首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on the structure and dynamics of the Fe ligand cluster of reduced horse heart cytochrome c in solution, in a dried polyvinyl alcohol (PVA) film, and in two trehalose matrices characterized by different contents of residual water. The effect of the solvent/matrix environment was studied at room temperature using Fe K-edge x-ray absorption fine structure (XAFS) spectroscopy. XAFS data were analyzed by combining ab initio simulations and multi-parameter fitting in an attempt to disentangle structural from disorder parameters. Essentially the same structural and disorder parameters account adequately for the XAFS spectra measured in solution, both in the absence and in the presence of glycerol, and in the PVA film, showing that this polymer interacts weakly with the embedded protein. Instead, incorporation in trehalose leads to severe structural changes, more prominent in the more dried matrix, consisting of 1), an increase up to 0.2 A of the distance between Fe and the imidazole N atom of the coordinating histidine residue and 2), an elongation up to 0.16 A of the distance between Fe and the fourth-shell C atoms of the heme pyrrolic units. These structural distortions are accompanied by a substantial decrease of the relative mean-square displacements of the first ligands. In the extensively dried trehalose matrix, extremely low values of the Debye Waller factors are obtained for the pyrrolic and for the imidazole N atoms. This finding is interpreted as reflecting a drastic hindering in the relative motions of the Fe ligand cluster atoms and an impressive decrease in the static disorder of the local Fe structure. It appears, therefore, that the dried trehalose matrix dramatically perturbs the energy landscape of cytochrome c, giving rise, at the level of local structure, to well-resolved structural distortions and restricting the ensemble of accessible conformational substates.  相似文献   

2.
Binding of transition metal ions to the reaction center (RC) protein of the photosynthetic bacterium Rhodobacter sphaeroides has been previously shown to slow light-induced electron and proton transfer to the secondary quinone acceptor molecule, Q(B). On the basis of x-ray diffraction at 2.5 angstroms resolution a site, formed by AspH124, HisH126, and HisH128, has been identified at the protein surface which binds Cd(2+) or Zn(2+). Using Zn K-edge x-ray absorption fine structure spectroscopy we report here on the local structure of Zn(2+) ions bound to purified RC complexes embedded into polyvinyl alcohol films. X-ray absorption fine structure data were analyzed by combining ab initio simulations and multiparameter fitting; structural contributions up to the fourth coordination shell and multiple scattering paths (involving three atoms) have been included. Results for complexes characterized by a Zn to RC stoichiometry close to one indicate that Zn(2+) binds two O and two N atoms in the first coordination shell. Higher shell contributions are consistent with a binding cluster formed by two His, one Asp residue, and a water molecule. Analysis of complexes characterized by approximately 2 Zn ions per RC reveals a second structurally distinct binding site, involving one O and three N atoms, not belonging to a His residue. The local structure obtained for the higher affinity site nicely fits the coordination geometry proposed on the basis of x-ray diffraction data, but detects a significant contraction of the first shell. Two possible locations of the second new binding site at the cytoplasmic surface of the RC are proposed.  相似文献   

3.
Quinoprotein alcohol dehydrogenases are redox enzymes that participate in distinctive catabolic pathways that enable bacteria to grow on various alcohols as the sole source of carbon and energy. The x-ray structure of the quinohemoprotein alcohol dehydrogenase from Comamonas testosteroni has been determined at 1.44 A resolution. It comprises two domains. The N-terminal domain has a beta-propeller fold and binds one pyrroloquinoline quinone cofactor and one calcium ion in the active site. A tetrahydrofuran-2-carboxylic acid molecule is present in the substrate-binding cleft. The position of this oxidation product provides valuable information on the amino acid residues involved in the reaction mechanism and their function. The C-terminal domain is an alpha-helical type I cytochrome c with His(608) and Met(647) as heme-iron ligands. This is the first reported structure of an electron transfer system between a quinoprotein alcohol dehydrogenase and cytochrome c. The shortest distance between pyrroloquinoline quinone and heme c is 12.9 A, one of the longest physiological edge-to-edge distances yet determined between two redox centers. A highly unusual disulfide bond between two adjacent cysteines bridges the redox centers. It appears essential for electron transfer. A water channel delineates a possible pathway for proton transfer from the active site to the solvent.  相似文献   

4.
We have obtained iron K-edge extended x-ray absorption fine structure spectra of the plant mitochondrial aconitase in its active state, in the presence (aconitase (+)) and absence (aconitase (-)) of the substrate citrate. Analysis of the data indicates that oxygens are present in the first coordination shell, at an average Fe-O distance of 1.96/1.98 A (aconitase (+)/aconitase(-)). Part of these oxygens is provided by the citrate, which binds at 1.99 A from the iron in aconitase (+). The second shell (sulfur) contribution is split and is consistent with Fe-S distances of 2.30/2.29 and 2.56/2.59 A, and the third shell (iron) is consistent with an Fe-Fe distance of 2.83/2.84 A. Both Fe-S and Fe-Fe distances are longer than similar distances found in most Fe-S centers. A strong scattering at approximately 5 A has been identified as originating from an iron atom which is near to, but not part of, the Fe-S cluster. These data indicate that active plant mitochondrial aconitase contains a novel type of iron center.  相似文献   

5.
Superoxide reductase is a novel class of non-heme iron proteins that catalyzes the one-electron reduction of O(2)(.) to H(2)O(2), providing an antioxidant defense in some bacteria. Its active site consists of an unusual non-heme Fe(2+) center in a [His(4) Cys(1)] square pyramidal pentacoordination. In this class of enzyme, the cysteine axial ligand has been hypothesized to be an essential feature in the reactivity of the enzyme. Previous Fourier transform infrared spectroscopy studies on the enzyme from Desulfoarculus baarsii revealed that a protonated carboxylate group, proposed to be the side chain of Glu(114), is in interaction with the cysteine ligand. In this work, using pulse radiolysis, Fourier transform infrared, and resonance Raman spectroscopies, we have investigated to what extent the presence of this Glu(114) carboxylic lateral chain affects the strength of the S-Fe bond and the reaction of the iron active site with superoxide. The E114A mutant shows significantly modified pulse radiolysis kinetics for the protonation process of the first reaction intermediate. Resonance Raman spectroscopy demonstrates that the E114A mutation results in both a strengthening of the S-Fe bond and an increase in the extent of freeze-trapping of a Fe-peroxo species after treatment with H(2)O(2) by a specific strengthening of the Fe-O bond. A fine tuning of the strength of the S-Fe bond by the presence of Glu(114) appears to be an essential factor for both the strength of the Fe-O bond and the pK(a) value of the Fe(3+)-peroxo intermediate species to form the reaction product H(2)O(2).  相似文献   

6.
Soluble guanylate cyclase is an NO-sensing hemoprotein that serves as a NO receptor in NO-mediated signaling pathways. It has been believed that this enzyme displays no measurable affinity for O(2), thereby enabling the selective NO sensing in aerobic environments. Despite the physiological significance, the reactivity of the enzyme-heme for O(2) has not been examined in detail. In this paper we demonstrated that the high spin heme of the ferrous enzyme converted to a low spin oxyheme (Fe(2+)-O(2)) when frozen at 77 K in the presence of O(2). The ligation of O(2) was confirmed by EPR analyses using cobalt-substituted enzyme. The oxy form was produced also under solution conditions at -7 °C, with the extremely low affinity for O(2). The low O(2) affinity was not caused by a distal steric protein effect and by rupture of the Fe(2+)-proximal His bond as revealed by extended x-ray absorption fine structure. The midpoint potential of the enzyme-heme was +187 mV, which is the most positive among high spin protoheme-hemoproteins. This observation implies that the electron density of the ferrous heme iron is relatively low by comparison to those of other hemoproteins, presumably due to the weak Fe(2+)-proximal His bond. Based on our results, we propose that the weak Fe(2+)-proximal His bond is a key determinant for the low O(2) affinity of the heme moiety of soluble guanylate cyclase.  相似文献   

7.
Polynuclear iron complexes of Fe(III) and phosphate occur in seawater and soils and in cells where the iron core of ferritin, the iron storage protein, contains up to 4500 Fe atoms in a complex with an average composition of (FeO.OH)8FeO.OPO3H2. Although phosphate influences the size of the ferritin core and thus the availability of stored iron, little is known about the nature of the Fe(III)-phosphate interaction. In the present study, Fe-phosphate interactions were analyzed in stable complexes of Fe(III).ATP which, in the polynuclear iron form, had phosphate at interior sites. Such Fe(III).ATP complexes are important not only as models but also because they may play a role in intracellular iron transport and in iron toxicity; the complexes were studied by extended x-ray absorption fine structure, EPR, NMR spectroscopy, and measurement of proton release. Mononuclear iron complexes exhibiting a g' = 4.3 EPR signal were formed at Fe:ATP ratios less than or equal to 1:3, and polynuclear iron complexes (Fe greater than or equal to 250, EPR silent at g' = 4.3) were formed at an Fe:ATP ratio of 4:1. No NMR signals due to ATP were observed when Fe was in excess (Fe:ATP = 4:1). Extended x-ray absorption fine structure analysis of the polynuclear Fe(III).ATP complex was able to distinguish an Fe-P distance at 3.27 A in addition to the octahedral O at 1.95 A and 4-5 Fe atoms at 3.36 A. The Fe-O and Fe-Fe distances are the same as in ferritin, and the Fe-P distance is analogous to that in another metal-ATP complex. An observable Fe-P environment in such a large polynuclear iron cluster as the Fe(III).ATP (4:1) complex indicates that the phosphate is distributed throughout rather than merely on the surface, in contrast to earlier models of chelate-stabilized iron clusters. Complexes of Fe(III) and ATP similar to those described here may form in vivo either as normal components of intracellular iron metabolism or during iron excess where the consequent alteration of free nucleotide triphosphate pools could contribute to the observed toxicity of iron.  相似文献   

8.
FixL is a heme-based O(2) sensor protein involved in a two-component system of a symbiotic bacterium. In the present study, the iron coordination structure in the heme domain of Rhizobium meliloti FixLT (RmFixLT, a soluble truncated FixL) was examined using Fe K-edge extended x-ray absorption fine structure (EXAFS) and resonance Raman spectroscopic techniques. In the EXAFS analyses, the interatomic distances and angles of the Fe-ligand bond and the iron displacement from the heme plane were obtained for RmFixLT in the Fe(2+), Fe(2+)O(2), Fe(2+)CO, Fe(3+), Fe(3+)F(-), and Fe(3+)CN(-) states. An apparent correlation was found between the heme-nitrogen (proximal His-194) distance in the heme domain and the phosphorylation activity of the histidine kinase domain. Comparison of the Fe-CO coordination geometry between RmFixLT and RmFixLH (heme domain of RmFixL), based on the EXAFS and Raman results, has suggested that the kinase domain directly or indirectly influences steric interaction between the iron-bound ligand and the heme pocket. Referring to the crystal structure of the heme domain of Bradyrhizobium japonicum FixL (Gong, W., Hao, B., Mansy, S. S., Gonzalez, G., Gilles-Gonzalez, M. A., and Chan, M. K. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 15177-15182), we discussed details of the iron coordination structure of RmFixLT and RmFixLH in relation to an intramolecular signal transduction mechanism in its O(2) sensing.  相似文献   

9.
The recently redetermined structure of the 7 Fe ferredoxin from Azotobacter vinelandii has been refined against a new 1.9 A data set. The crystallographic R-factor is 0.215 for all 9586 observed reflections 8.0 to 1.9 A. The model contains 106 amino acid residues, two Fe-S clusters and 21 water molecules. The root-mean-square deviations from ideality of bonds and angles are 0.014 A and 3.3 degrees, respectively. The refinement confirms the presence of two free cysteines: the thiol of C11 is in association with the side-chain of K100; the thiol of C24 is 3.35 A from inorganic sulfur of the [4 Fe-4 S] cluster. The refinement confirms a [3 Fe-4 S] model for the 3 Fe cluster. The two Fe-S clusters have similar bond distances and angles. The structure of the protein for residues 1 to 57 superposes within 0.85 A on residues 1 to 53 of the 8 Fe ferredoxin structure for main-chain N, CA and C atoms, if residues 9, 10, 29 and 30 of 7 Fe ferredoxin are omitted. These residues are part of two loops in contact with residues of the extended C-terminal chain of 7 Fe ferredoxin.  相似文献   

10.
In the present study, molecular simulations were performed to investigate the chelating mechanisms of various metal ions to the His-tag motifs with various His residues. The chelation mostly involved the i and i+2 His residues for Ni(2+), Zn(2+), Cu(2+), and Co(2+), while the cooperation of 3 His residues was necessary when Fe(3+) was involved in chelation with His-tags having more than 4 His residues. Metal ion was best fitted into the pocket formed by the imidazole nitrogens while it was about equally located among these nitrogen atoms. His-tag6 was found to have little effect on the structural integrity while the target protein contains more than 68 amino acid residues. Ni(2+) interacted with the imidazole nitrogen of His3 in the beginning of chelation, and then entered into the pocket formed by His3 and His5 at 4 ns during the 10 ns molecular dynamics simulations. The fast chelating process resulted in successful application of IMAC techniques in efficient protein purification.  相似文献   

11.
The metallation of tetrapyrroles is believed to proceed via a sitting-atop (SAT) complex, in which some of the pyrrole nitrogen atoms are still protonated and the metal ion resides above the ring plane. No crystal structure of such a complex has been presented, but NMR and extended X-ray absorption fine structure (EXAFS) data has been reported for Cu(2+) in acetonitrile. We have used density functional calculations to obtain reasonable models for SAT complexes of porphyrins with Mg(2+), Fe(2+), and Cu(2+). The results show that there are many possible SAT complexes with 1-5 solvent molecules, one or two metal ions, and cis or trans protonation of the porphyrin ring. Many of these have similar energies and their relative stabilities vary with the metal ion. A complex with two cis pyrrolenine nitrogens atoms and 2-4 solvent molecules coordinated to Cu(2+) fits the NMR and EXAFS data best. However, we cannot fully exclude the possibility that what is observed is rather a mixture of a doubly protonated porphyrin and the copper porphyrin. Mg(2+) has a lower affinity for porphyrin and stronger affinity for water, so a complex with five water molecules and only one bond to porphyrin seems to be most stable. For Fe(2+), a cis structure with two first-sphere water molecules and four interactions to the porphyrin seems to be most likely.  相似文献   

12.
IsdG and IsdI are paralogous proteins that are intracellular components of a complex heme uptake system in Staphylococcus aureus. IsdG and IsdI were shown previously to reductively degrade hemin. Crystal structures of the apoproteins show that these proteins belong to a newly identified heme degradation family distinct from canonical eukaryotic and prokaryotic heme oxygenases. Here we report the crystal structures of an inactive N7A variant of IsdG in complex with Fe(3+)-protoporphyrin IX (IsdG-hemin) and of IsdI in complex with cobalt protoporphyrin IX (IsdI-CoPPIX) to 1.8 A or better resolution. These structures show that the metalloporphyrins are buried into similar deep clefts such that the propionic acids form salt bridges to two Arg residues. His(77) (IsdG) or His(76) (IsdI), a critical residue required for activity, is coordinated to the Fe(3+) or Co(3+) atoms, respectively. The bound porphyrin rings form extensive steric interactions in the binding cleft such that the rings are highly distorted from the plane. This distortion is best described as ruffled and places the beta- and delta-meso carbons proximal to the distal oxygen-binding site. In the IsdG-hemin structure, Fe(3+) is pentacoordinate, and the distal side is occluded by the side chain of Ile(55). However, in the structure of IsdI-CoPPIX, the distal side of the CoPPIX accommodates a chloride ion in a cavity formed through a conformational change in Ile(55). The chloride ion participates in a hydrogen bond to the side chain amide of Asn(6). Together the structures suggest a reaction mechanism in which a reactive peroxide intermediate proceeds with nucleophilic oxidation at the beta- or delta-meso carbon of the hemin.  相似文献   

13.
We investigated the reactivity of heme-coordinating imidazole with diethylpyrocarbonate using a soluble domain of cytochrome b(5). Analyses with various spectroscopic methods including MALDI-TOF-MS indicated that two axial His residues (His44 and His68) of cytochrome b(5) were protected from the modification by several factors, i.e., limited steric exposure of the axial imidazole to the solvent, the Fe-N(epsilon2) coordination bond, and protonation of the N(delta1) position by forming a hydrogen bond with its immediate surroundings. However, once N-carbethoxylation at the N(epsilon2) position of the axial His residues occurred with a higher concentration of diethylpyrocarbonate, displacement of heme prosthetic group from the protein moiety continued. Simultaneously, it facilitated the second N-carbethoxylation to take place at the N(epsilon1) position of the same imidazole ring, leading to a bis-N-carbethoxylated derivative and further to a ring-opened derivative. A similar mechanism seemed in operation for one non-axial His residue (His85), in which the N(delta1) atom works as a hydrogen acceptor in a strong hydrogen-bond and the other N(epsilon2) atom is in a protonated form, resulting in a formation of the ring-opened derivative upon treatment with a higher concentration of diethylpyrocarbonate. These results suggested that the use of diethylpyrocarbonate for MALDI-TOF-MS analysis might provide a unique method to characterize the protonation state of His residues and the strength of their hydrogen-bondings at the active site of enzymes.  相似文献   

14.
Qin J  Perera R  Lovelace LL  Dawson JH  Lebioda L 《Biochemistry》2006,45(10):3170-3177
Crystal structures of the ferric H93G myoglobin (Mb) cavity mutant containing either an anionic proximal thiolate sulfur donor or a carboxylate oxygen donor ligand are reported at 1.7 and 1.4 A resolution, respectively. The crystal structure and magnetic circular dichroism spectra of the H93G Mb beta-mercaptoethanol (BME) thiolate adduct reveal a high-spin, five-coordinate complex. Furthermore, the bound BME appears to have an intramolecular hydrogen bond involving the alcohol proton and the ligated thiolate sulfur, mimicking one of the three proximal N-H...S hydrogen bonds in cytochrome P450. The Fe is displaced from the porphyrin plane by 0.5 A and forms a 2.41 A Fe-S bond. The Fe(3+)-S-C angle is 111 degrees , indicative of a covalent Fe-S bond with sp(3)-hybridized sulfur. Therefore, the H93G Mb.BME complex provides an excellent protein-derived structural model for high-spin ferric P450. In particular, the Fe-S bond in high-spin ferric P450-CAM has essentially the same geometry despite the constraints imposed by covalent linkage of the cysteine to the protein backbone. This suggests that evolution led to the geometric optimization of the proximal Fe-S(cysteinate) bond in P450. The crystal structure and spectral properties of the H93G Mb acetate adduct reveal a high-spin, six-coordinate complex with proximal acetate and distal water axial ligands. The distal His-64 forms a hydrogen bond with the bound water. The Fe-acetate bonding geometry is inconsistent with an electron pair along the Fe-O bond as the Fe-O-C angle is 152 degrees and the Fe is far from the plane of the acetate. Thus, the Fe-O bonding is ionic. The H93G Mb cavity mutant has already been shown to be a versatile model system for the study of ligand binding to heme proteins; this investigation affords the first structural evidence that nonimidazole exogenous ligands bind in the proximal ligation site.  相似文献   

15.
We examine the issue of ferryl protonation in heme proteins. An analysis of the results obtained from X-ray crystallography, resonance Raman spectroscopy, and extended X-ray absorption spectroscopy (EXAFS) is presented. Fe-O bond distances obtained from all three techniques are compared using Badger's rule. The long Fe-O bond lengths found in the ferryl crystal structures of myoglobin, cytochrome c peroxidase, horseradish peroxidase, and catalase deviate substantially from the values predict by Badger's rule, while the oxo-like distances obtained from EXAFS measurements are in good agreement with the empirical formula. Density functional calculations, which suggest that M?ssbauer spectroscopy can be used to determine ferryl protonation states, are presented. Our calculations indicate that the quadrupole splitting (DeltaE(Q)) changes significantly upon ferryl protonation. New resonance Raman data for horse-heart myoglobin compound II (Mb-II, pH 4.5) are also presented. An Fe-O stretching frequency of 790cm(-1) (shifting to 754cm(-1) with (18)O substitution) was obtained. This frequency provides a Badger distance of r(Fe-O)=1.66A. This distance is in agreement with the 1.69A Fe-O bond distance obtained from EXAFS measurements but is significantly shorter than the 1.93A bond found in the crystal structure of Mb-II (pH 5.2). In light of the available evidence, we conclude that the ferryl forms of myoglobin (pKa4), horseradish peroxidase (pKa4), cytochrome c peroxidase (pKa4), and catalase (pKa7) are not basic. They are authentic Fe(IV)oxos with Fe-O bonds on the order of 1.65A.  相似文献   

16.
The Fe(II) and 2-oxoglutarate-dependent dioxygenase deacetoxycephalosporin C synthase (DAOCS) from Streptomyces clavuligerus was expressed at ca 25 % of total soluble protein in Escherichia coli and purified by an efficient large-scale procedure. Purified protein catalysed the conversions of penicillins N and G to deacetoxycephems. Gel filtration and light scattering studies showed that in solution monomeric apo-DAOCS is in equilibrium with a trimeric form from which it crystallizes. DAOCS was crystallized +/-Fe(II) and/or 2-oxoglutarate using the hanging drop method. Crystals diffracted to beyond 1.3 A resolution and belonged to the R3 space group (unit cell dimensions: a=b=106.4 A, c=71.2 A; alpha=beta=90 degrees, gamma=120 degrees (in the hexagonal setting)). Despite the structure revealing that Met180 is located close to the reactive oxidizing centre of DAOCS, there was no functional difference between the wild-type and selenomethionine derivatives. X-ray absorption spectroscopic studies in solution generally supported the iron co-ordination chemistry defined by the crystal structures. The Fe K-edge positions of 7121.2 and 7121.4 eV for DAOCS alone and with 2-oxoglutarate were both consistent with the presence of Fe(II). For Fe(II) in DAOCS the best fit to the Extended X-ray Absorption Fine Structure (EXAFS) associated with the Fe K-edge was found with two His imidazolate groups at 1.96 A, three nitrogen or oxygen atoms at 2.11 A and one other light atom at 2.04 A. For the Fe(II) in the DAOCS-2-oxoglutarate complex the EXAFS spectrum was successfully interpreted by backscattering from two His residues (Fe-N at 1.99 A), a bidentate O,O-co-ordinated 2-oxoglutarate with Fe-O distances of 2.08 A, another O atom at 2.08 A and one at 2.03 A. Analysis of the X-ray crystal structural data suggests a binding mode for the penicillin N substrate and possible roles for the C terminus in stabilising the enzyme and ordering the reaction mechanism.  相似文献   

17.
Utschig LM  Chen LX  Poluektov OG 《Biochemistry》2008,47(12):3671-3676
Photosystem I (PSI) is a large membrane protein that catalyzes light-driven electron transfer across the thylakoid membrane from plastocyanin located in the lumen to ferredoxin in the stroma. Metal analysis reveals that PSI isolated from the cyanobacterial membranes of Synechococcus leopoliensishas a near-stoichiometric 1 molar equiv of Zn (2+) per PSI monomer and two additional surface metal ion sites that favor Cu (2+) binding. Two-dimensional hyperfine sublevel correlation (HYSCORE) spectroscopy reveals coupling to the so-called remote nitrogen of a single histidine coordinated to one of the Cu (2+) centers. EPR and X-ray absorption fine structure (XAFS) studies of 2Cu-PSI complexes reveal the direct interaction of ferredoxin with the Cu (2+) centers on PSI, establishing the location of native metal sites on the ferredoxin docking side of PSI. On the basis of these spectroscopic results and previously reported site-directed mutagenesis studies, inspection of the PSI crystal structure reveals a cluster of three highly conserved residues, His(D95), Glu(D103), and Asp(C23), as a likely Cu (2+) binding site. The discovery of surface metal sites on the acceptor side of PSI provides a unique opportunity to probe the stromal region of PSI and the interactions of PSI with its reaction partner, the soluble electron carrier protein ferredoxin.  相似文献   

18.
Stellacyanin is a mucoprotein of molecular weight approximately 20,000 containing one copper atom in a blue or type I site. The metal ion can exist in both the Cu(II) and Cu(I) redox states. The metal binding site in plastocyanin, another blue copper protein, contains one cysteinyl, one methionyl, and two imidazoyl residues (Colman et al. 1978. Nature [Lond.]. 272:319-324.), but an exactly analogous site cannot exist in stellacyanin as it lacks methionine. The copper coordination in stellacyanin has been studied by x-ray edge absorption and extended x-ray absorption fine structure (EXAFS) analysis. A new, very conservative data analysis procedure has been introduced, which suggests that the there are two nitrogen atoms in the first coordination shell of the oxidized [Cu(II)] protein and one in the reduced [Cu(I)] protein; these N atoms have normal Cu--N distances: 1.95-2.05 A. In both redox states there are either one or two sulfur atoms coordinating the copper, the exact number being indeterminable from the present data. In the oxidized state the Cu--S distance is intermediate between the short bond found in plastocyanin and those found in near tetragonal copper model compounds. Above -140 degree C, radiation damage of the protein occurs. At room temperature the oxidized proteins is modified in the x-ray beam at a rate of 0.25%/s.  相似文献   

19.
We have characterized by NMR spectroscopy the three active site (His80, His85, and His205) and two non-active site (His107 and His114) histidines in the 34 kDa catalytic domain of Cellulomonas fimi xylanase Cex in its apo, noncovalently aza-sugar-inhibited, and trapped glycosyl-enzyme intermediate states. Due to protection from hydrogen exchange, the level of which increased upon inhibition, the labile 1Hdelta1 and 1H epsilon1 atoms of four histidines (t1/2 approximately 0.1-300 s at 30 degrees C and pH approximately 7), as well as the nitrogen-bonded protons in the xylobio-imidazole and -isofagomine inhibitors, could be observed with chemical shifts between 10.2 and 17.6 ppm. The histidine pKa values and neutral tautomeric forms were determined from their pH-dependent 13C epsilon1-1H epsilon1 chemical shifts, combined with multiple-bond 1H delta2/epsilon1-15N delta1/epsilon2 scalar coupling patterns. Remarkably, these pKa values span more than 8 log units such that at the pH optimum of approximately 6 for Cex activity, His107 and His205 are positively charged (pKa > 10.4), His85 is neutral (pKa < 2.8), and both His80 (pKa = 7.9) and His114 (pKa = 8.1) are titrating between charged and neutral states. Furthermore, upon formation of the glycosyl-enzyme intermediate, the pKa value of His80 drops from 7.9 to <2.8, becoming neutral and accepting a hydrogen bond from an exocyclic oxygen of the bound sugar moiety. Changes in the pH-dependent activity of Cex due to mutation of His80 to an alanine confirm the importance of this interaction. The diverse ionization behaviors of the histidine residues are discussed in terms of their structural and functional roles in this model glycoside hydrolase.  相似文献   

20.
The copper centers of nitrous oxide reductase from Pseudomonas aeruginosa strain P2 were studied by x-ray and electron paramagnetic resonance (EPR) spectroscopy. The enzyme is dimeric and contains four Cu atoms and about seven cysteine residues/subunit of Mr = 73,000. The extended x-ray absorption fine structure (EX-AFS) spectrum was analyzed for enzyme as isolated (oxidized or slightly reduced), enzyme exposed briefly to air, reduced enzyme, and enzyme at pH 7 after having been activated by standing at pH 10. The average Cu ligand environment in the first shell was best modeled for all forms of the enzyme by a combination of N/O and S atoms at a total coordination number between 3 and 4 and bond distances ranging from 1.96-2.03 A for Cu-N/O and 2.20-2.25 A for Cu-S. The data could be fit without using Cu-Cu interactions. Overall the results are similar to those reported for the enzyme for Pseudomonas stutzeri (Scott, R. A., Zumft, W.G., Coyle, C.L., and Dooley, D.M. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 4082-4086). The first derivative EPR spectra of the Cu(II) centers at 15 and 45 K were qualitatively similar among enzyme as isolated and enzyme exposed to N2O or air. These three nominally oxidized samples showed an axial signal with g perpendicular = 2.03 and g parallel = 2.15-2.16. Hyperfine structure was observed in both the g parallel and g perpendicular regions with splittings of 43 and 25 gauss, respectively. These hyperfine components are attributed to exchange coupled Cu(I)-Cu(II) S = 1/2 (half-met) centers. In the enzyme as isolated and after exposure to N2O, about 3/4 of the Cu was EPR silent, whereas after exposure to air the signal integrated to about half the Cu concentration. The EPR spectrum of enzyme activated at pH 10 but frozen at pH 7 was a composite of spectra from activated and inactive species. The activated species presented a complex set of narrow hyperfine components which may arise from contributions from more than one species of half-met center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号