首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patterns of hard coral and sea urchin assemblage structure (species richness, diversity, and abundance) were studied in Kenyan coral reef lagoons which experienced different types of human resource use. Two protected reefs (Malindi and Watamu Marine National Parks) were protected from fishing and coral collection, but exposed to heavy tourist use. One reef (Mombasa MNP) received protection from fishermen for one year and was exploited for fish and corals prior to protection and was defined as a transitional reef. Three reefs (Vipingo, Kanamai, and Diani) were unprotected and experienced heavy fishing and some coral collection. Protected and unprotected reefs were distinct in terms of their assemblage structure with the transitional reef grouping with unprotected reefs based on relative and absolute abundance of coral genera. Protected reefs had slightly higher (p<0.01) coral cover (23.6 ± 8.3 % ± S.D.) than unprotected reefs (16.7 ± 8.5), but the transitional reef had the highest coral cover (30.8 ± 6.4) which increased by 250% since measured in 1987: largely attributable to a large increase inPorites nigrescens cover. Protected reefs had higher coral species richness and diversity and a greater relative abundance ofAcropora, Montipora andGalaxea than unprotected reefs. The transitional reef had high species richness, but lower diversity due to the high dominance ofPorites. Sea urchins showed the opposite pattern with highest diversity in most unprotected reefs. Coral cover, species richness, and diversity were negatively associated with sea urchin abundance, but the relative abundance ofPorites increased with sea urchin abundance to the point wherePorites composed >90% of the coral cover at sites with the highest sea urchin abundance. Effects of coral overcollection was only likely for the genusAcropora (staghorn corals). A combination of direct and indirect effects of human resource use may reduce diversity, species richness, and abundance of corals while increasing the absolute abundance of sea urchins and the relative cover ofPorites.  相似文献   

2.
Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience) is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32'S, 159°04'E), the worlds' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment), and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4%) and fleshy macroalgae (20.9%). Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m(-2)), however, were 5-200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha(-1)), and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1%) with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances.  相似文献   

3.

Competition is a fundamental process structuring ecological communities. On coral reefs, space is a highly contested resource and the outcomes of spatial competition can dictate community composition. In the Caribbean, reefs are increasingly dominated by non-scleractinian species like sponges, gorgonians, and zoanthids, yet there is a paucity of data on interactions between these increasingly common organisms and historically dominant corals. Here, we investigated interactions among these groups of sessile benthic invertebrates to better understand the role of spatial competition in shaping benthic communities on Caribbean reefs. We coupled surveys of competitive interactions on the reef with a common garden competition experiment to determine the frequency and outcome of interference competition among eight focal species. We found that competitive interactions were pervasive on Florida reefs, with 60% of sessile benthic invertebrates interacting with at least one other invertebrate. Increasingly common non-scleractinian species were some of the most abundant taxa and consistently outcompeted the contemporarily common scleractinian species Porites porites and Siderastrea siderea. The encrusting gorgonian, Erythropodium caribaeorum, was the most aggressive species, reducing the live area of its competitors on average 42% ± 7.04 (SE) over the course of 5 months. Surprisingly, the most aggressive species declined in size when competing, while some less aggressive species were able to increase or maintain area, suggesting a trade-off between aggressiveness and growth. Our findings suggest that competition among sessile invertebrates is likely to remain an important process in structuring coral reefs, but that the optimal strategies for maintaining space on the benthos may change. Importantly, many non-scleractinian species that now dominate reefs appear to be superior competitors, potentially increasing the stress on corals on contemporary reefs.

  相似文献   

4.
A conceptual paradigm, the “Relative Dominance Model”, provides the perspective to assess the interactive external forcing-mechanisms controlling phase shifts among the dominant benthic functional groups on tropical coral reefs [i.e., microalgal turfs and frondose macroalgae (often harmful) versus reef-building corals and calcareous coralline algae (mostly beneficial due to accretion of calcareous reef framework)]. Manipulative experiments, analyses of existing communities and bioassays tested hypotheses that the relative dominances of these functional groups are mediated by two principal controlling factors: nutrients (i.e., bottom-up control) and herbivory (i.e., top-down control). The results show that reduced nutrients alone do not preclude fleshy algal growth when herbivory is low, and high herbivory alone does not prevent fleshy algal growth when nutrients are elevated. However, reduced nutrients in combination with high herbivory virtually eliminate all forms of fleshy micro- and macro-algae. The findings reveal considerable complexity in that increases in bottom-up nutrient controls and their interactions stimulate harmful fleshy algal blooms (that can alter the abundance patterns among functional groups, even under intense herbivory); conversely, elevated nutrients inhibit the growth of ecologically beneficial reef-building corals. The results show even further complexity in that nutrients also act directly as either limiting factors (e.g., physiological stresses) or as stimulatory mechanisms (e.g., growth enhancing factors), as well as functioning indirectly by influencing competitive outcomes. Herbivory directly reduces fleshy-algal biomass, which indirectly (via competitive release) favors the expansion of grazer-resistant reef-building corals and coralline algae. Because of the sensitive nature of direct/indirect and stimulating/limiting interacting factors, coral reefs are particularly vulnerable to anthropogenic reversal effects that decrease top-down controls and, concomitantly, increase bottom-up controls, dramatically altering ecosystem resiliencies.  相似文献   

5.
Coral communities at Moorea, French Polynesia, and on the Great Barrier Reef (GBR), Australia, were severely depleted by disturbances early in the 1980s. Corals were killed by the predatory starfish Acanthaster planci, by cyclones, and/or by depressed sea level. This study compares benthic community structure and coral population structures on three disturbed reefs (Vaipahu-Moorea; Rib and John Brewer Reefs-GBR) and one undisturbed reef (Davies Reef-GBR) in 1987–89. Moorea barrier reefs had been invaded by tall macrophytes Turbinaria ornata and Sargassum sp., whereas the damaged GBR reefs were colonised by a diverse mixture of short macrophytes, turfs and coralline algae. The disturbed areas had broadly similar patterns of living and dead standing coral, and similar progress in recolonisation, which suggests their structure may converge towards that of undisturbed Davies Reef. Corals occupying denuded areas at Vaipahu, Rib and John Brewer were small (median diameter 5 cm in each case) and sparse (means 4–8 m-2) compared to longer established corals at Davies Reef (median diameter 9 cm; mean 18 m-2). At Moorea, damselfish and sea urchins interacted with corals in ways not observed in the GBR reefs. Territories of the damselfish Stegastes nigricans covered much of Moorea's shallow reef top. They had significantly higher diversity and density of post-disturbance corals than areas outside of territories, suggesting that the damselfish exerts some influences on coral community dynamics. Sea urchins on Moorea (Diadema setosum Echinometra mathaei, Echinotrix calamaris) were causing widespread destruction of dead standing coral skeletons. Overall, it appears that the future direction and speed of change in the communities will be explicable more in terms of local than regional processes.  相似文献   

6.
The disastrous effects of the intense 1982–83 El Niño-SouthernOscillation (ENSO) bring new insight into the long-term developmentof eastern Pacific coral reefs. The 1988–83 ENSO sea surfacewarming event caused extensive reef coral bleaching (loss ofsymbiotic zooxanthellae), resulting in up to 70–95% coralmortality on reefs in Costa Rica, Panama, Colombia and Ecuador.In the Galapagos Islands (Ecuador), most coral reefs experienced>95% coral mortality. Also, several coral species experiencedextreme reductions in population size, and local and regionalextinctions. The El Niño event spawned secondary disturbances,such as increased predation and bioerosion, that continue toimpact reef-building corals. The death of Pocillopora colonieswith their crustacean guards eliminated coral barriers now allowingthe corallivore Acanthaster planci access to formerly protectedcoral prey. Sea urchins and other organisms eroded disturbedcorals at rates that exceed carbonate production, potentiallyresulting in the elimination of existing reef buildups. In otherreefbuilding regions following extensive, catastrophic coralmortality, rapid recovery often occurs through the growth ofsurviving corals, recruitment of new corals from nearby sourcepopulations, and survival of consolidated reef surfaces. Inthe eastern Pacific, however, the return of upwelling conditionsand the survival of coral predators and bioeroders hamper coralreef recovery by reducing recruitment success and eroding coralreef substrates. Thus, coral reef growth that occurs betweendisturbance events is not conserved. Repeated El Niñodisturbances, which have occurred throughout the recent geologichistory of the eastern Pacific, prevent coral communities fromincreasing in diversity and limit the development and persistenceof significant reef features. The poor development of easternPacific coral reefs throughout Holocene and perhaps much ofPleistocene time may result from recurrent thermal disturbancesof the intensity of the 1982–83 El Niño event.  相似文献   

7.
Removing predatory fishes has effects that cascade through ecosystems via interactions between species and functional groups. In Kenyan reef lagoons, fishing-induced trophic cascades produce sea urchin-dominated grazing communities that greatly reduce the overall cover of crustose coralline algae (CCA). Certain species of CCA enhance coral recruitment by chemically inducing coral settlement. If sea urchin grazing reduces cover of settlement-inducing CCA, coral recruitment and hence juvenile coral abundance may also decline on fished reefs. To determine whether fishing-induced changes in CCA influence coral recruitment and abundance, we compared (1) CCA taxonomic compositions and (2) taxon-specific associations between CCA and juvenile corals under three fisheries management systems: closed, gear-restricted, and open-access. On fished reefs (gear-restricted and open-access), abundances of two species of settlement-inducing CCA, Hydrolithon reinboldii and H. onkodes, were half those on closed reefs. On both closed and fished reefs, juveniles of four common coral families (Poritidae, Pocilloporidae, Agariciidae, and Faviidae) were more abundant on Hydrolithon than on any other settlement substrate. Coral densities were positively correlated with Hydrolithon spp. cover and were significantly lower on fished than on closed reefs, suggesting that fishing indirectly reduces coral recruitment or juvenile success over large spatial scales via reduction in settlement-inducing CCA. Therefore, managing reefs for higher cover of settlement-inducing CCA may enhance coral recruitment or juvenile survival and help to maintain the ecological and structural stability of reefs.  相似文献   

8.
With coral cover in decline on many Caribbean reefs, any process of coral mortality is of potential concern. While sparisomid parrotfishes are major grazers of Caribbean reefs and help control algal blooms, the fact that they also undertake corallivory has prompted some to question the rationale for their conservation. Here the weight of evidence for beneficial effects of parrotfishes, in terms of reducing algal cover and facilitating demographic processes in corals, and the deleterious effects of parrotfishes in terms of causing coral mortality and chronic stress, are reviewed. While elevated parrotfish density will likely increase the predation rate upon juvenile corals, the net effect appears to be positive in enhancing coral recruitment through removal of macroalgal competitors. Parrotfish corallivory can cause modest partial colony mortality in the most intensively grazed species of Montastraea but the generation and healing of bite scars appear to be in near equilibrium, even when coral cover is low. Whole colony mortality in adult corals can lead to complete exclusion of some delicate, lagoonal species of Porites from forereef environments but is only reported for one reef species (Porites astreoides), for one habitat (backreef), and with uncertain incidence (though likely <<10%). No deleterious effects of predation on coral growth or fecundity have been reported, though recovery of zooxanthellae after bleaching events may be retarded. The balance of evidence to date finds strong support for the herbivory role of parrotfishes in facilitating coral recruitment, growth, and fecundity. In contrast, no net deleterious effects of corallivory have been reported for reef corals. Corallivory is unlikely to constrain overall coral cover but contraints upon dwindling populations of the Montastraea annularis species complex are feasible and the role of parrotfishes as a vector of coral disease requires evaluation. However, any assertion that conservation practices should guard against protecting corallivorous parrotfishes appears to be unwarranted at this stage.  相似文献   

9.
Space limitation leads to competition between benthic, sessile organisms on coral reefs. As a primary example, reef-building corals are in direct contact with each other and many different species and functional groups of algae. Here we characterize interactions between three coral genera and three algal functional groups using a combination of hyperspectral imaging and oxygen microprofiling. We also performed in situ interaction transects to quantify the relative occurrence of these interaction on coral reefs. These studies were conducted in the Southern Line Islands, home to some of the most remote and near-pristine reefs in the world. Our goal was to determine if different types of coral-coral and coral-algal interactions were characterized by unique fine-scale physiological signatures. This is the first report using hyperspectral imaging for characterization of marine benthic organisms at the micron scale and proved to be a valuable tool for discriminating among different photosynthetic organisms. Consistent patterns emerged in physiology across different types of competitive interactions. In cases where corals were in direct contact with turf or macroalgae, there was a zone of hypoxia and altered pigmentation on the coral. In contrast, interaction zones between corals and crustose coralline algae (CCA) were not hypoxic and the coral tissue was consistent across the colony. Our results suggest that at least two main characteristic coral interaction phenotypes exist: 1) hypoxia and coral tissue disruption, seen with interactions between corals and fleshy turf and/or some species of macroalgae, and 2) no hypoxia or tissue disruption, seen with interactions between corals and some species of CCA. Hyperspectral imaging in combination with oxygen profiling provided useful information on competitive interactions between benthic reef organisms, and demonstrated that some turf and fleshy macroalgae can be a constant source of stress for corals, while CCA are not.  相似文献   

10.
Coral reef degradation is often associated with regime shifts from coral‐ to macroalgal‐dominated reefs. These shifts demonstrate that under certain conditions (e.g. coral mortality, decrease in herbivory, increased nutrients supply) some macroalgae may overgrow corals. The outcome of the competition is dependent on algal aggressiveness and the coral susceptibility. In undisturbed reefs, herbivore grazing is regulating macroalgal cover, thus preventing the latter from overgrowing corals. However, some macroalgae have evolved strategies not only to outcompete corals but also to escape herbivory to some extent, allowing overgrowth of some coral species in undisturbed reefs. Epizoism represents one of those successful strategies, and has been previously documented with red algae, cyanobacteria and Lobophora variegata (Dictyotales, Phaeophyceae). Here we report a new case of epizoism leading to coral mortality, involving a recently described species of Lobophora, L. hederacea, overgrowing the coral Seriatopora caliendrum (Pocilloporidae) in undisturbed reefs in New Caledonia.  相似文献   

11.
Previous studies in fringing reefs of the Northern Red Sea demonstrated that the in-situ competition of corals and algae in natural assemblages is highly variable between seasons displaying fast overgrowth of corals by benthic reef algae in fall that follows close to equilibrium between both groups of organisms in summer. This may be caused by up to 5-fold higher inorganic nutrient and 6-fold higher organic nutrient concentrations in fall and winter, thereby potentially promoting algae and cyanobacteria growth with concomitant phase shift. A long term mesocosm experiment (duration: 90 days) was conducted in order to study the effect of dissolved inorganic (ammonium, phosphate, nitrate, and mix of all three) and organic (glucose) nutrient addition onto the competitive process in the dominant coral–algae assemblages of the Northern Red Sea involving branching corals of the genus Acropora and a typical consortium of benthic turf algae. Nutrients were added in 3-fold higher concentrations compared to the annual averages, and the parameters algal growth, extension of bleached area on corals, tissue colour change and chlorophyll a concentrations were monitored at regular intervals over experimental duration. This revealed that elevated ammonium concentrations and elevated organic nutrient concentrations stimulate algal growth, while coral tissue pigmentation and chlorophyll a content were significantly decreased. But only in the elevated organic nutrient treatment all effects on corals were significantly pronounced when assembled with benthic turf algae. Supplementary logger measurements revealed that O2 water concentrations were significantly lower in the elevated organic nutrient mesocosm compared to all other treatments, confirming side-effects on microbial activity. These findings indicate that organic nutrient input into coral reefs can affect physiology and metabolism of both corals and benthic turf algae. Reinforcing interaction between both groups of organisms along with involvement of microbes may facilitate phase shifts in coral reef ecosystems.  相似文献   

12.
Tuckett  C. A.  de Bettignies  T.  Fromont  J.  Wernberg  T. 《Coral reefs (Online)》2017,36(3):947-956

Globally, many temperate marine communities have experienced significant temperature increases over recent decades in the form of gradual warming and heatwaves. As a result, these communities are shifting towards increasingly subtropical and tropical species compositions. Expanding coral populations have been reported from several temperate reef ecosystems along warming coastlines; these changes have been attributed to direct effects of gradual warming over decades. In contrast, increases in coral populations following shorter-term extreme warming events have rarely been documented. In this study, we compared coral populations on 17 temperate reefs in Western Australia before (2005/06) and after (2013) multiple marine heatwaves (2010–2012) affected the entire coastline. We hypothesised that coral communities would expand and change as a consequence of increasing local populations and recruitment of warm-affinity species. We found differences in coral community structure over time, driven primarily by a fourfold increase of one local species, Plesiastrea versipora, rather than recruitment of warm-affinity species. Coral populations became strongly dominated by small size classes, indicative of recent increased recruitment or recruit survival. These changes were likely facilitated by competitive release of corals from dominant temperate seaweeds, which perished during the heatwaves, rather than driven by direct temperature effects. Overall, as corals are inherently warm-water taxa not commonly associated with seaweed-dominated temperate reefs, these findings are consistent with a net tropicalisation. Our study draws attention to processes other than gradual warming that also influence the trajectory of temperate reefs in a changing ocean.

  相似文献   

13.
鱼类和大型底栖生物等礁栖生物是珊瑚礁生态系统的重要组成部分,其群落信息是全面评价珊瑚礁生态系统健康状况的必要基础数据.基于录像样带法,分析了2018年12月底海南省三亚市亚龙湾珊瑚礁区17个站位礁栖鱼类和大型底栖生物的群落结构、数量分布及相似性,揭示了其中的生态警示,并提出相应的监管建议,旨在保护和恢复亚龙湾的珊瑚礁....  相似文献   

14.

Of all reef-building coral species, 80–85 % initially draw their intracellular symbionts (dinoflagellates of the genus Symbiodinium) from the environment. Although Symbiodinium cells are crucial for the growth of corals and the formation of coral reefs, little is known about how corals first encounter free-living Symbiodinium cells. We report how the supply of free-living Symbiodinium cells to the benthos by adult corals can increase the rate of horizontal symbiont acquisition for conspecific recruits. Three species of newly settled aposymbiotic (i.e., symbiont-free) corals were maintained in an open aquarium system containing: sterilized sediment and adult coral fragments combined; adult coral fragments alone; sterilized sediment alone; or seawater at Heron Island, Great Barrier Reef, Australia. In all instances, the combination of an adult coral and sediment resulted in the highest symbiont acquisition rates by juvenile corals (up to five-fold greater than seawater alone). Juvenile corals exposed to individual treatments of adult coral or sediment produced an intermediate acquisition response (<52 % of recruits), and symbiont acquisition from unfiltered seawater was comparatively low (<20 % of recruits). Additionally, benthic free-living Symbiodinium cells reached their highest densities in the adult coral + sediment treatment (up to 1.2 × 104 cells mL−1). Our results suggest that corals seed microhabitats with free-living Symbiodinium cells suitable for many coral species during the process of coral recruitment.

  相似文献   

15.
Arnold SN  Steneck RS 《PloS one》2011,6(12):e28681
Free space is necessary for larval recruitment in all marine benthic communities. Settling corals, with limited energy to invest in competitive interactions, are particularly vulnerable during settlement into well-developed coral reef communities. This situation may be exacerbated for corals settling into coral-depauperate reefs where succession in nursery microhabitats moves rapidly toward heterotrophic organisms inhospitable to settling corals. To study effects of benthic organisms (at millimeter to centimeter scales) on newly settled corals and their survivorship we deployed terra-cotta coral settlement plates at 10 m depth on the Mesoamerican Barrier Reef in Belize and monitored them for 38 mo. During the second and third years, annual recruitment rates declined by over 50% from the previous year. Invertebrate crusts (primarily sponges) were absent at the start of the experiment but increased in abundance annually from 39, 60, to 73% of the plate undersides by year three. Subsequently, substrates hospitable to coral recruitment, including crustose coralline algae, biofilmed terra-cotta and polychaete tubes, declined. With succession, substrates upon which spat settled shifted toward organisms inimical to survivorship. Over 50% of spat mortality was due to overgrowth by sponges alone. This result suggests that when a disturbance creates primary substrate a "recruitment window" for settling corals exists from approximately 9 to 14 mo following the disturbance. During the window, early-succession, facilitating species are most abundant. The window closes as organisms hostile to coral settlement and survivorship overgrow nursery microhabitats.  相似文献   

16.
The massive reduction in sea urchin Diadema antillarum populations since the mid-1980s has been associated with large increases in the abundance of fleshy algae on many Caribbean reefs despite the availability of other sea urchin and finfish grazers. This study examined the ecology of a grazer living sympatrically with D. antillarum, the common and abundant sea urchin Echinometra viridis. I examined the role that finfish and invertebrate predators play in controlling the distribution of E. viridis as well as the ability of this sea urchin to control exposed fleshy algae on the patch reefs of the Glovers Reef Atoll lagoon. I found that the major predators of this sea urchin were Calamus bajonado (jolthead porgy), Balistes vetula and Canthidermis sufflamen (queen and ocean triggerfish), Lachnolaimus maximus (hogfish), and a gastropod, probably Cassis madagascariensis. The abundance of E. viridis is constrained by predation, which restricts E. viridis to cryptic locations, such as crevices. Sea urchins bit a smaller percentage of experimental algal assays than finfish. Finfish herbivory was associated positively with patch reef topographic complexity. Unexpectedly, E. viridis abundance was positively correlated with fleshy algal abundance, but negatively correlated with the frequency of finfish bites. Predators restrict E. viridis to crevices and therefore reduce their influence on exposed fleshy algae, even at moderately high population densities (up to 10 per square meter). Since net benthic primary production of coral reefs is most strongly associated with herbivory on exposed surfaces, it would appear that E. viridis is unable to maintain the same production as reefs dominated by D. antillarum. Received 5 November 1998; accepted 2 June 1999.  相似文献   

17.
Marginal coral reef systems may provide valuable insights into the nature of ecosystem processes in systems on the trajectory towards a phase shift to an alternate ecosystem state. This study investigates the process of herbivory in a marginal coral reef system in the Keppel Islands at the southern end of the Great Barrier Reef. Branching Acropora coral and the brown macroalga Lobophora variegata occupied up to 95% of the reef crest substratum at the three surveyed reefs. Feeding rates of herbivorous fishes and removal rates of Lobophora were directly quantified within areas of branching Acropora and on planar surfaces. Feeding rates by herbivorous fishes were habitat dependent with the highest bite rates being found in planar habitats for both Lobophora and the epilithic algal matrix (EAM) by 1–2 orders of magnitude, respectively. Feeding rates on Lobophora were, however, much lower than rates on the EAM. The low rates of Lobophora removal and significantly lower rates of herbivory in branching habitats were consistent with the high biomass of this brown alga throughout the Keppel Islands and with its distribution on reef crests, where Lobophora biomass was 20 times greater in branching than in planar habitats. This lack of feeding by herbivorous fishes within branching coral habitats in the Keppel Islands contrasts with the typical role of coral and topographic complexity on herbivores on coral reefs and highlights the potential for complex interactions between algae, corals and fishes on coral reefs. On marginal systems, herbivory may modify algal distributions but may be unable to contain the proliferation of algae such as Lobophora.  相似文献   

18.
This paper presents seasonal in situ monitoring data on benthic coverage and coralalgae interactions in high-latitude fringing reefs of the Northern Red Sea over a period of 19 months. More than 30% of all hermatypic corals were involved in interaction with benthic reef algae during winter compared to 17% during summer, but significant correlation between the occurrence of coralalgae interactions and monitored environmental factors such as temperature and inorganic nutrient availability was not detected. Between 5 and 10-m water depth, the macroalgae Caulerpa serrulata, Peyssonnelia capensis and filamentous turf algae represented almost 100% of the benthic algae involved in interaction with corals. Turf algae were most frequently (between 77 and 90% of all interactions) involved in interactions with hermatypic corals and caused most tissue damage to them. Maximum coral tissue loss of 0.75% day−1 was observed for Acropora-turf algae interaction during fall, while an equilibrium between both groups of organisms appeared during summer. Slow-growing massive corals were more resistant against negative algal influence than fast-growing branching corals. Branching corals of the genus Acropora partly exhibited a newly observed phenotypic plasticity mechanism, by development of a bulge towards the competing organism, when in interaction with algae. These findings may contribute to understand the dynamics of phase shifts in coral reefs by providing seasonally resolved in situ monitoring data on the abundance and the competitive dynamic of coralalgae interactions.  相似文献   

19.
Bioerosion intensity has been proposed as a measure of paleoproductivity in fossil reefs, but it is difficult to measure directly because fossil corals are often incomplete and because it is difticult to infer the length of time a given coral was exposed to bioeroding organisms. Both nutrient availability and taphonomic factors can affect bioerosion intensity as measured in dead corals. Here, we examine these two effects separately using data from previous studies on bioerosion in modern and fossil corals. Size of individual sponge borings accurately reflects total bioerosion in modern massive and branching corals on the Great Barrier Reef. Total bioerosion in both massive and branching corals decreases outward across the continental shelf, paralleling trends in nutrient availability. Size of individual Cliothosa hancocki borings decreases across the shelf in branching Acropora but not in massive Porites. Fossil sponge borings Entobia convoluta and Uniglobites glomerata in massive corals from Oligocene and Miocene reefs in Puerto Rico are smallest in Oligocene shelf-edge reefs, intermediate in Oligocene patch reefs, and largest in Miocene patch reefs. Both facies-related influence, represented by Oligocene shelf-edge reefs vs. Oligocene patch reefs, and nutrient-related influence, represented by Oligocene vs. Miocene patch reefs, were reflected in the size of sponge boreholes. Size of sponge borings also varies among species of host corals, apparently in relation to skeletal architecture. Borehole size is inversely correlated with skeletal density as measured by the relative proportion of skeleton and pore space in transverse thin section. There is a weak positive correlation between borehole size and corallite diameter. These findings contradict reported positive correlations between total bioerosion and bulk density in modern corals. Borehole size appears accurately to reflect intensity of total internal bioerosion in fossil corals. Facies-controlled taphonomic overprints and influence of skeletal differences between coral species limit the use of sponge borehole size to a rough indicator of paleoproductivity in fossil coral reef environments.  相似文献   

20.
Ocean warming and acidification from increasing levels of atmospheric CO2 represent major global threats to coral reefs, and are in many regions exacerbated by local‐scale disturbances such as overfishing and nutrient enrichment. Our understanding of global threats and local‐scale disturbances on reefs is growing, but their relative contribution to reef resilience and vulnerability in the future is unclear. Here, we analyse quantitatively how different combinations of CO2 and fishing pressure on herbivores will affect the ecological resilience of a simplified benthic reef community, as defined by its capacity to maintain and recover to coral‐dominated states. We use a dynamic community model integrated with the growth and mortality responses for branching corals (Acropora) and fleshy macroalgae (Lobophora). We operationalize the resilience framework by parameterizing the response function for coral growth (calcification) by ocean acidification and warming, coral bleaching and mortality by warming, macroalgal mortality by herbivore grazing and macroalgal growth via nutrient loading. The model was run for changes in sea surface temperature and water chemistry predicted by the rise in atmospheric CO2 projected from the IPCC's fossil‐fuel intensive A1FI scenario during this century. Results demonstrated that severe acidification and warming alone can lower reef resilience (via impairment of coral growth and increased coral mortality) even under high grazing intensity and low nutrients. Further, the threshold at which herbivore overfishing (reduced grazing) leads to a coral–algal phase shift was lowered by acidification and warming. These analyses support two important conclusions: Firstly, reefs already subjected to herbivore overfishing and nutrification are likely to be more vulnerable to increasing CO2. Secondly, under CO2 regimes above 450–500 ppm, management of local‐scale disturbances will become critical to keeping reefs within an Acropora‐rich domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号