首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Apparent competition between prey is hypothesized to occur more frequently in environments with low densities of preferred prey, where predators are forced to forage for multiple prey items. In the arctic tundra, numerical and functional responses of predators to preferred prey (lemmings) affect the predation pressure on alternative prey (goose eggs) and predators aggregate in areas of high alternative prey density. Therefore, we hypothesized that predation risk on incidental prey (shorebird eggs) would increase in patches of high goose nest density when lemmings were scarce. To test this hypothesis, we measured predation risk on artificial shorebird nests in quadrats varying in goose nest density on Bylot Island (Nunavut, Canada) across three summers with variable lemming abundance. Predation risk on artificial shorebird nests was positively related to goose nest density, and this relationship was strongest at low lemming abundance when predation risk increased by 600% as goose nest density increased from 0 to 12 nests ha?1. Camera monitoring showed that activity of arctic foxes, the most important predator, increased with goose nest density. Our data support our incidental prey hypothesis; when preferred prey decrease in abundance, predator mediated apparent competition via aggregative response occurs between the alternative and incidental prey items.  相似文献   

2.
Nest predation is the leading cause of nesting failure. Thus it is a crucial area of research needed to inform conservation management and to understand the life history of birds. I surveyed the literature to review the identity of nest predators and the factors affecting nest predation, in Australia using 177 studies. Overall, 94 nest predators were identified when incorporating artificial nests, 69 without. Using only natural nests, the Pied Currawong Strepera graculina was the most frequently reported nest predator. Five nest predators, including Pied Currawong, depredated 40% of the prey measured by the number of prey species taken. Yet, 60% of predation was carried out by the other 64 species, which included by the order of importance birds, mammals, reptiles, frogs and ants. Predation at cup and dome nests was more frequently reported than at burrow, ground and hollow nests. Only 28% of predators were observed at both artificial and natural nests suggesting artificial nests have limited, but not negligible, ability as tools for identifying predators. There was a highly significant and positive correlation between predator and prey masses. The predator prey mass ratio was calculated with a mean 0.25 and a median 0.22, a result closely matching with the proportional size of prey taken by raptors. The finding that predator size is proportional to prey opens a pathway for more life history and conservation research.  相似文献   

3.
Unlike birds and mammals, in many reptiles the temperature experienced by a developing embryo determines its gonadal sex. To understand how temperature-dependent sex determination (TSD) evolves, we must first determine the nature of genetic variation for sex ratio. Here, we analyze among-family variation for sex ratio in three TSD species: the American alligator (Alligator mississipiensis), the common snapping turtle (Chelydra serpentina) and the painted turtle (Chrysemys picta). Significant family effects and significant temperature effects were detected in all three species. In addition, family-by-temperature interactions were evident in the alligator and the snapping turtle, but not in the painted turtle. Overall, the among-family variation detected in this study indicates potential for sex-ratio evolution in at least three reptiles with TSD. Consequently, climate change scenarios that are posited on the presumption that sex-ratio evolution in TSD reptiles is genetically constrained may require reevaluation.  相似文献   

4.
Reducing predation by introduced predators on seasonally vulnerable prey is of interest to biodiversity and game managers around the world. In Australia, the Red Fox (Vulpes vulpes) is a significant predator of freshwater turtle nests, destroying up to 93% of nests. We used a nonrandomized intervention study to assess the effectiveness of a short‐term (3‐week) but broad‐scale baiting operation in reducing the level of nest predation on artificial turtle nests around a complex lake system during a major flooding event in north‐western Victoria. Estimates of fox occupancy declined from 0.58 (0.44–0.70 95% CI) to 0.34 (0.21–0.46 95% CI) following fox control. Modelling of nest‐survival rates indicated there was no significant change in survival rates. Effective short‐term predator control to protect seasonally vulnerable prey is desirable and achievable. Knowledge of underlying predator density, predator–bait encounter and consumption rates, and the optimal duration of short‐term control is needed to reduce the risk to prey.  相似文献   

5.
Most forest ecosystems contain a diverse community of top‐level predators. How these predator species interact, and how their interactions influence their spatial distribution is still poorly understood. Here we studied interactions among top predators in a guild of diurnal forest raptors in order to test the hypothesis that predation among competing predators (intraguild predation) significantly affects the spatial distribution of predator species, causing subordinate species to nest farther away from the dominant ones. The study analyzed a guild in southwestern Europe comprising three raptor species. For 8 years we studied the spatial distribution of used nests, breeding phenology, intraguild predation, territory occupancy, and nest‐builder species and subsequent nest‐user species. The subordinate species (sparrowhawk Accipiter nisus) nested farther away from the dominant species (goshawk A. gentilis), which preyed on sparrowhawks but not on buzzards Buteo buteo, and closer to buzzards, with which sparrowhawks do not share many common prey. This presumably reflects an effort to seek protection from goshawks. This potential positive effect of buzzards on sparrowhawks may be reciprocal, because buzzards benefit from old sparrowhawk nests, which buzzards used as a base for their nests, and from used sparrowhawk nests, from which buzzards stole prey. Buzzards occasionally occupied old goshawk nests. These results support our initial hypothesis that interspecific interactions within the raptor guild influence the spatial distribution of predator species in forest ecosystems, with intraguild predation as a key driver. We discuss several mechanisms that may promote the coexistence of subordinate and dominant predators and the spatial assembly of this raptor guild: spatial refuges, different breeding phenology, spatial avoidance, low territory occupancy between neighboring nesting territories, nest concealment and protection, and diet segregation.  相似文献   

6.
Avian nest success often varies seasonally and because predation is the primary cause of nest failure, seasonal variation in predator activity has been hypothesized to explain seasonal variation in nest success. Despite the fact that nest predator communities are often diverse, recent evidence from studies of snakes that are nest predators has lent some support to the link between snake activity and nest predation. However, the strength of the relationship has varied among studies. Explaining this variation is difficult, because none of these studies directly identified nest predators, the link between predator activity and nest survival was inferred. To address this knowledge gap, we examined seasonal variation in daily survival rates of 463 bird nests (of 17 bird species) and used cameras to document predator identity at 137 nests. We simultaneously quantified seasonal activity patterns of two local snake species (N = 30 individuals) using manual (2136 snake locations) and automated (89,165 movements detected) radiotelemetry. Rat snakes (Pantherophis obsoletus), the dominant snake predator at the site (~28% of observed nest predations), were most active in late May and early June, a pattern reported elsewhere for this species. When analyzing all monitored nests, we found no link between nest predation and seasonal activity of rat snakes. When analyzing only nests with known predator identities (filmed nests), however, we found that rat snakes were more likely to prey on nests during periods when they were moving the greatest distances. Similarly, analyses of all monitored nests indicated that nest survival was not linked to racer activity patterns, but racer‐specific predation (N = 17 nests) of filmed nests was higher when racers were moving the greatest distances. Our results suggest that the activity of predators may be associated with higher predation rates by those predators, but that those effects can be difficult to detect when nest predator communities are diverse and predator identities are not known. Additionally, our results suggest that hand‐tracking of snakes provides a reliable indicator of predator activity that may be more indicative of foraging behavior than movement frequency provided by automated telemetry systems.  相似文献   

7.
Variation in nest predation levels associated with rainforest fragmentation (edge effects) was assessed in Australia's Wet Tropics bioregion. Artificial nests were placed in the forest understorey at seven edge sites where continuous forest adjoined pasture, seven interiors (about 1 km from the edge), and six linear riparian forest remnants (50–100 m wide) that were connected to continuous forest. Four nest types were also compared, representing different combinations of two factors; height (ground, shrub) and shape (open, domed). At each site, four nests of each type, containing one quail egg and two model plasticine eggs, were interspersed about 15 m apart within a 160 m transect during September–October 2001. Predators were identified from marks on the plasticine eggs. The overall depredation rate was 66.5% of 320 nests' contents damaged over a three-day period. Large rodents, especially the rat Uromys caudimaculatus, and birds, especially the spotted catbird Ailuroedus melanotis, were the main predators. Mammals comprised 56.5% and birds 31.0% of predators, with 12.5% of unknown identity. The depredation rate did not vary among site-types, or between open and domed nests, and there were no statistically significant interactions. Nest height strongly affected depredation rates by particular types of predator; depredation rates by mammals were highest at ground nests, whereas attacks by birds were most frequent at shrub nests. These effects counterbalanced so that overall there was little net effect of nest height. Mammals accounted for 78.4% of depredated ground nests and birds for at least 47.4% of shrub nests (and possibly up to 70.1%). The main predators were species characteristic of rainforest, rather than habitat generalists, open-country or edge specialists. For birds that nest in the tropical rainforest understorey of the study region, it is unlikely that edges and linear remnants presently function as ecological population sinks due to mortality associated with increased nest predation.  相似文献   

8.
This study examined predator faunas of artificial ground and shrub nests and whether nest predation risk was influenced by nest site, proximity to forest edge, and habitat structure in 38 grassland plots in south-central Sweden. There was a clear separation of predator faunas between shrub and ground nests as identified from marks in plasticine eggs. Corvids accounted for almost all predation on shrub nests whereas mammals mainly depredated ground nests. Nest predation risk was significantly greater for shrub than for ground nests at all distances (i.e. 0, 15 and 30 m) from the forest edge. However, nest predation risk was not significantly related to distance to forest edge, but significantly increased with decreasing distance to the nearest tree. Different corvid species robbed nests at different distances from the forest edge, with jays robbing nests closest to edges. We conclude that the relationship between the predation risk of grassland bird nests and distance to the forest edge mainly depends on the relative importance of different nest predator species and on the structure of the forest edge zone. A review of published articles on artificial shrub and ground nest predation in the temperate zone corroborated the results of our own study, namely that shrub nests experienced higher rates of depredation in open habitats close to the forest edge and that avian predators predominantly robbed shrub nests. Furthermore, the review results showed that predation rates on nests in general are highest <50 m inside the forest and lower in open as well as forest interior habitats (≥50 m from the edge). Received: 16 March 1998 / Accepted: 30 July 1998  相似文献   

9.
Eggs from three snapping turtles (Chelydra serpentina) were divided between two natural nests in a factorial experiment assessing the role of the nest environment as a cause for variation in body size and energy reserves of hatchlings at our study site in northcentral Nebraska. Nest # 1 was located in an unshaded area on the south side of a high sandhill, whereas nest #2 was located in an unshaded area on level ground. Eggs in nest #1 increased in mass over the course of incubation, with eggs at the bottom of the nest gaining more mass than eggs nearer to the surface. In constrast, eggs in nest #2 lost mass during incubation, with eggs at the bottom declining less in mass than eggs at the top of the cavity. Hatchlings from nest #1 were much larger (but contained smaller masses of unused yolk) than hatchlings from nest #2. Additionally, eggs from the lower layers in both nests tended to produce larger hatchings (but with smaller masses of unused yolk) than eggs from the upper layers. Thus, ecologically important variation in body size and nutrient reserves of hatchling snapping turtles results from variation in the environment among and within nests.  相似文献   

10.
In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius collurio) that recently expanded its breeding habitat into open areas in plantation forests. This passerine bird shows a strong preference for forest habitat, but it has a higher nest success in farmland. We tested whether higher abundance of nest predators in the preferred habitat or, alternatively, a decoupling of nest predator abundance and nest predation explained this observed pattern of maladaptive habitat selection. More than 90% of brood failures were attributed to nest predation. Nest predator abundance was more than 50% higher in farmland, but nest predation was 17% higher in forest. Differences between nest predation on actual shrike nests and on artificial nests suggested that parent shrikes may facilitate nest disclosure for predators in forest more than they do in farmland. The level of caution by parent shrikes when visiting their nest during a simulated nest predator intrusion was the same in the two habitats, but nest concealment was considerably lower in forest, which contributes to explaining the higher nest predation in this habitat. We conclude that a decoupling of nest predator abundance and nest predation may create ecological traps in human-modified environments.  相似文献   

11.
Capsule Avian predators are principally responsible.

Aims To document the fate of Spotted Flycatcher nests and to identify the species responsible for nest predation.

Methods During 2005–06, purpose-built, remote, digital nest-cameras were deployed at 65 out of 141 Spotted Flycatcher nests monitored in two study areas, one in south Devon and the second on the border of Bedfordshire and Cambridgeshire.

Results Of the 141 nests monitored, 90 were successful (non-camera nests, 49 out of 76 successful, camera nests, 41 out of 65). Fate was determined for 63 of the 65 nests monitored by camera, with 20 predation events documented, all of which occurred during daylight hours. Avian predators carried out 17 of the 20 predations, with the principal nest predator identified as Eurasian Jay Garrulus glandarius. The only mammal recorded predating nests was the Domestic Cat Felis catus, the study therefore providing no evidence that Grey Squirrels Sciurus carolinensis are an important predator of Spotted Flycatcher nests. There was no evidence of differences in nest survival rates at nests with and without cameras. Nest remains following predation events gave little clue as to the identity of the predator species responsible.

Conclusions Nest-cameras can be useful tools in the identification of nest predators, and may be deployed with no subsequent effect on nest survival. The majority of predation of Spotted Flycatcher nests in this study was by avian predators, principally the Jay. There was little evidence of predation by mammalian predators. Identification of specific nest predators enhances studies of breeding productivity and predation risk.  相似文献   

12.
We monitored behavioral responses of cold-acclimated hatchling painted turtles (Chrysemys picta) indigenous to Nebraska and hatchling snapping turtles (Chelydra serpentina) indigenous to Nebraska and Arkansas during cooling (0.1°C/min) to temperatures as low as −19°C. All turtles made exploratory movements during cooling and locomotion occurred at temperatures as low as −2 to −4°C, but C. picta maintained relatively higher levels of locomotor activity than C. serpentina, and no differences in motility occurred between northern and southern groups of C. serpentina. Slow movements of the head and limbs were observed in supercooled hatchling C. picta at temperatures as low as −10°C, whereas at about −5°C, C. serpentina exhibited an increase in spontaneous motor activity followed by muscle contracture, immobility, and spontaneous freezing. C. picta spontaneously froze at about −16°C without exhibiting cold contracture, suggesting that they are better adapted to survive exposure to extreme cold.  相似文献   

13.
Predation on eggs is an important source of mortality for many long-lived organisms, but causes of egg mortality from specific predators remain poorly known in most cases. Understanding the identity of predators, and the rates and determinants of their effects on a cohort of recruits, can provide a valuable background for attempts to exploit, control or conserve populations. We used remotely triggered cameras to study predation on the nests of freshwater crocodiles (Crocodylus johnstoni) inhabiting Lake Argyle, in tropical Australia. We also supplemented our work on natural crocodile nests with artificial nests. Overall, 80 of 111 natural nests were opened by predators, and predation occurred throughout the study period (7 weeks). Unlike in other parts of the species’ range, most nest-robbers were dingoes (Canis lupus dingo, responsible for 98% of all predator visits in the northern sites, and 54% in the Ord River site), with minimal additional predation by reptiles and birds. Contrary to expectation, rates of nest predation were not influenced by spatial clumping of nests: the probability of predation per nest did not change with total numbers of nests laid in an area, and artificially aggregated versus dispersed nests experienced similar levels of predation. Nest vulnerability was linked to abiotic features including slope of surrounding banks, compactness of nesting substrate, and distance from the nearest forest. Abundant aquatic food resources support a large crocodile population, but a lack of suitable nest-sites forces the crocodiles to concentrate nesting in small areas readily accessible to wide-ranging nest predators. Collectively, our results suggest that distinctive attributes of the lakeside landscape alter predator guilds and fashion unique predator–prey interactions.  相似文献   

14.

Several alien predator species have spread widely in Europe during the last five decades and pose a potential enhanced risk to native nesting ducks and their eggs. Because predation is an important factor limiting Northern Hemisphere duck nest survival, we ask the question, do alien species increase the nest loss risk to ground nesting ducks? We created 418 artificial duck nests in low densities around inland waters in Finland and Denmark during 2017–2019 and monitored them for seven days after construction using wildlife cameras to record whether alien species visit and prey on the nests more often than native species. We sampled various duck breeding habitats from eutrophic agricultural lakes and wetlands to oligotrophic lakes and urban environments. The results differed between habitats and the two countries, which likely reflect the local population densities of the predator species. The raccoon dog (Nyctereutes procyonoides), an alien species, was the most common mammalian nest visitor in all habitats and its occurrence reduced nest survival. Only in wetland habitats was the native red fox (Vulpes vulpes) an equally common nest visitor, where another alien species, the American mink (Neovison vison), also occurred among nest visitors. Although cautious about concluding too much from visitations to artificial nests, these results imply that duck breeding habitats in Northern Europe already support abundant and effective alien nest predators, whose relative frequency of visitation to artificial nests suggest that they potentially add to the nest predation risk to ducks over native predators.

  相似文献   

15.
Squamate reptiles rely heavily on visual and chemical cues to detect their prey, so we expected yellow‐spotted goannas (Varanus panoptes) which are predators of sea turtle nests on mainland beaches in northern Australia would use these cues to find sea turtle nests. Ghost crabs (Ocypode ceratophthalmus and Ocypode cordimanus) are also common on Australian sea turtle nesting beaches and frequently burrow into sea turtle nests. However, the potential for ghost crab burrowing activity at sea turtle nests to signal the location of a nest to goannas has not been investigated. Here, we used camera traps and presence of tracks at nests to record goanna activity around selected nests during the incubation period and 10 days after hatchling turtles emerged from their nests. We also recorded the number of ghost crab burrows around nests to evaluate ghost crab activity. Our results indicated that nest discovery by goannas was independent of nest age, but that the nest visitation rate of goannas and crabs increased significantly after a nest had been opened by a goanna or after hatchlings had emerged from the nest. There was no apparent connection between ghost crab burrows into a nest and the likelihood of that nest being predated by goannas.  相似文献   

16.
Capsule: Studies of nest predation using artificial nests need to consider the effect of egg size on the types of predator that are detected.

Aims: To estimate the nest predation rate in the Patagonian temperate forest and evaluate the influence of egg size on predator guild.

Methods: On different plant species, we placed 108 nests each containing eggs of either Atlantic Canary Serinus canaria or Common Quail Coturnix coturnix, and a model clay egg of equal size to the real egg. Nest predators were identified from the marks left on the clay eggs or by videos recorded using camera traps.

Results: 86% of the nests were predated. Birds, mainly Chimango Caracara Milvago chimango, were the main nest predators. A marsupial, the Monito del Monte Dromiciops gliroides, and rodents also contributed to nest predation. Nest predation rates were similar for both egg sizes but the nest predator guild was different. Birds and rodents preyed on both eggs but the Monito del Monte consumed mainly small eggs.

Conclusion: Egg size did not influence the rate of nest predation but, instead, affected the nest predator guild. Consequently, in order to avoid underestimating the impacts of small predators, egg size should be considered in studies of nest predation.  相似文献   

17.
Huang WS  Pike DA 《Oecologia》2012,168(1):35-42
Nest-site selection involves tradeoffs between the risk of predation (on females and/or nests) and nest-site quality (microenvironment), and consequently suitable nesting sites are often in limited supply. Interactions with “classical” predators (e.g., those not competing for shared resources) can strongly influence nest-site selection, but whether intraguild predation also influences this behavior is unknown. We tested whether risk of predation from an intraguild predator [the diurnal scincid lizard Eutropis (Mabuya) longicaudata] influences nest-site selection by its prey (the nocturnal gecko Gekko hokouensis) on Orchid Island, Taiwan. These two species putatively compete for shared resources, including invertebrate prey and nesting microhabitat, but the larger E. longicaudata also predates G. hokouensis (but not its hard-shelled eggs). Both species nested within a concrete wall containing a series of drainage holes that have either one (“closed-in”) or two openings (“open”). In allopatry, E. longicaudata preferred to nest within holes that were plugged by debris (thereby protecting eggs from water intrusion), whereas G. hokouensis selected holes that were open at both ends (facilitating escape from predators). When we experimentally excluded E. longicaudata from its preferred nesting area, G. hokouensis not only nested in higher abundances, but also modified its nest-site selection, such that communal nesting was more prevalent and both open and closed-in holes were used equally. Egg viability was unaffected by the choice of hole type, but was reduced slightly (by 7%) in the predator exclusion area (presumably due to higher local incubation temperatures). Our field experiment demonstrates that intraguild predators can directly influence the nest density of prey by altering maternal nest-site selection behavior, even when the predator and prey are active at different times of day and the eggs are not at risk of predation.  相似文献   

18.
Orientation and dispersal to suitable habitat affects fitness in many animals, but the factors that govern these behaviors are poorly understood. In many turtle species, hatchlings must orient and disperse to suitable aquatic habitat immediately after emergence from subterranean nests. Thus, the location of nest sites relative to aquatic habitats ideally should be associated with the direction of hatchling dispersal. At our study site, painted turtles (Chrysemys picta) nest to the west (on an island) and east (on the mainland) of a wetland, which determines the direction that hatchlings must travel to reach suitable aquatic habitat. To determine if hatchling orientation is intrinsically influenced by the location where their mothers nest, we employed a two-part cross-fostering experiment in the field, whereby half the eggs laid in mainland nests were swapped with half the eggs laid in island nests. Moreover, because C. picta hatchlings overwinter inside their nests, we performed a second cross-fostering experiment to fully decouple the effects of (1) the maternally chosen nest location, (2) the embryonic developmental location, and (3) the overwinter location. We released hatchlings into a circular arena in the field and found that turtles generally dispersed in a westerly direction, regardless of the maternally chosen nest location and independent of the locations of embryonic development and overwintering. Although this westerly direction was towards suitable aquatic habitat, we could not distinguish whether naïve hatchling turtles (i) use environmental cues/stimuli to orient their movement, or (ii) have an intrinsic bias to orient west in the absence of stimuli. Nevertheless, these findings suggest that the orientation behavior of naïve hatchling turtles during terrestrial dispersal is not dependent upon the location of maternally-chosen nest sites.  相似文献   

19.
We studied whether the presence of breeding kestrels (Falco tinnunculus) affected nest predation and breeding habitat selection of curlews (Numenius arquata) on an open flat farmland area in western Finland. We searched for nests of curlews from an area of 6 km2 during 1985–1993. For each nest found, we recorded the fate of the nest, and the distance to the nearest kestrel nest and to the nearest perch. We measured the impact of breeding kestrels on nest predation by constructing artificial curlew nests in the vicinity of ten kestrel nests in 1993. Curlew nests were closer to kestrel nests than expected from random distribution, eventhough kestrels fed on average 5.5% of curlew chick production. Predation risk by kestrels was lower than predation risk by corvids and other generalist predators, which predated 9% of curlew nests surviving farming practices and an unknown proportion of chicks. Artificial nest experiment showed that nest predation was lower close to kestrel nests than further away suggesting that the breeding association of curlews and kestrels was a behavioural adaptation against nest predation. Thus, the presence of a predator may sometimes be beneficial to prey, and prey animals have behavioural adaptations to these situations.  相似文献   

20.
Although population cycles of rodents are geographically widespread and occur in a number of rodent species, higher‐order food web interactions mediated by predator–rodent dynamics have primarily been described from boreal and arctic biomes. During periods of low rodent abundance, predators may switch to alternative prey, which may affect other predators directly or indirectly. Using a long‐term dataset, we assessed the frequency of Pine Marten Martes martes predation on the nests of Tengmalm's Owl Aegolius funereus during periods of fluctuating rodent abundance in Central Europe. The number of nests predated by Pine Martens was positively correlated with the annual number of nests available. The probability of predation by Pine Martens on Tengmalm's Owl nests decreased with increasing spring abundance index of Apodemus mice, but was not related to the abundance index of Myodes and Microtus voles, pooled rodent abundance or age of the nestbox. Additionally, we found no relationship between the breeding frequency (i.e. the number of nesting attempts per nestboxes available) and an abundance index of Microtus and Myodes voles, Apodemus mice or overall rodent abundance. Our results demonstrate, for the first time in a temperate area, that during periods of low Apodemus mouse abundance, the switching response of an opportunistic mammalian predator can lead to indirect food web interactions through an increase in nest predation on a sympatric avian predator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号