首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
No single equation adequately describes the allometric relation between body mass and BMR for mammals. Least squares regression of log-transformed data for 248 eutherian species results in a line with a slope (-0.30) significantly different from that of Kleiber's line (-0.25). Interordinal comparisons of least squares regressions of log-transformed BMR and mass suggest that the Insectivora have a significantly steeper slope to their allometric relationship than do most other orders, while the non-insectivore orders are statistically homogeneous with respect to slope. With respect to elevation, Edentata have the lowest BMRs; Marsupialia, Primates and Chiroptera are indistinguishable from each other but above the edentates; Primates, Chiroptera, Rodentia, Lagomorpha and Carnivora form the next highest homogeneous grouping; and Artiodactyla have the highest BMRs, significantly greater than all but Lagomorpha and Carnivora. Analysis of intraordinal variation within the Rodentia suggests significant heterogeneity among families in BMR-mass allometry.  相似文献   

2.
Variation in static allometry, the power relationship between character size and body size among individuals at similar developmental stages, remains poorly understood. We tested whether predation or other ecological factors could affect static allometry by comparing the allometry between the caudal fin length and the body length in adult male guppies (Poecilia reticulata) among populations from different geographical areas, exposed to different predation pressures. Neither the allometric slopes nor the allometric elevations (intercept at constant slope) changed with predation pressure. However, populations from the Northern Range in Trinidad showed allometry with similar slopes but lower intercepts than populations from the Caroni and the Oropouche drainages. Because most of these populations are exposed to predation by the prawn Macrobrachium crenulatum, we speculated that the specific selection pressures exerted by this predator generated this change in relative caudal fin size, although effects of other environmental factors could not be ruled out. This study further suggests that the allometric elevation is more variable than the allometric slope.  相似文献   

3.
Allometric relationships describe the proportional covariation between morphological, physiological, or life‐history traits and the size of the organisms. Evolutionary allometries estimated among species are expected to result from species differences in ontogenetic allometry, but it remains uncertain whether ontogenetic allometric parameters and particularly the ontogenetic slope can evolve. In bovids, the nonlinear evolutionary allometry between horn length and body mass in males suggests systematic changes in ontogenetic allometry with increasing species body mass. To test this hypothesis, we estimated ontogenetic allometry between horn length and body mass in males and females of 19 bovid species ranging from ca. 5 to 700 kg. Ontogenetic allometry changed systematically with species body mass from steep ontogenetic allometries over a short period of horn growth in small species to shallow allometry with the growth period of horns matching the period of body mass increase in the largest species. Intermediate species displayed steep allometry over long period of horn growth. Females tended to display shallower ontogenetic allometry with longer horn growth compared to males, but these differences were weak and highly variable. These findings show that ontogenetic allometric slope evolved across species possibly as a response to size‐related changes in the selection pressures acting on horn length and body mass.  相似文献   

4.
Mats  Bjourklund 《Journal of Zoology》1994,233(4):657-668
Static nestling, adult and ontogenetic allometry were analysed in three species of finches. Static nestling allometry was very similar across age in early ontogeny and among species and could be approximated by a single matrix of phenotypic variances and covariances. The first eigenvector of this matrix showed negative allometry of bill and tarsus to mass, but positive for wing length to mass. Adult static allometry was also very similar among species, but differed from nestling pattern. In adults the bill had a positive allometry in relation to tarsus and wing, but negative to mass, while tarsus and wing were unrelated to mass. The ontogenetic allometry in each species was very similar to nestling static allometry. Viewed in relation to final size, bill characters grew more slowly than body characters, but for a longer time, which created the difference between adult and nestling allometric patterns. There were differences among species both with regard to elevation and slope of allometric coefficients, suggesting that the differences among species came about by changes in the three fundamental ontogenetic parameters namely growth rate, onset of growth and offset of growth.  相似文献   

5.
How selection pressures acting within species interact with developmental constraints to shape macro‐evolutionary patterns of species divergence is still poorly understood. In particular, whether or not sexual selection affects evolutionary allometry, the increase in trait size with body size across species, of secondary sexual characters, remains largely unknown. In this context, bovid horn size is an especially relevant trait to study because horns are present in both sexes, but the intensity of sexual selection acting on them is expected to vary both among species and between sexes. Using a unique data set of sex‐specific horn size and body mass including 91 species of bovids, we compared the evolutionary allometry between horn size and body mass between sexes while accounting for both the intensity of sexual selection and phylogenetic relationship among species. We found a nonlinear evolutionary allometry where the allometric slope decreased with increasing species body mass. This pattern, much more pronounced in males than in females, suggests either that horn size is limited by some constraints in the largest bovids or is no longer the direct target of sexual selection in very large species.  相似文献   

6.
Recent studies have interpreted intraspecific divergence in relative head sizes in snakes as evidence for adaptation of the trophic apparatus in gape-limited predators to local prey size. However, such variation might also arise from non-adaptive processes (such as allometry, correlated response, genetic drift, or non-adaptive phenotypic plasticity). We test predictions from these alternative hypotheses using data on the allometric relationship between head size and body size in two wide-ranging snake species: eight populations of adders ( Vipera berus ) and 30 populations of common gartersnakes ( Thamnophis sirtalis ). Our data enable strong rejection of the alternative (non-adaptive) hypotheses, because the relationship between head and body size differed significantly among populations, the geographic distance separating pairs of populations explained less than 1.5% of their divergence in allometric coefficients, and the within-population allometric coefficients were higher than the among-population coefficients in each species. In addition, the geographical variability of allometric coefficients in females did not parallel that in males, suggesting that allometric coefficients have evolved independently in the two sexes. Phenotypic plasticity also cannot explain the data, because laboratory studies show that the allometric relationship between head size and body size is relatively insensitive to differing growth rates. We conclude that the intraspecific head size divergence in these snakes is better explained by spatially heterogeneous selection to optimize prey handling ability, than by non-adaptive processes.  相似文献   

7.
1. Larvae of tortoise beetles present exaggerated body parts in association with an abdominal shield, which is made of faeces and exuviae that are deposited on the urogomphi throughout ontogeny. Growth trajectories and scaling relationships of these functional structures associated with the shield, if any, are unknown. 2. This study of Gratiana spadicea first tested, under field conditions, whether there is adaptive value associated with the shield regarding protection against predation and sunlight. Then, under laboratory conditions, the growth trajectory and allometric relationships among body parts were investigated, including scoli, individual and apparent furcae, and shield. The influence of food deprivation on the development of these structures was also determined. 3. Findings from previous studies were confirmed, suggesting that the adaptive value assigned to the shield is related to protection against predators. The present study demonstrated for the first time that the shield acts as a parasol in cassidines, decreasing the exposure of their larval body to sunlight. The scoli and apparent furca are exaggerated structures of G. spadicea, the development of which involves allometric growth and greater energetic investment (positive allometry) during ontogeny. There was proportionally less energetic investment for somatic construction of individual furca (negative allometry) due to the accumulation of the exuviae. 4. The possible consequences, in terms of developmental costs and survivorship benefits associated with the evolution of such exaggerated structures, are discussed.  相似文献   

8.
We analysed linear measurements on various parts of the body and the configuration of 11 landmarks on the wing in a large sample of Ephedrus persicae that had emerged from 13 aphid host species, to assess whether static allometry (a measure of the scaling relationship between traits in a population of individuals at the same ontogenetic stage) accounts for variation in body shape. The analysed specimens came from several localities in Europe, Asia Minor, Japan and South America, and cover a large portion of the distribution area of E. persicae. We found that allometry accounts for variation in body shape among different biotypes within the E. persicae group. The allometric slopes for head size (HD), petiolus width (PETW), mesoscutum width (MSC), and ovipositor sheath length (OVPL) diverged significantly among biotypes, indicating biotype-specific allometries. The analysis of allometric variation in wing shape showed that the pattern and direction of allometric changes also differed among individuals that had emerged from different hosts. Our results (observed divergences in the directions of allometric slopes of particular morphometric traits and wing shape) suggest that allometric relations within E. persicae are not conserved, so that allometry itself changes, evolving differently in aphid parasitoids that emerge from different hosts.  相似文献   

9.
Allometric relationships between sexually selected traits and body size have been extensively studied in recent decades. While sexually selected traits generally display positive allometry, a few recent reports have suggested that allometric relationships are not always linear. In male cervids, having both long antlers and large size provides benefits in terms of increased mating success. However, such attributes are costly to grow and maintain, and these costs might constrain antler length from increasing at the same rate as body mass in larger species if the quantity of energy that males can extract from their environment is limiting. We tested for possible nonlinearity in the relationship between antler size and body mass (on a log–log scale) among 31 cervids and found clear deviation from linearity in the allometry of antler length. Antler length increased linearly until a male body mass threshold at approximately 110 kg. Beyond this threshold, antler length did not change with increasing mass. We discuss this evidence of nonlinear allometry in the light of life-history theory and stress the importance of testing for nonlinearity when studying allometric relationships.  相似文献   

10.
Allometry for sexual size dimorphism (SSD) is common in animals, but how different evolutionary processes interact to determine allometry remains unclear. Among related species SSD (male : female) typically increases with average body size, resulting in slopes of less than 1 when female size is regressed on male size: an allometric relationship formalized as 'Rensch's rule' . Empirical studies show that taxa with male-biased SSD are more likely to satisfy Rensch's rule and that a taxon's mean SSD is negatively correlated with allometric slope, implicating sexual selection on male size as an important mechanism promoting allometry for SSD. I use body length (and life-history) data from 628 (259) populations of seven species of anadromous Pacific salmon and trout (Oncorhynchus spp.) to show that in this genus life-history variation appears to regulate patterns of allometry both within and between species. Although all seven species have intraspecific allometric slopes of less than 1, contrary to expectation slope is unrelated to species' mean SSD, but is instead negatively correlated with two life-history variables: the species' mean marine age and variation in marine age. Second, because differences in marine age among species render SSD and body size uncorrelated, the interspecific slope is isometric. Together, these results provide an example of how evolutionary divergence in life history among related species can affect patterns of allometry for SSD across taxonomic scales.  相似文献   

11.
Growth in common bottlenose dolphins (Tursiops truncatus) was investigated through examination of sex‐specific, ontogenetic changes in the mass of 38 discrete body compartments, utilizing stranded dolphins in good body condition (n = 145). Ontogenetic allometry and the body composition technique were used to quantitatively describe growth patterns. Although adult males were significantly larger than adult females in total body mass (TBM) and total length, overall patterns of growth were remarkably similar between sexes. The integument, locomotor muscle, and vertebral column together represented 50%–58% of TBM across all life history categories, although their relative contributions varied ontogenetically. Young dolphins invested the greatest percentage of TBM in integument, while locomotor muscle was the single largest body component in adults. In both sexes (1) most muscle groups displayed positive allometry, (2) most skeletal elements displayed negative allometric or isometric growth, (3) most abdominal viscera associated with digestion displayed positive allometry, and (4) the brain displayed negative allometric growth. Reproductive tissues exhibited the highest rates of growth in both sexes, and increased as a percentage of TBM with maturity. This study provides an integrated view of bottlenose dolphin growth and a quantitative baseline of body composition for future monitoring of this sentinel species of ecosystem health.  相似文献   

12.
Broad geographic patterns in egg and clutch mass are poorly described, and potential causes of variation remain largely unexamined. We describe interspecific variation in avian egg and clutch mass within and among diverse geographic regions and explore hypotheses related to allometry, clutch size, nest predation, adult mortality, and parental care as correlates and possible explanations of variation. We studied 74 species of Passeriformes at four latitudes on three continents: the north temperate United States, tropical Venezuela, subtropical Argentina, and south temperate South Africa. Egg and clutch mass increased with adult body mass in all locations, but differed among locations for the same body mass, demonstrating that egg and clutch mass have evolved to some extent independent of body mass among regions. A major portion of egg mass variation was explained by an inverse relationship with clutch size within and among regions, as predicted by life-history theory. However, clutch size did not explain all geographic differences in egg mass; eggs were smallest in South Africa despite small clutch sizes. These small eggs might be explained by high nest predation rates in South Africa; life-history theory predicts reduced reproductive effort under high risk of offspring mortality. This prediction was supported for clutch mass, which was inversely related to nest predation but not for egg mass. Nevertheless, clutch mass variation was not fully explained by nest predation, possibly reflecting interacting effects of adult mortality. Tests of the possible effects of nest predation on egg mass were compromised by limited power and by counterposing direct and indirect effects. Finally, components of parental investment, defined as effort per offspring, might be expected to positively coevolve. Indeed, egg mass, but not clutch mass, was greater in species that shared incubation by males and females compared with species in which only females incubate eggs. However, egg and clutch mass were not related to effort of parental care as measured by incubation attentiveness. Ecological and life-history correlates of egg and clutch mass variation found here follow from theory, but possible evolutionary causes deserve further study.  相似文献   

13.
Morphological traits often covary within and among species according to simple power laws referred to as allometry. Such allometric relationships may result from common growth regulation, and this has given rise to the hypothesis that allometric exponents may have low evolvability and constrain trait evolution. We formalize hypotheses for how allometry may constrain morphological trait evolution across taxa, and test these using more than 300 empirical estimates of static (within‐species) allometric relations of animal morphological traits. Although we find evidence for evolutionary changes in allometric parameters on million‐year, cross‐species time scales, there is limited evidence for microevolutionary changes in allometric slopes. Accordingly, we find that static allometries often predict evolutionary allometries on the subspecies level, but less so across species. Although there is a large body of work on allometry in a broad sense that includes all kinds of morphological trait–size relationships, we found relatively little information about the evolution of allometry in the narrow sense of a power relationship. Despite the many claims of microevolutionary changes of static allometries in the literature, hardly any of these apply to narrow‐sense allometry, and we argue that the hypothesis of strongly constrained static allometric slopes remains viable.  相似文献   

14.
Males of the horned beetle Onthophagus acuminatus Har. (Coleoptera: Scarabaeidae) exhibit horn length dimorphism due to a sigmoidal allometric relationship between horn length and body size: the steep slope of the allometry around the inflection of the sigmoid curve separates males into two groups; those larger than this inflection possess long horns, and those smaller than this inflection have short horns or lack horns. I examined the genetic basis of the allometric relationship between horn length and body size by selecting males that produced unusually long horns, and males that produced unusually short horns, for their respective body sizes. After seven generations of selection, lines selected for relatively long horns had significantly longer horn lengths for a given body size than lines selected for relatively short horns, indicating a heritable component to variation in the allometry. The sigmoidal shape of the allometry was not affected by this selection regime. Rather, selected lines differed in the position of the allometry along the body size axis. One consequence of lateral shifts in this allometric relationship was that the body size separating horned from hornless males (the point of inflection of the sigmoid curve) differed between selection lines: lines in which males were selected for relatively long horns began horn production at smaller body sizes than lines selected for relatively short horns. These results suggest that populations can evolve in response to selection on male horn length through modification of the growth relationship between horn length and body size.  相似文献   

15.
We describe the allometry of body mass and body size as measured by hind-tibia length in males of Monoctonus paulensis (Ashmead) (Hymenoptera: Braconidae, Aphidiinae), a solitary parasitoid of aphids. To assess the influence of host quality on allometric relationships, we reared parasitoids on second and fourth nymphal instars of four different aphid species, Acyrthosiphon pisum (Harris), Macrosiphum creelii Davis, Myzus persicae (Sulzer) and Sitobion avenae (F.), under controlled conditions in the laboratory. Dry mass was positively correlated with hind-tibia length, and could be predicted from it, in unparasitized aphids, in aphid mummies containing parasitoid pupae, and in the parasitoid. The reduced-major-axis scaling exponents for the regression of dry mass on hind-tibia length were species-specific in aphids, reflecting differences in volume and shape between species. In mummified aphids, the stage at death influenced the size/mass relationship. In males of M. paulensis, the allometric exponent varied between parasitoids developing in different kinds of host. Individuals developing in pea aphid were absolutely larger in dry mass as well as proportionately larger relative to their hind-tibia length. We discuss the allometry of body size and body mass in relation to parasitoid fitness.  相似文献   

16.
1. We tested the hypothesis that the non‐native rusty crayfish (Orconectes rusticus) is less vulnerable to predators than two native species (O. propinquus and O. obscurus) it is replacing in streams of the upper Susquehanna River catchment (New York, U.S.A.). 2. We used laboratory experiments to compare species‐specific predation rates by smallmouth bass (Micropterus dolomieu) on crayfish of equal size and field tethering experiments to compare relative predation rates between native O. propinquus and non‐native O. rusticus by the suite of crayfish predators in our system. We predicted that crayfish size would affect predation rate but that predation rates would be equal among species when size was controlled. 3. We also tested for two potential artefacts of tethering. We tethered crayfish in cages to test whether the ability to escape from tethers is size specific, and we tested whether tethering alters differential predation among crayfish species by the smallmouth bass. 4. In the laboratory, smallmouth bass predation on rusty crayfish was lower than on either of the native species. In the field, predation risk for tethered crayfish was inversely related to size but did not differ among species when size was taken into account. Because rusty crayfish in the field experiment were slightly larger than the native species, as in nature, mortality was overall lower for the rusty crayfish. 5. In cages, smaller crayfish were more probably to escape from tethers than larger ones, an artefact that may partially confound results from our tethering experiments. Unexpectedly, tethering nearly eliminated predation by smallmouth bass. This artefact prevented us from testing for an interaction of tethering with differential predation and means that the results of field tethering experiments do not include any contribution from smallmouth bass predation. 6. Our experiments highlight the importance of explicitly considering potential artefacts that could confound results. 7. Our results indicate that differential predation contributes to the rusty crayfish's invasion of a stream community. In our study system, predation rates on rusty crayfish are lower than for native species mostly because of selection by predators for smaller crayfish; species‐specific characteristics such as behaviour that further reduce predation may also contribute, especially where smallmouth bass predation is important.  相似文献   

17.
The relationship between body weight and natural mortality in juvenile and adult fish was analysed for different aquatic ecosystems: lakes, rivers, the ocean, and pond, cage and tank aquaculture systems. Mortality was modelled as a power function of weight, and the parameters b (exponent) and Mu (mortality at the unit weight of 1 g) estimated for fish in the six ecosystems, as well as within selected populations, species and families. At the ecosystem level, no significant differences in parameters were found between lakes, rivers and the ocean and a joint mortality-weight relationship for all natural ecosystems was estimated with parameters b=?0.288 (90% CL[?0.315, ?0.261]) and Mu=3.00 (90% CL[2.70, 3.30]) year?1. Among the culture systems, mortality-weight relationships in ponds and cages were not significantly different and a joint relationship was estimated. The weight exponents of mortality in ponds/cages and tanks were very similar at about b=?0.43, and significantly more negative than in natural ecosystems. Mortalities at unit weight were significantly lower in tanks (0.91 year?1) than in ponds/cages (2.24 year?1), and both were significantly lower than in natural ecosystems. No systematic differences were found between the mortality-weight relationships determined for individual populations, species or families, and fish in the respective ecosystems. It is hypothesized that aquaculture mortality-weight relationships indicate the allometric scaling of non-predation mortality, which is therefore more strongly size dependent than predation mortality. If non predation mortality in natural ecosystems shows a similar scaling with body weight, then the allometric exponent of predation mortality must be less negative than that observed for total natural mortality. Implications of the established mortality-weight relationships for aquaculture and culture-based fisheries are discussed.  相似文献   

18.
This study investigates how nutrient cycling rates and ratios vary among fish species, with a particular focus on comparing an ecologically dominant detritivore (gizzard shad) to other fishes in a productive lake. We also examined how nutrient cycling rates are mediated by body size (as predicted by allometry theory), and how variation in nutrient cycling is related to body and food nutrient contents (according to predictions of ecological stoichiometry). As predicted by allometry, per capita nitrogen and phosphorus excretion rates increased and mass-specific excretion rates decreased, with increasing mass. Body phosphorus content was correlated with body mass only in one species, bluegill. Contrary to stoichiometric predictions, there was no relationship between body P and mass-normalized P excretion rate, or between body N:P and excreted N:P, when all individuals of all species were considered.
However, at the species level, we observed some support for a body nutrient content effect on excretion as predicted by stoichiometry theory. For example, gizzard shad had lower body P (high body N:P) and also excreted P at higher rates (lower N:P) than bluegill, which had high body P (lower body N:P). We applied the Sterner (1990) homeostatic stoichiometry model to the two most common species in the study – gizzard shad and bluegill and found that food N:P had a greater effect than consumer body N:P on excreted N:P. This indicates that, in terms of variation among these species, nutrient excretion may be more of a function of food nutrient content than the nutrient content of the consumer. These results suggest that stoichiometry can provide a framework for variation among species in nutrient cycling and for evaluating the ecosystem consequences of biodiversity loss.  相似文献   

19.
Predation has been suggested as a major cause of juvenile mortality in benthic marine invertebrates. However, the extent to which juveniles are susceptible to predators is unknown for most species, and it remains unclear to what extent ontogenetic shifts in susceptibility to predators are common among marine invertebrates. This study examined the northern abalone Haliotis kamtschatkana, a species listed as threatened in British Columbia, Canada. Our goals were to characterize the diversity and abundance of species that prey on juvenile abalone and determine if abalone experience an ontogenetic shift in susceptibility to predators. Juvenile H. kamtschatkana were found to be susceptible to a broad variety of predators: 14 of the 37 potential predator species to which we offered juvenile abalone (≤ 28 mm shell length (SL)) consumed at least one juvenile abalone. Four of those species (three crabs and one seastar) consumed ≥ 10% of the juvenile abalone that were offered in the laboratory. These species were present at field sites where abalone are found, indicating that they have the potential to be significant predators of juvenile H. kamtschatkana in the wild. The most abundant predators were small crabs, especially Lophopanopeus bellus (black-clawed crabs) and Scyra acutifrons (sharp-nosed crabs). Juvenile H. kamtschatkana also experienced a pronounced ontogenetic shift in susceptibility to predators. The risk of predation for juvenile H. kamtschatkana decreased rapidly with increasing body size, especially over the 12–13 mm SL size range. Susceptibility remained low beyond 13 mm SL, indicating relatively low and unchanging levels of predation risk once the individual reaches this size. Although abalone are susceptible to several species during the first 1–2 years of life, predator effects on juvenile abalone abundance and microhabitat use may largely be attributable to the influence of only 1 or 2 predator species that can only kill abalone < 13 mm SL.  相似文献   

20.
1. We measured N and P excretion rates of 470 individuals belonging to 18 freshwater fish species widespread in Western Europe. We assessed the effect of body mass on excretion rates at both the intra‐ and interspecific levels. 2. The high variability in per capita N and P excretion rates was mainly determined by differences in body mass. The scaling coefficients of allometric relationships for both N and P excretion rates were significantly lower than 1 (mean ± SE, 0.95 ± 0.04 and 0.81 ± 0.05, respectively). 3. The slope of the allometric relationship between fish mass and nutrient excretion rate was significantly different among species. We did not detect any influence of phylogenetic conservatism on fish mass and on excretion rates. Further investigations are needed to understand the biological determinants of these differences. 4. This high intra‐ and interspecific variability in per capita excretion rates, coupled with differences in fish body mass, produce marked differences in biomass‐standardised excretion rates. These results thus indicate the necessity for further experimental and in situ investigations on the consequences of nutrient recycling by fish in freshwater ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号