首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Energy-conversion systems mediated by bacterial metabolism have recently attracted much attention, and therefore, demands for tuning of bacterial metabolism are increasing. It is widely recognized that intracellular redox atmosphere which is generally tuned by dissolved oxygen concentration or by appropriate selection of an electron acceptor for respiration is one of the important factors determining the bacterial metabolism. In general, electrochemical approaches are valuable for regulation of redox-active objects. However, the intracellular redox conditions are extremely difficult to control electrochemically because of the presence of insulative phospholipid bilayer membranes. In the present work, the limitation can be overcome by use of the bacterial genus Shewanella , which consists of species that are able to respire via cytochromes abundantly expressed in their outer-membrane with solid-state electron acceptors, including anodes. The electrochemical characterization and the gene expression analysis revealed that the activity of tricarboxylic acid (TCA) cycle in Shewanella cells can be reversibly gated simply by changing the anode potential. Importantly, our present results for Shewanella cells cultured in an electrochemical system under poised potential conditions showed the opposite relationship between the current and electron acceptor energy level, and indicate that this unique behavior originates from deactivation of the TCA cycle in the (over-)oxidative region. Our result obtained in this study is the first demonstration of the electrochemical gating of TCA cycle of living cells. And we believe that our findings will contribute to a deeper understanding of redox-dependent regulation systems in living cells, in which the intracellular redox atmosphere is a critical factor determining the regulation of various metabolic and genetic processes.  相似文献   

2.
Bioelectrochemical systems (BES), typically microbial fuel cells (MFCs), have attracted increasing attention in the past decade due to their promising applications in many fields, such as bioremediation, energy generation and biosynthesis. Current-generating microorganisms play a key role in BES. The process of transferring electrons to electrode has been considered as a novel anaerobic bacteria respiration, and more and more bacteria capable of exchanging electrons with electrodes have been isolated. Among those bacteria, Shewanella and Geobacter genera are the most frequently used model organisms in the studies of BES, as well as the bacteria-electrode electron transfer mechanisms. Many significant new findings in the field of the bacterial extracellular electron transfer in BES have been reported recently. A better understanding of the mechanisms of bacterial extracellular electron transfer would provide more efficient strategies to enhance the applicability of BES. This review summarizes the recent advances of extracellular electron transfer mechanisms with foci on Shewanella and Geobacter species in BES.  相似文献   

3.
Azo dyes are toxic, highly persistent, and ubiquitously distributed in the environments. The large-scale production and application of azo dyes result in serious environmental pollution of water and sediments. Bacterial azo reduction is an important process for removing this group of contaminants. Recent advances in this area of research reveal that azo reduction by Shewanella strains is coupled to the oxidation of electron donors and linked to the electron transport and energy conservation in the cell membrane. Up to date, several key molecular components involved in this reaction have been identified and the primary electron transportation system has been proposed. These new discoveries on the respiration pathways and electron transfer for bacterial azo reduction has potential biotechnological implications in cleaning up contaminated sites.  相似文献   

4.
Electricity from microorganisms   总被引:1,自引:0,他引:1  
V. G. Debabov 《Microbiology》2008,77(2):123-131
Over the last ten years, the recently discovered process of direct electron transfer from anaerobically grown microorganisms to an electrode of a fuel cell has been the object of intense study. The microorganisms responsible for such electron transport were termed electrogenic; the devices using them to generate electric current, microbial fuel cells (MFCs). The review discussed the molecular mechanisms of electron transfer to the environment in the case of the two best studied microorganisms, Shewanella oneidensis and Geobacter sulfurreducens. The discovery of bacterial conducting pili (nanowires) used for electron transfer to the electrode and between bacterial cells was sensational. In the real MFCs, which use complex substrates (industrial liquid waste), microbial associations are active, often as biofilms. The progress in MFCs design and the prospects of their practical application are considered.  相似文献   

5.
Shewanella is a microbial genus that can oxidize lactate for the reduction of insoluble electron acceptors. This reduction is possible by either direct (cell-surface interaction, nanowires) or indirect (soluble redox mediators) mechanisms. However, the actual molecular identification of a nanowire has not been determined. Through mutational studies, Shewanella oneidensis MR-1 was analyzed for its ability to transfer electrons to an electrode after deletion of the structural pilin genes (ΔmshA-D) or the entire biosynthetic expression system (ΔmshH-Q) of one of its pilin complexes (Msh type IV pilus gene locus). The complete removal of the Msh complex (ΔmshH-Q) significantly decreased the current generated from a fuel cell compared to MR-1. However, the mutant with only extracellular Msh structural proteins removed (ΔmshA-D) was able to generate 80% of the current compared to MR-1. Thus, the intracellular and membrane bound Msh biogenesis complex is a pathway for extracellular electron transfer in S. oneidensis MR-1.  相似文献   

6.
Shewanella halifaxensis and Shewanella sediminis were among a few aquatic γ-proteobacteria that were psychrophiles and the first anaerobic bacteria that degraded hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Although many mesophilic or psychrophilic strains of Shewanella and γ-proteobacteria were sequenced for their genomes, the genomic evolution pathways for temperature adaptation were poorly understood. On the other hand, the genes responsible for anaerobic RDX mineralization pathways remain unknown. To determine the unique genomic properties of bacteria responsible for both cold-adaptation and RDX degradation, the genomes of S. halifaxensis and S. sediminis were sequenced and compared with 108 other γ-proteobacteria including Shewanella that differ in temperature and Na+ requirements, as well as RDX degradation capability. Results showed that for coping with marine environments their genomes had extensively exchanged with deep sea bacterial genomes. Many genes for Na+-dependent nutrient transporters were recruited to use the high Na+ content as an energy source. For coping with low temperatures, these two strains as well as other psychrophilic strains of Shewanella and γ-proteobacteria were found to decrease their genome G+C content and proteome alanine, proline and arginine content (p-value <0.01) to increase protein structural flexibility. Compared to poorer RDX-degrading strains, S. halifaxensis and S. sediminis have more number of genes for cytochromes and other enzymes related to RDX metabolic pathways. Experimentally, one cytochrome was found induced in S. halifaxensis by RDX when the chemical was the sole terminal electron acceptor. The isolated protein degraded RDX by mono-denitration and was identified as a multiheme 52 kDa cytochrome using a proteomic approach. The present analyses provided the first insight into divergent genomic evolution of bacterial strains for adaptation to the specific cold marine conditions and to the degradation of the pollutant RDX. The present study also provided the first evidence for the involvement of a specific c-type cytochrome in anaerobic RDX metabolism.  相似文献   

7.
Extracellular respiration of solid-phase electron acceptors in some microorganisms requires a complex chain of multiheme c-type cytochromes that span the inner and outer membranes. In Shewanella species, MtrA, an ∼35-kDa periplasmic decaheme c-type cytochrome, is an essential component for extracellular respiration of iron(III). The exact mechanism of electron transport has not yet been resolved, but the arrangement of the polypeptide chain may have a strong influence on the capability of the MtrA cytochrome to transport electrons. The iron hemes of MtrA are bound to its polypeptide chain via proximal (CXXCH) and distal histidine residues. In this study, we show the effects of mutating histidine residues of MtrA to arginine on protein expression and extracellular respiration using Shewanella sp. strain ANA-3 as a model organism. Individual mutations to six out of nine proximal histidines in CXXCH of MtrA led to decreased protein expression. However, distal histidine mutations resulted in various degrees of protein expression. In addition, the effects of histidine mutations on extracellular respiration were tested using ferrihydrite and current production in microbial fuel cells. These results show that proximal histidine mutants were unable to reduce ferrihydrite. Mutations to the distal histidine residues resulted in various degrees of ferrihydrite reduction. These findings indicate that mutations to the proximal histidine residues affect MtrA expression, leading to loss of extracellular respiration ability. In contrast, mutations to the distal histidine residues are less detrimental to protein expression, and extracellular respiration can proceed.  相似文献   

8.
The reduction of nitrate to nitrite in the bacterial periplasm occurs in the 90 kDa NapA subunit of the periplasmic nitrate reductase (NAP) system. Most Shewanella genomes contain two nap operons: napEDABC and napDAGHB, which is an unusual feature of this genus. Two native, monomeric, 90 kDa nitrate reductase active proteins were resolved by hydrophobic interaction chromatography from aerobic cultures of Shewanella gelidimarina replete with reduced nitrogen compounds. The 90 kDa protein obtained in higher yield was characterized as NapA by electronic absorption and electron paramagnetic resonance spectroscopies and was identified by LC/MS/MS and MALDI-TOF/TOF MS as NapA from the napEDABC-type operon. The other 90 kDa protein, which was unstable and produced in low yields, was posited as NapA from the napDAGHB-type operon. Two napA genes have been sequenced from the napEDABC-type and napDAGHB-type operons of S. gelidimarina. Native NAP from S. putrefaciens was resolved as one NapA monomer and one NapAB heterodimer. Two amino acid substitutions in NapA correlated with the isolation of NAP as a NapA monomer or a NapAB heterodimer. The resolution of native, redox-active NapA isoforms in Shewanella provides new insight into the respiratory versatility of this genus, which has implications in bioremediation and the assembly of microbial fuel cells.  相似文献   

9.
The genus Shewanella comprises about 70 species of Gram-negative, facultative anaerobic bacteria inhabiting various environments, which have shown great potential in various biotechnological applications ranging from environmental bioremediation, metal(loid) recovery and material synthesis to bioenergy generation. Most environmental and energy applications of Shewanella involve the biofilm mode of growth on surfaces of solid minerals or electrodes. In this article, we first provide an overview of Shewanella biofilm biology with the focus on biofilm dynamics, biofilm matrix, and key signalling systems involved in Shewanella biofilm development. Then we review strategies recently exploited to engineer Shewanella biofilms to improve biofilm-mediated bioprocesses.  相似文献   

10.
The genus Shewanella contains Gram negative γ-proteobacteria capable of reducing a wide range of substrates, including insoluble metals and carbon electrodes. The utilization of insoluble respiratory substrates by bacteria requires a strategy that is quite different from a traditional respiratory strategy because the cell cannot take up the substrate. Electrons generated by cellular metabolism instead must be transported outside the cell, and perhaps beyond, in order to reduce an insoluble substrate. The primary focus of research in model organisms such as Shewanella has been the mechanisms underlying respiration of insoluble substrates. Electrons travel from the menaquinone pool in the cytoplasmic membrane to the surface of the bacterial cell through a series of proteins collectively described as the Mtr pathway. This review will focus on respiratory electron transfer from the surface of the bacterial cell to extracellular substrates. Shewanella sp. secrete redox-active flavin compounds able to transfer electrons between the cell surface and substrate in a cyclic fashion—a process termed electron shuttling. The production and secretion of flavins as well as the mechanisms of cell-mediated reduction will be discussed with emphasis on the experimental evidence for a shuttle-based mechanism. The ability to reduce extracellular substrates has sparked interest in using Shewanella sp. for applications in bioremediation, bioenergy, and synthetic biology.  相似文献   

11.
Fe(III)-respiring bacteria such as Shewanella species play an important role in the global cycle of iron, manganese, and trace metals and are useful for many biotechnological applications, including microbial fuel cells and the bioremediation of waters and sediments contaminated with organics, metals, and radionuclides. Several alternative electron transfer pathways have been postulated for the reduction of insoluble extracellular subsurface minerals, such as Fe(III) oxides, by Shewanella species. One such potential mechanism involves the secretion of an electron shuttle. Here we identify for the first time flavin mononucleotide (FMN) and riboflavin as the extracellular electron shuttles produced by a range of Shewanella species. FMN secretion was strongly correlated with growth and exceeded riboflavin secretion, which was not exclusively growth associated but was maximal in the stationary phase of batch cultures. Flavin adenine dinucleotide was the predominant intracellular flavin but was not released by live cells. The flavin yields were similar under both aerobic and anaerobic conditions, with total flavin concentrations of 2.9 and 2.1 μmol per gram of cellular protein, respectively, after 24 h and were similar under dissimilatory Fe(III)-reducing conditions and when fumarate was supplied as the sole electron acceptor. The flavins were shown to act as electron shuttles and to promote anoxic growth coupled to the accelerated reduction of poorly crystalline Fe(III) oxides. The implications of flavin secretion by Shewanella cells living at redox boundaries, where these mineral phases can be significant electron acceptors for growth, are discussed.  相似文献   

12.
Extracellular electron transfer via filamentous protein appendages called ‘microbial nanowires’ has long been studied in Geobacter and other bacteria because of their crucial role in globally-important environmental processes and their applications for bioenergy, biofuels, and bioelectronics. Thousands of papers thought these nanowires as pili without direct evidence. Here, we summarize recent discoveries that could help resolve two decades of confounding observations. Using cryo-electron microscopy with multimodal functional imaging and a suite of electrical, biochemical, and physiological studies, we find that rather than pili, nanowires are composed of cytochromes OmcS and OmcZ that transport electrons via seamless stacking of hemes over micrometers. We discuss the physiological need for two different nanowires and their potential applications for sensing, synthesis, and energy production.  相似文献   

13.
Several species of δ proteobacteria are capable of reducing insoluble metal oxides as well as other extracellular electron acceptors. These bacteria play a critical role in the cycling of minerals in subsurface environments, sediments, and groundwater. In some species of bacteria such as Geobacter sulfurreducens, the transport of electrons is proposed to be facilitated by filamentous fibers that are referred to as bacterial nanowires. These nanowires are polymeric assemblies of proteins belonging to the type IVa family of pilin proteins and are mainly comprised of one subunit protein, PilA. Here, we report the high resolution solution NMR structure of the PilA protein from G. sulfurreducens determined in detergent micelles. The protein is >85% α-helical and exhibits similar architecture to the N-terminal regions of other non-conductive type IVa pilins. The detergent micelle interacts with the first 21 amino acids of the protein, indicating that this region likely associates with the bacterial inner membrane prior to fiber formation. A model of the G. sulfurreducens pilus fiber is proposed based on docking of this structure into the fiber model of the type IVa pilin from Neisseria gonorrhoeae. This model provides insight into the organization of aromatic amino acids that are important for electrical conduction.  相似文献   

14.
Many enzymes involved in bioenergetic processes contain chains of redox centers that link the protein surface, where interaction with electron donors or acceptors occurs, to a secluded catalytic site. In numerous cases these redox centers can transfer only single electrons even when they are associated to catalytic sites that perform two-electron chemistry. These chains provide no obvious contribution to enhance chemiosmotic energy conservation, and often have more redox centers than those necessary to hold sufficient electrons to sustain one catalytic turnover of the enzyme. To investigate the role of such a redox chain we analyzed the transient kinetics of fumarate reduction by two flavocytochromes c3 of Shewanella species while these enzymes were being reduced by sodium dithionite. These soluble monomeric proteins contain a chain of four hemes that interact with a flavin adenine dinucleotide (FAD) catalytic center that performs the obligatory two electron–two proton reduction of fumarate to succinate. Our results enabled us to parse the kinetic contribution of each heme towards electron uptake and conduction to the catalytic center, and to determine that the rate of fumarate reduction is modulated by the redox stage of the enzyme, which is defined by the number of reduced centers. In both enzymes the catalytically most competent redox stages are those least prevalent in a quasi-stationary condition of turnover. Furthermore, the electron distribution among the redox centers during turnover suggested how these enzymes can play a role in the switch between respiration of solid and soluble terminal electron acceptors in the anaerobic bioenergetic metabolism of Shewanella.  相似文献   

15.
This paper summarizes the current knowledge of unsaturated organic acids in their role as terminal electron acceptors for reductase chains of anaerobic bacteria. The mechanisms and enzyme systems involved in the reduction of fumarate by Escherichia coli, Wolinella succinogenes, and some species of the genus Shewanella are considered. Particular attention is given to reduction of the double bond of the unnatural compound methacrylate by the δ-proteobacterium Geobacter sulfurreducens AM-1. Soluble periplasmic flavocytochromes c, found in bacteria of the genera Shewanella and Geobacter, are involved in the hydrogenation of fumarate (in Shewanella species) and methacrylate (in G. sulfurreducens AM-1). In E. coli and W. succinogenes, fumarate is reduced in cytosol by membrane-bound fumarate reductases. The prospects for research into organic acid reduction at double bonds in bacteria are discussed.  相似文献   

16.
Approximately 30 years ago, it was discovered that free-living bacteria isolated from cold ocean depths could produce polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) (20:5n-3) or docosahexaenoic acid (DHA) (22:6n-3), two PUFA essential for human health. Numerous laboratories have also discovered that EPA- and/or DHA-producing bacteria, many of them members of the Shewanella genus, could be isolated from the intestinal tracts of omega-3 fatty acid-rich marine fish. If bacteria contribute omega-3 fatty acids to the host fish in general or if they assist some bacterial species in adaptation to cold, then cold freshwater fish or habitats should also harbor these producers. Thus, we undertook a study to see if these niches also contained omega-3 fatty acid producers. We were successful in isolating and characterizing unique EPA-producing strains of Shewanella from three strictly freshwater native fish species, i.e., lake whitefish (Coregonus clupeaformis), lean lake trout (Salvelinus namaycush), and walleye (Sander vitreus), and from two other freshwater nonnative fish, i.e., coho salmon (Oncorhynchus kisutch) and seeforellen brown trout (Salmo trutta). We were also able to isolate four unique free-living strains of EPA-producing Shewanella from freshwater habitats. Phylogenetic and phenotypic analyses suggest that one producer is clearly a member of the Shewanella morhuae species and another is sister to members of the marine PUFA-producing Shewanella baltica species. However, the remaining isolates have more ambiguous relationships, sharing a common ancestor with non-PUFA-producing Shewanella putrefaciens isolates rather than marine S. baltica isolates despite having a phenotype more consistent with S. baltica strains.  相似文献   

17.
Most of the Shewanella species contain two periplasmic nitrate reductases (NAP-α and NAP-β), which is a unique feature of this genus. In the present study, the physiological function and evolutionary relationship of the two NAP systems were studied in the deep-sea bacterium Shewanella piezotolerans WP3. Both of the WP3 nap gene clusters: nap(napD1A1B1C) and nap(napD2A2B2) were shown to be involved in nitrate respiration. Phylogenetic analyses suggest that NAP-β originated earlier than NAP-α. Tetraheme cytochromes NapC and CymA were found to be the major electron deliver proteins, and CymA also served as a sole electron transporter towards nitrite reductase. Interestingly, a ΔnapA2 mutant with the single functional NAP-α system showed better growth than the wild-type strain, when grown in nitrate medium, and it had a selective advantage to the wild-type strain. On the basis of these results, we proposed the evolution direction of nitrate respiration system in Shewanella: from a single NAP-β to NAP-β and NAP-α both, followed by the evolution to a single NAP-α. Moreover, the data presented here will be very useful for the designed engineering of Shewanella for more efficient respiring capabilities for environmental bioremediation.  相似文献   

18.
19.
The bacterial diversity of a hot spring in Bakreshwar, India, was investigated by a culture-independent approach. 16S ribosomal DNA clones derived from the sediment samples were found to be associated with gamma-Proteobacteria, cyanobacteria, and green nonsulfur and low-GC gram-positive bacteria. The first of the above phylotypes cobranches with Shewanella, a well-known iron reducer. This phylogenetic correlation has been exploited to develop culture conditions for thermophilic iron-reducing microorganisms.  相似文献   

20.
Shewanella-containing microbial fuel cells (MFCs) typically use the fresh water wild-type strain Shewanella oneidensis MR-1 due to its metabolic diversity and facultative oxidant tolerance. However, S. oneidensis MR-1 is not capable of metabolizing polysaccharides for extracellular electron transfer. The applicability of Shewanella japonica (an agar-lytic Shewanella strain) for power applications was analyzed using a diverse array of carbon sources for current generation from MFCs, cellular physiological responses at an electrode surface, biofilm formation, and the presence of soluble extracellular mediators for electron transfer to carbon electrodes. Critically, air-exposed S. japonica utilizes biosynthesized extracellular mediators for electron transfer to carbon electrodes with sucrose as the sole carbon source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号