agreed fairly well with those calculated from a competitive sorption model. The best fit of the model to the experimental data was obtained for an average surface area of 370 Å2 per charge, and binding coefficients for Na+, Mg2+ and Ca2+ of 0.8, 9 and 50 m -1, respectively.Our results suggest that nonphospholipid components in the plasma membrane contribute significantly to Ca2+ binding. The high affinity of Ca2+ binding to the plasma membrane found in this study might explain the specific role of Ca2+ in relieving salt stress in plant roots.This research was supported by the GIFRID German-Israel fund for research and international development.  相似文献   

8.
Calcium binding by human erythrocyte membranes   总被引:2,自引:1,他引:1       下载免费PDF全文
1. The characteristics of Ca2+ binding to haemoglobin-free human erythrocyte membranes were investigated by using 45Ca and centrifugation partition of `ghosts' from their external incubation medium. Equilibrium of `ghosts' with external Ca2+ required less than 15min. 2. The binding did not vary with temperature in the range 0–37°C. 3. At pH7.4 `ghosts' bound a maximum of 283μmol of Ca2+/g of `ghost' protein, equivalent to 6.85×107 Ca2+ ions per cell. 4. Increasing the ionic strength from 0.01 to 0.46 diminished Ca2+ binding, as did ATP in concentrations ranging from 0 to 15mm in the incubation medium. 5. An increase of the pH from 3.0 to 9.3 caused a marked increase in the amount of Ca2+ bound. 6. Extraction of 45Ca-labelled `ghosts' with chloroform–methanol showed that the distribution of Ca2+ was: 79% protein-bound, 16% lipid-bound, 5% in the aqueous phase, presumably non-bound. Most of the lipid-bound Ca2+ (about 80%) was associated with a phospholipid fraction containing phosphatidylserine, phosphoinositides and phosphatidylethanolamine, giving a molar Ca2+: phosphorus ratio of about 1:2.  相似文献   

9.
The ryanodine-sensitive intracellular Ca2+ stores are known to play a major role in excitation-contraction coupling in muscles. Although these stores are also abundantly present in central neurons, their functional role in these cells remains unclear. Using fluorometric digital imaging of the intracellular Ca2+ concentration ([Ca2+] i ) in rat hippocampal slices, we investigated the dynamic properties of the ryanodine-sensitive Ca2+ stores inCA1 hippocampal pyramidal cells. We found that at rest the ryanodine-sensitive Ca2+ stores are functioning predominantly as a “sink” for Ca ions responding to an increase in [Ca2+] i with an increase in the amount of Ca ions accumulated inside the stores. If, however, [Ca2+] i increases significantly, as happens during strong neuronal discharges, the ryanodine-sensitive Ca2+ stores respond with Ca2+ release, thus acting as an amplifier of the intracellular Ca2+ signal.  相似文献   

10.
We report the effects of Ca2+ binding on the backbone relaxation rates and chemical shifts of the AD and BD splice variants of the second Ca2+‐binding domain (CBD2) of the sodium–calcium exchanger. Analysis of the Ca2+‐induced chemical shifts perturbations yields similar KD values of 16–24 μM for the two CBD2‐AD Ca2+‐binding sites, and significant effects are observed up to 20 Å away. To quantify the Ca2+‐induced chemical shift changes, we performed a comparative analysis of eight Ca2+‐binding proteins that revealed large differences between different protein folds. The CBD2 15N relaxation data show the CBD2‐AD Ca2+ coordinating loops to be more rigid in the Ca2+‐bound state as well as to affect the FG‐loop located at the opposite site of the domain. The equivalent loops of the CBD2‐BD splice variant do not bind Ca2+ and are much more dynamic relative to both the Ca2+‐bound and apo forms of CBD2‐AD. A more structured FG‐loop in CBD2‐BD is suggested by increased S2 order parameter values relative to both forms of CBD2‐AD. The chemical shift and relaxation data together indicate that, in spite of the small structural changes, the Ca2+‐binding event is felt throughout the molecule. The data suggest that the FG‐loop plays an important role in connecting the Ca2+‐binding event with the other cytosolic domains of the NCX, in line with in vivo and in vitro biochemical data as well as modeling results that connect the CBD2 FG‐loop with the first Ca2+‐binding domain of NCX. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Pyrolysin is an extracellular subtilase produced by the marine hyperthermophilic archaeon Pyrococcus furiosus. This enzyme functions at high temperatures in seawater, but little is known about the effects of metal ions on the properties of pyrolysin. Here, we report that the supplementation of Na+, Ca2+, or Mg2+ salts at concentrations similar to those in seawater destabilizes recombinant pyrolysin but leads to an increase in enzyme activity. The destabilizing effect of metal ions on pyrolysin appears to be related to the disturbance of surface electrostatic interactions of the enzyme. In addition, mutational analysis of two predicted high-affinity Ca2+-binding sites (Ca1 and Ca2) revealed that the binding of Ca2+ is important for the stabilization of this enzyme. Interestingly, Asn substitutions at residues Asp818 and Asp820 of the Ca2 site, which is located in the C-terminal extension of pyrolysin, resulted in improvements in both enzyme thermostability and activity without affecting Ca2+-binding affinity. These effects were most likely due to the elimination of unfavorable electrostatic repulsion at the Ca2 site. Together, these results suggest that metal ions play important roles in modulating the stability and activity of pyrolysin.  相似文献   

12.
Cell penetration after recognition of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus by the ACE2 receptor and the fusion of its viral envelope membrane with cellular membranes are the early steps of infectivity. A region of the Spike protein of the virus, identified as the “fusion peptide” (FP), is liberated at its N-terminal site by a specific cleavage occurring in concert with the interaction of the receptor-binding domain of the Spike. Studies have shown that penetration is enhanced by the required binding of Ca2+ ions to the FPs of coronaviruses, but the mechanisms of membrane insertion and destabilization remain unclear. We have predicted the preferred positions of Ca2+ binding to the SARS-CoV-2-FP, the role of Ca2+ ions in mediating peptide-membrane interactions, the preferred mode of insertion of the Ca2+-bound SARS-CoV-2-FP, and consequent effects on the lipid bilayer from extensive atomistic molecular dynamics simulations and trajectory analyses. In a systematic sampling of the interactions of the Ca2+-bound peptide models with lipid membranes, SARS-CoV-2-FP penetrated the bilayer and disrupted its organization only in two modes involving different structural domains. In one, the hydrophobic residues F833/I834 from the middle region of the peptide are inserted. In the other, more prevalent mode, the penetration involves residues L822/F823 from the LLF motif, which is conserved in CoV-2-like viruses, and is achieved by the binding of Ca2+ ions to the D830/D839 and E819/D820 residue pairs. FP penetration is shown to modify the molecular organization in specific areas of the bilayer, and the extent of membrane binding of the SARS-CoV-2 FP is significantly reduced in the absence of Ca2+ ions. These findings provide novel mechanistic insights regarding the role of Ca2+ in mediating SARS-CoV-2 fusion and provide a detailed structural platform to aid the ongoing efforts in rational design of compounds to inhibit SARS-CoV-2 cell entry.  相似文献   

13.
We have shown previously that the Ca2+-dependent inhibition of lens epithelial cell-to-cell communication is mediated in part by the direct association of calmodulin (CaM) with connexin43 (Cx43), the major connexin in these cells. We now show that elevation of [Ca2+]i in HeLa cells transfected with the lens fiber cell gap junction protein sheep Cx44 also results in the inhibition of cell-to-cell dye transfer. A peptide comprising the putative CaM binding domain (aa 129-150) of the intracellular loop region of this connexin exhibited a high affinity, stoichiometric interaction with Ca2+-CaM. NMR studies indicate that the binding of Cx44 peptide to CaM reflects a classical embracing mode of interaction. The interaction is an exothermic event that is both enthalpically and entropically driven in which electrostatic interactions play an important role. The binding of the Cx44 peptide to CaM increases the CaM intradomain cooperativity and enhances the Ca2+-binding affinities of the C-domain of CaM more than twofold by slowing the rate of Ca2+ release from the complex. Our data suggest a common mechanism by which the Ca2+-dependent inhibition of the α-class of gap junction proteins is mediated by the direct association of an intracellular loop region of these proteins with Ca2+-CaM.  相似文献   

14.
Erythrocyte ghosts prepared from fresh blood expressed phosphatidylserine (PS) on the membrane surfaces in a rather stable fashion. The binding of fluorescein-5-isothiocyanate (FITC)-labeled annexin V (ANV) derivatives to these membranes was studied by titration with proteins and with calcium. Whereas the preaddition of ethylenediaminetetraacetic acid (EDTA) to reaction mixtures totally prevented membrane binding, Ca2+-dependent binding was only partially reversed by EDTA treatment, consistent with an initial Ca2+-dependent binding that became partially Ca2+ independent. Data derived from saturation titration with ANV derivatives poorly fit the simple protein-membrane equilibrium binding equation and showed negative cooperativity of binding with increasing membrane occupancy. In contrast, calcium titration at low binding site occupancy resulted in excellent fit into the protein-Ca2+-membrane equilibrium binding equation. Calcium titrations of FITC-labeled ANV and ANV-6L15 (a novel ANV-Kunitz protease inhibitor fusion protein) yielded a Hill coefficient of approximately 4 in both cases. The apparent dissociation constant for ANV-6L15 was approximately 4-fold lower than that of ANV at 1.2-2.5 mM Ca2+. We propose that ANV-6L15 may provide improved detection of PS exposed on the membrane surfaces of pathological cells in vitro and in vivo.  相似文献   

15.
Annexin A5 (AnxA5) binds to negatively charged phospholipid membranes in a Ca2+ dependent manner. Several studies already demonstrate that Mg2+ ions cannot induce the binding. In this paper, quartz crystal microbalance with dissipation monitoring (QCM-D), Brewster angle microscopy (BAM), polarization modulation infrared reflection absorption spectroscopy (PMIRRAS) and molecular dynamics (MD) were performed to elucidate the high specificity of Ca2+ versus Mg2+ on AnxA5 binding to membrane models. In the presence of Ca2+, AnxA5 showed a strong interaction with lipids, the protein is adsorbed mainly in α-helix under the DMPS monolayer, with an orientation of the α-helices axes slightly tilted with respect to the normal of the phospholipid monolayer as revealed by PMIRRAS. The Ca2+ ions interact strongly with the phosphate group of the phospholipid monolayer. In the presence of Mg2+, instead of Ca2+, no interaction of AnxA5 with lipids was detected. Molecular dynamics simulations allow us to explain the high specificity of calcium. Ca2+ ions are well exposed and surrounded by labile water molecules at the surface of the protein, which then favour their binding to the phosphate group of the membrane, explaining their specificity. To the contrary, Mg2+ ions are embedded in the protein structure, with a smaller number of water molecules strongly bound. We conclude that the embedded Mg2+ ions inside the AnxA5 structure are not able to link the protein to the phosphate group of the phospholipids for this reason.  相似文献   

16.
Ca2+,Mg2+- and Ca2+,Mn2+-dependent and acid DNases were isolated from spermatozoa of the sea urchin Strongylocentrotus intermedius. The enzymes have been purified by successive chromatography on DEAE-cellulose, phenyl-Sepharose, Source 15Q, and by gel filtration, and the principal physicochemical and enzymatic properties of the purified enzymes were determined. Ca2+,Mg2+-dependent DNase (Ca,Mg-DNase) is a nuclear protein with molecular mass of 63 kD as the native form and its activity optimum is at pH 7.5. The enzyme activity in the presence of bivalent metal ions decreases in the series (Ca2+ + Mg2+) > Mn2+ = (Ca2+ + Mn2+) > (Mg2+ + EGTA) > Ca2+. Ca,Mg-DNase retains its maximal activity in sea water and is not inhibited by G-actin and N-ethylmaleimide, whereas Zn2+ inhibits the enzyme. The endogenous Ca,Mg-DNase is responsible for the internucleosomal cleavage of chromosomal DNA of spermatozoa. Ca2+,Mn2+-dependent DNase (Ca,Mn-DNase) has molecular mass of 25 kD as the native form and the activity optimum at pH 8.5. The enzyme activity in the presence of bivalent metal ions decreases in the series (Ca2+ + Mn2+) > (Ca2+ + Mg2+) > Mn2+ > (Mg2+ + EGTA). In seawater the enzyme is inactive. Zinc ions inhibit Ca,Mn-DNase. Acid DNase of spermatozoa (A-DNase) is not a nuclear protein, it has molecular mass of 37 kD as a native form and the activity optimum at pH 5.5, it is not activated by bivalent metal ions, and it is inhibited by N-ethylmaleimide and iodoacetic acid. Mechanisms of the endonuclease cleavage of double-stranded DNA have been established for the three enzymes. The possible involvement of DNases from sea urchin spermatozoa in programmed cell death is discussed.  相似文献   

17.
Carp muscle calcium binding parvalbumin, crystallized in 2.9 m-ammonium sulfate, can bind two Tb3+ ions, which displace the two Ca2+ ions normally present. The Ca2+ co-ordinated in the loop between the E and the F α-helices is displaced at low Tb3+ concentrations; whereas the Ca2+ at the CD site is replaced only at higher Tb3+ concentration. There is not a third Tb3+ site as had been suggested in interpretations of Tb3+ fluorescence experiments performed without ammonium sulfate. A third electron density peak in the difference Fourier maps is tentatively assigned to a sulfate ion co-ordinating the EF site Tb3+ ion.  相似文献   

18.
The Na+/Ca2+ exchanger provides a major Ca2+ extrusion pathway in excitable cells and plays a key role in the control of intracellular Ca2+ concentrations. In Canis familiaris, Na+/Ca2+ exchanger (NCX) activity is regulated by the binding of Ca2+ to two cytosolic Ca2+‐binding domains, CBD1 and CBD2, such that Ca2+‐binding activates the exchanger. Despite its physiological importance, little is known about the exchanger's global structure, and the mechanism of allosteric Ca2+‐regulation remains unclear. It was found previously that for NCX in the absence of Ca2+ the two domains CBD1 and CBD2 of the cytosolic loop are flexibly linked, while after Ca2+‐binding they adopt a rigid arrangement that is slightly tilted. A realistic model for the mechanism of the exchanger's allosteric regulation should not only address this property, but also it should explain the distinctive behavior of Drosophila melanogaster's sodium/calcium exchanger, CALX, for which Ca2+‐binding to CBD1 inhibits Ca2+ exchange. Here, NMR spin relaxation and residual dipolar couplings were used to show that Ca2+ modulates CBD1 and CBD2 interdomain flexibility of CALX in an analogous way as for NCX. A mechanistic model for the allosteric Ca2+ regulation of the Na+/Ca2+ exchanger is proposed. In this model, the intracellular loop acts as an entropic spring whose strength is modulated by Ca2+‐binding to CBD1 controlling ion transport across the plasma membrane. Proteins 2016; 84:580–590. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
Pb2+ is known to displace physiologically-relevant metal ions in proteins. To investigate potential relationships between Pb2+/protein complexes and toxicity, data from the protein data bank were analyzed to compare structural properties of Pb2+- and Ca2+-binding sites. Results of this analysis reveal that the majority of Pb2+ sites (77.1%) involve 2-5 binding ligands, compared with 6 ± 2 for non-EF-Hand and 7 ± 1 for EF-Hand Ca2+-binding sites. The mean net negative charge by site (1.7) fell between values noted for non-EF-Hand (1 ± 1) and EF-Hand (3 ± 1). Oxygen is the dominant ligand for both Pb2+ and Ca2+, but Pb2+ binds predominantly with sidechain Glu (38.4%), which is less prevalent in both non-EF-Hand (10.4%) and EF-Hand (26.6%) Ca2+-binding sites. A comparison of binding geometries where Pb2+ has replaced Ca2+ in calmodulin (CaM) and Zn2+ in 5-aminolaevulinic acid dehydratase (ALAD) revealed protein structural changes that appear to be unrelated to ionic displacement. Structural changes observed with CaM may be related to opportunistic binding of Pb2+ in regions of high electrostatic charge, whereas ALAD may bind multiple Pb2+ ions in the active site. These results suggest that Pb2+ adapts to structurally-diverse binding geometries and that opportunistic binding may play an active role in molecular metal toxicity.  相似文献   

20.
《BBA》2023,1864(2):148956
The crystal structure of bovine cytochrome c oxidase (CcO) shows a sodium ion (Na+) bound to the surface of subunit I. Changes in the absorption spectrum of heme a caused by calcium ions (Ca2+) are detected as small red shifts, and inhibition of enzymatic activity under low turnover conditions is observed by addition of Ca2+ in a competitive manner with Na+. In this study, we determined the crystal structure of Ca2+-bound bovine CcO in the oxidized and reduced states at 1.7 Å resolution. Although Ca2+ and Na+ bound to the same site of oxidized and reduced CcO, they led to different coordination geometries. Replacement of Na+ with Ca2+ caused a small structural change in the loop segments near the heme a propionate and formyl groups, resulting in spectral changes in heme a. Redox-coupled structural changes observed in the Ca2+-bound form were the same as those previously observed in the Na+-bound form, suggesting that binding of Ca2+ does not severely affect enzymatic function, which depends on these structural changes. The relation between the Ca2+ binding and the inhibitory effect during slow turnover, as well as the possible role of bound Ca2+ are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号