首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The basic Graded Autocatalysis Replication Domain (GARD) model consists of a repertoire of small molecules, typically amphiphiles, which join and leave a non-covalent micelle-like assembly. Its replication behavior is due to occasional fission, followed by a homeostatic growth process governed by the assembly’ s composition. Limitations of the basic GARD model are its small finite molecular repertoire and the lack of a clear path from a ‘monomer world’ towards polymer-based living entities.We have now devised an extension of the model (polymer GARD or P-GARD), where a monomer-based GARD serves as a ‘scaffold’ for oligomer formation, as a result of internal chemical rules. We tested this concept with computer simulations of a simple case of monovalent monomers, whereby more complex molecules (dimers) are formed internally, in a manner resembling biosynthetic metabolism. We have observed events of dimer ‘take-over’ – the formation of compositionally stable, replication-prone quasi stationary states (composomes) that have appreciable dimer content. The appearance of novel metabolism-like networks obeys a time-dependent power law, reminiscent of evolution under punctuated equilibrium. A simulation under constant population conditions shows the dynamics of takeover and extinction of different composomes, leading to the generation of different population distributions. The P-GARD model offers a scenario whereby biopolymer formation may be a result of rather than a prerequisite for early life-like processes.  相似文献   

2.
The Graded Autocatalysis Replication Domain (GARD) model describes an origin of life scenario which involves non-covalent compositional assemblies, made of monomeric mutually catalytic molecules. GARD constitutes an alternative to informational biopolymers as a mechanism of primordial inheritance. In the present work, we examined the effect of mutations, one of the most fundamental mechanisms for evolution, in the context of the networks of mutual interaction within GARD prebiotic assemblies. We performed a systematic analysis analogous to single and double gene deletions within GARD. While most deletions have only a small effect on both growth rate and molecular composition of the assemblies, ~10% of the deletions caused lethality, or sometimes showed enhanced fitness. Analysis of 14 different network properties on 2,000 different GARD networks indicated that lethality usually takes place when the deleted node has a high molecular count, or when it is a catalyst for such node. A correlation was also found between lethality and node degree centrality, similar to what is seen in real biological networks. Addressing double knockout mutations, our results demonstrate the occurrence of both synthetic lethality and extragenic suppression within GARD networks, and convey an attempt to correlate synthetic lethality to network node-pair properties. The analyses presented help establish GARD as a workable alternative prebiotic scenario, suggesting that life may have begun with large molecular networks of low fidelity, that later underwent evolutionary compaction and fidelity augmentation.  相似文献   

3.
In addressing the question of the origins of the relationship between metabolism and genetic replication, we consider the implications of a prebiotic, fission-fusion, ecology of composomes. We emphasise the importance of structures and non-specific catalysis on interfaces created by structures. From the assumption that the bells of the metabolism-replication wedding still echo in modern cells, we argue that the functional assemblies of macromolecules that constitute hyperstructures in modern bacteria are the descendants of composomes and that interactions at the hyperstructure level control the cell cycle. A better understanding of the cell cycle should help understand the original metabolism-replication marriage. This understanding requires new concepts such as metabolic signalling, metabolic sensing and Dualism, which entails the cells in a population varying the ratios of equilibrium to non-equilibrium hyperstructures so as to maximise the chances of both survival and growth. A deeper understanding of the coupling between metabolism and replication may also require a new view of cell cycle functions in creating a coherent diversity of phenotypes and in narrowing the combinatorial catalytic space. To take these ideas into account, we propose the Accordion model in which a dynamic interface between lipid domains catalysed monomer to polymer reactions and became decorated with peptides and nucleotides that favoured their own catalysis. In this model, metabolism, replication, differentiation and division all began together at the interface between extended equilibrium structures within protocells or composomes.  相似文献   

4.
P R Bahn  S W Fox 《Bio Systems》1981,14(1):3-14
Several photoreactions for transducing light energy have been analyzed for their relevance as models for protocellular photophosphorylation. Inorganic ions and compounds could have played a role in protocellular photophosphorylation. Organic catalysts may have been the next significant agents used by protocells for photophosphorylation. Membranous photophosphorylation probably became the most recent type of photoenergy transduction to be acquired by protocells; it is still used by modern cells although components of the other types of phosphorylation are found in present day cells. Recorded yields of energy-rich phosphates from the model reactions discussed are small. Arguments are advanced that such yields could have been sufficient to have fueled protocellular metabolism which was probably very slow compared to modern cellular metabolism. Future prospects for research in this area are discussed.  相似文献   

5.
Domain protolife     
We propose the Thermal Protein First Paradigm (protocell theory) that affirms that first life was cellular. The first cells emerged from molecular (chemical) evolution as protocells (heated amino acids self-order in copolymerization reactions to form thermal proteins which self-organize when in contact with water to form protocells). Metaprotocells are specialized protocells capable of synthesizing ATP (light energy conversion to chemical energy), polypeptides, and polynucleotides. Aggregations of protocells in thermal protein matrices form distinctive morphologies (protocellular networks). Prokaryotic cells emerged from metaprotocells. We classify protocells and metaprotocells as members of the Domain Protolife. We revised the cell theory to include protolife.  相似文献   

6.
Composing life   总被引:2,自引:0,他引:2  
Segré D  Lancet D 《EMBO reports》2000,1(3):217-222
Textbooks often assert that life began with specialized complex molecules, such as RNA, that are capable of making their own copies. This scenario has serious difficulties, but an alternative has remained elusive. Recent research and computer simulations have suggested that the first steps toward life may not have involved biopolymers. Rather, non-covalent protocellular assemblies, generated by catalyzed recruitment of diverse amphiphilic and hydrophobic compounds, could have constituted the first systems capable of information storage, inheritance and selection. A complex chain of evolutionary events, yet to be deciphered, could then have led to the common ancestors of today’s free-living cells, and to the appearance of DNA, RNA and protein enzymes.  相似文献   

7.
Non-covalent compositional assemblies, made of monomeric mutually catalytic molecules, constitute an alternative to alphabet-based informational biopolymers as a mechanism of primordial inheritance. Such assemblies appear implicitly in many "Metabolism First" origin of life scenarios, and more explicitly in the Graded Autocatalysis Replication Domain (GARD) model [Segréet al. (2000). Proc. Natl Acad. Sci. U.S.A.97, 4112-4117]. In the present work, we provide a detailed analysis of the quantitative molecular roots of such behavior. It is demonstrated that the fidelity of reproduction provided by a newly defined heritability measure eta(*)(s), strongly depends on the values of molecular recognition parameters and on assembly size. We find that if the catalytic rate acceleration coefficients are distributed normally, transfer of compositional information becomes impossible, due to frequent "compositional error catastrophes". In contrast, if the catalytic acceleration rates obey a lognormal distribution, as actually predicted by a statistical formalism for molecular repertoires, high reproduction fidelity is obtained. There is also a clear dependence on assembly size N, whereby maximal eta is seen in a narrow range around N approximately 3.5 N(G)/lambda, where N(G)is the size of the primordial molecular repertoire and lambda is a molecular interaction statistical parameter. Such relationships help define the physicochemical conditions that could underlie the early steps in pre-biotic evolution.  相似文献   

8.
A Graded Autocatalysis Replication Domain (GARD) model is proposed, which provides a rigorous kinetic analysis of simple chemical sets that manifest mutual catalysis. It is shown that catalytic closure can sustain self-replication up to a critical dilution rate, c, related to the graded extent of mutual catalysis. We explore the behavior of vesicles containing GARD species whose mutual catalysis is governed by a previously published statistical distribution. In the population thus generated, some GARD vesicles display a significantly higher replication efficiency than most others. GARD thus represents a simple model for primordial chemical selection of mutually catalytic sets.  相似文献   

9.
Understanding the molecular basis of neurodegenerative diseases has enormous implications for the development of effective therapeutic strategies. One of the most puzzling features of these pathologies is the occurrence of distinct strains, which are believed to be generated by alternative conformational transitions of the same protein/peptide. Very recently, it has been discovered that small model peptides are able to form alternative tightly packed assemblies (polymorphs) in the crystalline state. Intriguingly, it has been postulated that the different polymorphs of the same polypeptide sequence may be representative of distinct strains. As the organization of crystalline aggregates of small peptides may be heavily biased by crystal packing, we have here performed MD simulations on steric zipper polymorphs formed by of the IAPP-derived fragment SSTNVG. Our analyses show that these aggregates are rather stable also in a non-crystalline environment. This finding corroborates the hypothesis that steric zipper assemblies are good candidates to account for the phenomenon of strain in neurodegenerative diseases. Present investigations also provide clues on the factors that favour the formation of polymorphs. Indeed, the intrinsic stability of individual β-sheets formed by SSTNVG strands is very poor. Therefore, the formation of these aggregates is essentially dictated by inter-sheet interactions established within the steric zipper assembly.  相似文献   

10.
The following idea is analysed. Given that evolution on Earth seems to have passed through protocellular evolutionary stages of progenotes, this would appear to be incompatible with the panspermia theory because this observation would imply that the infection bringing life to the Earth started in these protocells, for which a low or null infective power is generally expected.  相似文献   

11.
To develop a comprehensive cells-first approach to the origin of life, we propose that protocells form spontaneously and that the fission and fusion of these protocells drives the dynamics of their evolution. The fitness criterion for this evolution is taken to be the the stability (conservation) of domains in the protocellular membrane as determined by non-covalent molecular associations between the amphiphiles of the membrane and a subset of the macromolecules in the protocell. In the presence of a source of free energy the macromolecular content of the protocell (co-)evolves as the result of (domain-dependent) membrane-catalysed polymerisation of the prebiotic constituents delivered to the protocell by fusion. The metabolism of the cell therefore (co-)evolves on a rugged fitness landscape. We indicate how domain evolution with the same fitness criterion can potentially give rise to coding. Membrane domains may therefore provide the link between protocells and the RNA/DNA-world.  相似文献   

12.
Understanding the origin of cellular life on Earth requires the discovery of plausible pathways for the transition from complex prebiotic chemistry to simple biology, defined as the emergence of chemical assemblies capable of Darwinian evolution. We have proposed that a simple primitive cell, or protocell, would consist of two key components: a protocell membrane that defines a spatially localized compartment, and an informational polymer that allows for the replication and inheritance of functional information. Recent studies of vesicles composed of fatty-acid membranes have shed considerable light on pathways for protocell growth and division, as well as means by which protocells could take up nutrients from their environment. Additional work with genetic polymers has provided insight into the potential for chemical genome replication and compatibility with membrane encapsulation. The integration of a dynamic fatty-acid compartment with robust, generalized genetic polymer replication would yield a laboratory model of a protocell with the potential for classical Darwinian biological evolution, and may help to evaluate potential pathways for the emergence of life on the early Earth. Here we discuss efforts to devise such an integrated protocell model.The emergence of the first cells on the early Earth was the culmination of a long history of prior chemical and geophysical processes. Although recognizing the many gaps in our knowledge of prebiotic chemistry and the early planetary setting in which life emerged, we will assume for the purpose of this review that the requisite chemical building blocks were available, in appropriate environmental settings. This assumption allows us to focus on the various spontaneous and catalyzed assembly processes that could have led to the formation of primitive membranes and early genetic polymers, their coassembly into membrane-encapsulated nucleic acids, and the chemical and physical processes that allowed for their replication. We will discuss recent progress toward the construction of laboratory models of a protocell (Fig. 1), evaluate the remaining steps that must be achieved before a complete protocell model can be constructed, and consider the prospects for the observation of spontaneous Darwinian evolution in laboratory protocells. Although such laboratory studies may not reflect the specific pathways that led to the origin of life on Earth, they are proving to be invaluable in uncovering surprising and unanticipated physical processes that help us to reconstruct plausible pathways and scenarios for the origin of life.Open in a separate windowFigure 1.A simple protocell model based on a replicating vesicle for compartmentalization, and a replicating genome to encode heritable information. A complex environment provides lipids, nucleotides capable of equilibrating across the membrane bilayer, and sources of energy (left), which leads to subsequent replication of the genetic material and growth of the protocell (middle), and finally protocellular division through physical and chemical processes (right). (Reproduced from Mansy et al. 2008 and reprinted with permission from Nature Publishing ©2008.)The term protocell has been used loosely to refer to primitive cells or to the first cells. Here we will use the term protocell to refer specifically to cell-like structures that are spatially delimited by a growing membrane boundary, and that contain replicating genetic information. A protocell differs from a true cell in that the evolution of genomically encoded advantageous functions has not yet occurred. With a genetic material such as RNA (or perhaps one of many other heteropolymers that could provide both heredity and function) and an appropriate environment, the continued replication of a population of protocells will lead inevitably to the spontaneous emergence of new coded functions by the classical mechanism of evolution through variation and natural selection. Once such genomically encoded and therefore heritable functions have evolved, we would consider the system to be a complete, living biological cell, albeit one much simpler than any modern cell (Szostak et al. 2001).  相似文献   

13.
In possible scenarios on the origin of life, protocells represent the precursors of the first living cells. To study such hypothetical protocells, giant vesicles are being widely used as a simple model. Lipid vesicles can undergo complex morphological changes enabling self‐reproduction such as growth, fission, and extra‐ and intravesicular budding. These properties of vesicular systems may in some way reflect the mechanism of reproduction used by protocells. Moreover, remarkable similarities exist between the morphological changes observed in giant vesicles and bacterial L‐form cells, which represent bacteria that have lost their rigid cell wall, but retain the ability to reproduce. L‐forms feature a dismantled cellular structure and are unable to carry out classical binary fission. We propose that the striking similarities in morphological transitions of L‐forms and giant lipid vesicles may provide insights into primitive reproductive mechanisms and contribute to a better understanding of the origin and evolution of mechanisms of cell reproduction. Editor's suggested further reading in BioEssays Synthesizing artificial cells from giant unilamellar vesicles: State‐of‐the art in the development of microfluidic technology Abstract  相似文献   

14.
White biotechnology relies on the sophisticated chemical machinery inside living cells for producing a broad range of useful compounds in a sustainable and environmentally friendly way. However, despite the impressive repertoire of compounds that can be generated using white biotechnology, this approach cannot currently fully replace traditional chemical production, often relying on petroleum as a raw material. One challenge is the limited number of chemical transformations taking place in living organisms. Biocompatible chemistry, that is non-enzymatic chemical reactions taking place under mild conditions compatible with living organisms, could provide a solution. Biocompatible chemistry is not a novel invention, and has since long been used by living organisms. Examples include Fenton chemistry, used by microorganisms for degrading plant materials, and manganese or ketoacids dependent chemistry used for detoxifying reactive oxygen species. However, harnessing biocompatible chemistry for expanding the chemical repertoire of living cells is a relatively novel approach within white biotechnology, and it could potentially be used for producing valuable compounds which living organisms otherwise are not able to generate. In this mini review, we discuss such applications of biocompatible chemistry, and clarify the potential that lies in using biocompatible chemistry in conjunction with metabolically engineered cell factories for cheap substrate utilization, improved cell physiology, efficient pathway construction and novel chemicals production.  相似文献   

15.
It is generally assumed that the complex map of metabolism is a result of natural selection working at the molecular level. However, natural selection can only work on entities that have three basic features: information, metabolism and membrane. Metabolism must include the capability of producing all cellular structures, as well as energy (ATP), from external sources; information must be established on a material that allows its perpetuity, in order to safeguard the goals achieved; and membranes must be able to preserve the internal material, determining a selective exchange with external material in order to ensure that both metabolism and information can be individualized. It is not difficult to understand that protocellular entities that boast these three qualities can evolve through natural selection. The problem is rather to explain the origin of such features under conditions where natural selection could not work. In the present work we propose that these protocells could be built by chemical evolution, starting from the prebiotic primordial soup, by means of chemical selection. This consists of selective increases of the rates of certain specific reactions because of the kinetic or thermodynamic features of the process, such as stoichiometric catalysis or autocatalysis, cooperativity and others, thereby promoting their prevalence among the whole set of chemical possibilities. Our results show that all chemical processes necessary for yielding the basic materials that natural selection needs to work may be achieved through chemical selection, thus suggesting a way for life to begin.  相似文献   

16.
Compositional complementarity and prebiotic ecology in the origin of life   总被引:4,自引:0,他引:4  
We hypothesize that life began not with the first self-reproducing molecule or metabolic network, but as a prebiotic ecology of co-evolving populations of macromolecular aggregates (composomes). Each composome species had a particular molecular composition resulting from molecular complementarity among environmentally available prebiotic compounds. Natural selection acted on composomal species that varied in properties and functions such as stability, catalysis, fission, fusion and selective accumulation of molecules from solution. Fission permitted molecular replication based on composition rather than linear structure, while fusion created composomal variability. Catalytic functions provided additional chemical novelty resulting eventually in autocatalytic and mutually catalytic networks within composomal species. Composomal autocatalysis and interdependence allowed the Darwinian co-evolution of content and control (metabolism). The existence of chemical interfaces within complex composomes created linear templates upon which self-reproducing molecules (such as RNA) could be synthesized, permitting the evolution of informational replication by molecular templating. Mathematical and experimental tests are proposed.  相似文献   

17.
Although model protocellular membranes consisting of monoacyl lipids are similar to membranes composed of contemporary diacyl lipids, they differ in at least one important aspect. Model protocellular membranes allow for the passage of polar solutes and thus can potentially support cell-to functions without the aid of transport machinery. The ability to transport polar molecules likely stems from increased lipid dynamics. Selectively permeable vesicle membranes composed of monoacyl lipids allow for many lifelike processes to emerge from a remarkably small set of molecules.Lipid bilayer membranes are an integral component of living cells, providing a permeability barrier that is essential for nutrient transport and energy production. It is reasonable to assume that a similar boundary structure would be required for the origin of cellular life (Szostak et al. 2001). Even though bilayer membranes are a cellular necessity, they also pose a significant obstacle to early cellular functions, the most obvious being that the permeability barrier would inhibit chemical exchange with the environment. Such an exchange is important not only for acquiring nutrient substrates for primitive metabolic processes, but also for the release of inhibitory side-products.Contemporary cells circumvent the permeability problem by incorporating complex transmembrane protein machinery that provides specific transport capabilities. It is unlikely that Earth’s first cells assembled bilayer membranes together with specific membrane protein transporters. Rather, intermediate evolutionary steps must have existed in which simple lipid molecules provided many of the characteristics of contemporary membranes without relying on advanced protein machinery. What seems to have been necessary was the appearance of a simple membrane system capable of retaining and releasing specific molecules. In short, a protocell needed to be selectively permeable.  相似文献   

18.
The Lipid World   总被引:2,自引:0,他引:2  
The continuity of abiotically formed bilayer membraneswith similar structures in contemporary cellular life,and the requirement for microenvironments in whichlarge and small molecules could be compartmentalized, support the idea that amphiphilic boundary structurescontributed to the emergence of life. As an extensionof this notion, we propose here a `Lipid World'scenario as an early evolutionary step in theemergence of cellular life on Earth. This conceptcombines the potential chemical activities of lipidsand other amphiphiles, with their capacity to undergospontaneous self-organization into supramolecularstructures such as micelles and bilayers. Inparticular, the documented chemical rate enhancementswithin lipid assemblies suggest that energy-dependentsynthetic reactions could lead to the growth andincreased abundance of certain amphiphilic assemblies.We further propose that selective processes might acton such assemblies, as suggested by our computersimulations of mutual catalysis among amphiphiles. Asdemonstrated also by other researchers, such mutualcatalysis within random molecular assemblies couldhave led to a primordial homeostatic system displayingrudimentary life-like properties. Taken together,these concepts provide a theoretical framework, andsuggest experimental tests for a Lipid World model forthe origin of life.  相似文献   

19.
In this paper we propose a new bottom-up approach to cellular computing, in which computational chemical processes are encapsulated within liposomes. This “liposome logic” approach (also called vesicle computing) makes use of supra-molecular chemistry constructs, e.g. protocells, chells, etc. as minimal cellular platforms to which logical functionality can be added. Modeling and simulations feature prominently in “top-down” synthetic biology, particularly in the specification, design and implementation of logic circuits through bacterial genome reengineering. The second contribution in this paper is the demonstration of a novel set of tools for the specification, modelling and analysis of “bottom-up” liposome logic. In particular, simulation and modelling techniques are used to analyse some example liposome logic designs, ranging from relatively simple NOT gates and NAND gates to SR-Latches, D Flip-Flops all the way to 3 bit ripple counters. The approach we propose consists of specifying, by means of P systems, gene regulatory network-like systems operating inside proto-membranes. This P systems specification can be automatically translated and executed through a multiscaled pipeline composed of dissipative particle dynamics (DPD) simulator and Gillespie’s stochastic simulation algorithm (SSA). Finally, model selection and analysis can be performed through a model checking phase. This is the first paper we are aware of that brings to bear formal specifications, DPD, SSA and model checking to the problem of modeling target computational functionality in protocells. Potential chemical routes for the laboratory implementation of these simulations are also discussed thus for the first time suggesting a potentially realistic physiochemical implementation for membrane computing from the bottom-up.  相似文献   

20.
Pit2 is a type III sodium-dependent phosphate transporter and the cell surface receptor for amphotropic murine leukemia virus. Indirect arguments have previously suggested that retrovirus receptor assembly play a role in triggering membrane fusion. Using CHO cells expressing physiological amounts of functional versions of human Pit2 fused to various tagging epitopes, we provide evidence that Pit2 forms assemblies at the cell surface. Living cells were exposed to cross-linking reagents and protein extracts were treated with trifluoroacetic acid (TFA), a chemical that destroys all protein interactions but covalent links. Assemblies were also detected in the absence of cross-linking and TFA treatment, indicating that they are partially resistant to detergent denaturation. The formation of homo-oligomers was documented by the coimmunoprecipitation of differently tagged molecules. The amounts of Pit2 assemblies detected in the presence or in the absence of cross-linking reagents varied with extracellular inorganic phosphate concentration ([P(i)]). Variation of signal intensity was in the range of twofold, occurred in the absence of de novo protein synthesis and took place at the cell surface. These results indicate that Pit2 assemblies exhibit variable conformations at the surface of living cells. Susceptibility to virus infection and phosphate uptake also vary with extracellular [P(i)]. A model is proposed in which cell surface Pit2 assemblies switch from a compacted to an expanded configuration in response to changes of extracellular [P(i)], and possible relationships with the variation of biological activities are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号