首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Dispersal of propagules plays an important role in the distribution of corals. Pocillopora damicornis, Seriatopora hystrix, and Stylophora pistillata are all brooders and release planulae having symbiotic zooxanthellae. Planulae showed a great size variation, especially at peaks of planulation, and we found negative correlations between zooxanthella density and planula size in S. hystrix and S. pistillata. Studies of the larval life of planulae under both light and dark conditions have revealed that larger planulae have a longer lifetime. When planulae of the same size were compared, it was found that they lived longer under light conditions than under dark conditions. These findings suggest that planulae utilize energy from photosynthetic products of zooxanthellae and that these corals enjoy long-distance dispersal by producing larger planulae with greater dispersal potential. It is conceivable that variation in the dispersal potential of planulae is a means of adaptation by which planulae can increase their chances of finding a suitable habitat.  相似文献   

2.
《农业工程》2014,34(3):165-169
Mutualistic relationship between coral polyps and their symbiotic zooxanthellae living within their tissues are the most essential features of a coral reef ecosystem. In this symbiotic system, the coral polyps provide a protected habitat, carbon dioxide and nutrients needed for photosynthesis to zooxanthellae; in turn, the symbiotic zooxanthellae provide food as products of photosynthesis to coral polyps. The Photosynthesis of zooxanthellae is therefore an important process of this symbiotic system as well as the development of the whole coral reef ecosystem. The recent application of chlorophyll fluorescence technique in the study of the zooxanthellae’s photosynthesis has greatly improved our understanding on the micro-ecology of corals and the symbiotic zooxanthellae. This paper summarizes the recent progress as the following aspects: (1) The ecological characteristics of the photosynthesis of symbiotic zooxanthellae, such as the diurnal and seasonal changes in the photochemical efficiency of the zooxanthellae, and the relationship between zooxanthellae photosynthesis and the world-wide coral bleaching. (2) The mechanism of corals acclimating to the changes of irradiance via spatial and temporal photoacclimations, including the corals’ photobiology; zooxanthella size, pigmentation, location and clade, and the relationship between light extremes and the corals’ metabolism and calcification. (3) The understanding of the response of zooxanthellae to various environmental stresses, such as long-term changes in the chlorophyll fluorescence of bleached and recovering corals; the tolerance of corals to thermal bleaching; the changes to photosystem II of symbiotic zooxanthellae after heat stress and bleaching. Due to the above findings, the chlorophyll fluorescence values of those coral species sensitive to environmental changes have been utilized as indicators of coral health as well as the status of coral reef ecosystems. In summary, the chlorophyll fluorescence technique has great potential in the understanding, monitoring, protecting and managing coral reefs.  相似文献   

3.
 Coastal reef degradation and widespread bleaching of corals, i.e. loss of pigments and/or symbiotic zooxanthellae, is increasing globally. Remote sensing from boats, aircraft or satellites has great potential for assessing the extent of reef change, but will require ground-verified spectral algorithims characteristic of healthy and degraded reef populations. We collected seven species of Caribbean reef corals and also representative macroalgae from reefs near Lee Stocking Island, Bahamas and quantified their pigments using high performance liquid chromatography. We also measured the fluorescence and reflectance spectra of corals and macroalgae using an in situ benthic spectrofluorometer. In visibly pigmented (unbleached) coral from 4 to 5 m depth, the mean (±SD) surface density of pigments (3.0±1.3 μg chlorophyll-a cm-2 and 2.1±0.7 μg peridinin cm-2) was similar between colonies of the same species, but differed among species. The mean quantity of pigment per zooxanthella (1.8±0.9 pg chl-a cell-1 and 1.4±0.7 pg peridinin cell-1) also differed among species and sometimes between colonies of the same species. Chl-a and peridinin densities per surface area of coral were positively correlated. When excited with blue light (480 nm), macroalgae and corals had typical chlorophyll fluorescence with a peak at 680 nm and a smaller shoulder peak at 730 to 740 nm. Most corals, unlike macroalgae, also had distinct fluorescence peaks between 500 and 530 nm. In visibly bleached corals 680 nm fluorescence was greatly reduced in amplitude. Pigmented coral, under natural lighting conditions, had a reflected light peak at about 570 nm. Reflectance increased over all wavelengths in bleached corals, with the greatest increase at the wavelengths where chlorophyll and accessory pigments absorb light, i.e. 670 and 450 to 550 nm. Both fluorescence and reflectance spectra appear promising to remotely differentiate between pigmented and bleached coral and between coral and macroalgae. Accepted: 15 March 1999  相似文献   

4.
High calcification rates observed in reef coral organisms are due to the symbiotic relationship established between scleractinian corals and their photosynthetic dinoflagellates, commonly called zooxanthellae. Zooxanthellae are known to enhance calcification in the light, a process referred as "light-enhanced calcification". The disruption of the relationship between corals and their zooxanthellae leads to bleaching. Bleaching is one of the major causes of the present decline of coral reefs related to climate change and anthropogenic activities. In our aquaria, corals experienced a chemical pollution leading to bleaching and ending with the death of corals. During the time course of this bleaching event, we measured multiple parameters and could evidence four major consecutive steps: 1) at month 1 (January 2005), the stress affected primarily the photosystem II machinery of zooxanthellae resulting in an immediate decrease of photosystem II efficiency, 2) at month 2, the stress affected the photosynthetic production of O2 by zooxanthellae and the rate of light calcification, 3) at month 3, there was a decrease in both light and dark calcification rates, the appearance of the first oxidative damage in the zooxanthellae, the disruption of symbiosis, 4) and finally the death of corals at month 6.  相似文献   

5.
Ways, mechanisms, and responses of ontogenetic adaptation of reef-building corals to light are discussed on the basis of original and literature data. The possible ways of photoacclimation of corals within the range of tolerance to light are shown: (1) adaptation to bright light (>70% incident photosynthetic active radiation, PARs), (2) adaptation to moderate shade (50–10% PARs), and (3) adaptation to extremely low light (<5% PARs). In each of the ways, general and specific mechanisms and reactions are involved in photoacclimation of corals. Adaptive changes take place in plant (zooxanthellae) and animal (polyps) components of the symbiotic organism. They involve morphology, physiology, and biochemistry of colonial polyps and their zooxanthellae. During changes of the light regime, some adaptive reactions last several months and others occur within a few days. Some physiological and biochemical alterations occur as early as the next day after the light regime changes. The wide range of light tolerance of corals and a great number of mechanisms and reactions of photoacclimation allowing corals to adapt to bright and low light with minimum losses in their metabolic activity give grounds to classify them as a single ecological group of light- and shade-tolerant organisms.  相似文献   

6.
The presence of zooxanthellae in tissues of the cold-temperate water coral Plesiastrea urvillei (Milne Edwards and Haime) has been confirmed histologically. Numbers of zooxanthellae per unit surface area and increases in submerged wet weight as a measure of calcification have been followed for 150 days under four different conditions: light-fed, light-starved, dark-fed, and dark-starved. No significant difference was found in density of zooxanthellae or calcification rates between light-fed and light-starved, and between dark-fed and dark-starved. After Day 48 the calcification rate in the dark dropped, however, by a factor of ≈4 to a constant lower rate and was correlated with a decrease in density of zooxanthellae. Zooxanthellae thus enhance calcification about 4 times during photosynthesis. Measurements of oxygen consumption and production indicated that even at the low light intensities experienced on a cloudy winter day by the coral in its natural environment more energy was fixed during photosynthesis than was required by the host. The retention of zooxanthellae and continued calcification in the dark for upwards of 48 days is considered to be an adaptation to the lower light levels experienced by P. urvillei compared with tropical corals.  相似文献   

7.
The change of Stylophora pistillata coral photosynthetic function (oxygen exchange and biomass of symbionts) under starvation and food enrichment was studied to understand the role of heterotrophy in nitrogen supplements of zooxanthellae. The starvation caused the decrease of frequency of zooxanthellae cells division in 7-10 times. The number of degraded algae cells increased in same proportion and, as a result, the density of zooxanthellae in corals decreased about two times during one-two weeks. Under starvation corals kept their photosynthetic capacity at the level of corals in situ by means of enhancing the zooxanthellae gross photosynthesis. The respiration rate of coral had tendency to increase and the dry mass of polyp tissue to decrease. Under artificial feeding which was following starvation the zooxanthellae density increased in 1.5-2 times, and particular food caused more intensive accumulation of zooxanthellae comparing to dissolved inorganic ammonium. The feeding regime did not affect dry mass of polyp tissue and chlorophyll content as well as respiration and gross productivity of the corals. The conclusion about high effectiveness of particular feeding for supplying symbiotic algae with nitrogen was made and trophic status of zooxanthellae in hospite was determined as unlimited by nitrogen.  相似文献   

8.
The coral species Leptoseris troglodyta sp. n. (Scleractinia, Agariciidae) is described as new to science. It is the first known azooxanthellate shallow-water agariciid and is recorded from the ceilings of caves at 5-35 m depth in West Pacific coral reefs. The corals have monocentric cup-shaped calices. They may become colonial through extramural budding from the basal coenosteum, which may cause adjacent calices to fuse. The size, shape and habitat of Leptoseris troglodyta are unique compared to other Leptoseris species, many of which have been recorded from mesophotic depths. The absence of zooxanthellae indicates that it may survive well in darkness, but endolithic algae in some corals indicate that they may be able to get some light. The presence of menianes on the septal sides, which may help to absorb light at greater depths in zooxanthellate corals, have no obvious adaptive relevance in the new species and could have been inherited from ancestral species that perhaps were zooxanthellate. The new species may be azooxanthellate as derived through the loss of zooxanthellae, which would be a reversal in Leptoseris phylogeny.  相似文献   

9.
The term hermatypic, as widely used in the literature of extant and fossil Scleractinia, includes, by definition (Wells 1933), the confusing generalization of equating reef-building with containing zooxanthellae. In course of time the use of the term diverged into denoting organisms which are either reef-building (including calcareous Rhodophyta) or those that contain zooxanthellae (including soft Alcyonaria). The equation: reef-building corals harbour zooxanthellae and vice-versa, is invalidated by reviewing the various ecological categories of corals such as: reef-building species without the support of zooxanthellae, zooxanthellae-containing corals which inhabit but do not build reefs, zooxanthellae-containing, non-reef-building corals beyond the bathymetric and latitudinal limits of reefs, and framework-erecting corals in deep waters without zooxanthellae. Former attempts to improve the original definition of hermatypic are shown to be insufficient to match the ecological diversity of corals. A strict terminological separation of the properties zooxanthellae-containing, reef-building and (more generally) framework-building is provided by the use of the revised, respectively new terms zooxanthellate, hermatypic and constructional (with the respective antonyms azooxanthellate, ahermatypic and nonconstructional). This terminology also applies to non-scleractinians.  相似文献   

10.
Some hermatypic corals spawn eggs that contain zooxanthellae. We followed development of zooxanthella-containing eggs of two such species, Pocillopora verrucosa and P. eydouxi. We also documented changes in the distribution pattern of zooxanthellae during development. Oocytes of both species took up zooxanthellae 3 to 4 days before spawning. At first, zooxanthellae were evenly distributed in oocytes, but they later moved to the hemisphere that contained the germinal vesicle. After fertilization, early cleavage events were holoblastic, progressing by furrow formation. The first cleavage furrow started at the hemisphere that contained zooxanthellae, dividing the zooxanthellate complement of the zygote about equally into the two blastomeres. The second division divided each blastomere into one zooxanthellae-rich cell and one with few zooxanthellae. With continued cell division, blastomeres containing zooxanthellae moved into the blastocoel. The blastocoel disappeared at about 5 h after the first cleavage, and the central region of the embryo was filled with cells containing either zooxanthellae or lipid droplets, forming a stereogastrula. Our results suggest that only blastomeres that had been determined to develop into gastrodermal cells receive zooxanthellae during cleavage. This determination appears to take place, at the latest, by the second cell division at the four-cell stage.  相似文献   

11.
Coral species in a similar habitat often show different bleaching susceptibilities. It is not understood which partner of coral-zooxanthellae complexes is responsible for differential stress susceptibility. Stress susceptibilities of in hospite and isolated zooxanthellae from five species of corals collected from shallow water in Okinawa were compared. To estimate stress susceptibility, we measured the maximum quantum yields (Fv/Fm) of in hospite and isolated zooxanthellae after 3-h exposure to either 28 or 34 °C at various light intensities and their recovery after 12 h under dim light at 26 °C. Significant reduction in photochemical efficiency (Fv/Fm) of photosystem II (PSII) was observed in in hospite zooxanthellae exposed to high light intensity (1000 μmol quanta m−2 s−1), while PSII activity of isolated zooxanthellae decreased significantly even at a lower light intensity (70 μmol quanta m−2 s−1). The recovery of the PSII activity after 12 h was incomplete in both in hospite and isolated zooxanthellae, indicating the presence of chronic photoinhibition. The stress susceptibility of isolated zooxanthellae was more variable among species than in hospite zooxanthellae. The order of stress susceptibility among the five coral species was different between in hospite and isolated zooxanthellae. The present results suggest that the host plays a significant role in determining bleaching susceptibility of corals, though zooxanthellae from different host have different stress susceptibilities.  相似文献   

12.
Caribbean corals of the Montastraea annularis species complex associate with four taxa of symbiotic dinoflagellates (zooxanthellae; genus Symbiodinium) in ecologically predictable patterns. To investigate the resilience of these host-zooxanthella associations, we conducted field experiments in which we experimentally reduced the numbers of zooxanthellae (by transplanting to shallow water or by shading) and then allowed treated corals to recover. When depletion was not extreme, recovering corals generally contained the same types of zooxanthellae as they did prior to treatment. After severe depletion, however, recovering corals were always repopulated by zooxanthellae atypical for their habitat (and in some cases atypical for the coral species). These unusual zooxanthellar associations were often (but not always) established in experimentally bleached tissues even when adjacent tissues were untreated. Atypical zooxanthellae were also observed in bleached tissues of unmanipulated Montastraea with yellow-blotch disease. In colonies where unusual associations were established, the original taxa of zooxanthellae were not detected even 9 months after the end of treatment. These observations suggest that zooxanthellae in Montastraea range from fugitive opportunists and stress-tolerant generalists (Symbiodinium A and E) to narrowly adapted specialists (Symbiodinium B and C), and may undergo succession.  相似文献   

13.
Titlyanov  E. A. 《Hydrobiologia》1991,216(1):383-387
Light adaptation and photosynthetic productivity were studied in common reef-building corals on islands of the Indian Ocean and the South China Sea. When light is attenuated, both in shade and at depth, adaptations by zooxanthellae permit maximal absorption and utilization of light. Better utilization of incident light in shade-dwelling and deep-water coral forms is reflected by higher values of gross photosynthesis on the plateau and linear portion of the photosynthesis-irradiance curve. It was shown that outer branches of reef-building corals are autotrophic in a major part of their light-range distribution and have a high and stable level of primary production.  相似文献   

14.
The bleaching of corals in response to increases in temperature has resulted in significant coral reef degradation in many tropical marine ecosystems. This bleaching has frequently been attributed to photoinhibition of photosynthetic electron transport and the consequent photodamage to photosystem II (PSII) and the production of damaging reactive oxygen species (ROS) in the zooxanthellae (Symbiodinium spp.). However, these events may be because of perturbations of other processes occurring within the zooxanthellae or the host cells, and consequently constitute only secondary responses to temperature increase. The processes involved with the onset of photoinhibition of electron transport, photodamage to PSII and pigment bleaching in coral zooxanthellae are reviewed. Consideration is given to how increases in temperature might lead to perturbations of metabolic processes in the zooxanthellae and/or their host cells, which could trigger events leading to bleaching. It is concluded that production of ROS by the thylakoid photosynthetic apparatus in the zooxanthellae plays a major role in the onset of bleaching resulting from photoinhibition of photosynthesis, although it is not clear which particular ROS are involved. It is suggested that hydrogen peroxide generated in the zooxanthellae may have a signalling role in triggering the mechanisms that result in expulsion of zooxanthellae from corals.  相似文献   

15.
Sunlight and water transparency: cornerstones in coral research   总被引:2,自引:0,他引:2  
Reef-building corals throughout the world are considered endangered. The evidence is a decline in coral health and reduced coral cover. Competing hypotheses for the cause of coral loss include removal of grazers, nutrient enrichment, disease, coral bleaching, increase in temperature, and excess light/ultraviolet exposure. We suggest that light limitation as a second order effect of anthropogenic activity (e.g. sediment resuspension and nutrient enrichment) is a valid and tractable hypothesis. This experimental field and laboratory study demonstrates that corals of the Florida reefs are functioning close to the compensation point where respiration (of coral polyp plus zooxanthellae) consumes the products of photosynthesis of the zooxanthellae, with little if any remaining for growth. We extend this work into an optical nomograph that is useful for predicting coral loss and recovery. The nomograph is designed to elucidate compensation depth for waters of various transparencies.  相似文献   

16.
Knowledge of factors that are important in reef resilience helps us to understand how reef ecosystems react following major an-thropogenic and environmental disturbances. The symbiotic rela-tionship between the photosynthetic zooxanthellae algal cells and corals is that the zooxanthellae provide the coral with carbon, while the coral provides protection and access to enough light for the zooxanthellae to photosynthesise. This article reviews some recent advances in computational biology relevant to photosynthetic or-ganisms, including Beyesian approaches to kinetics, computational methods for flux balances in metabolic processes, and determina-tion of clades of zooxanthallae. Application of these systems will be important in the conservation of coral reefs in times of climate change and environmental stress.  相似文献   

17.
Algal symbionts (zooxanthellae, genus Symbiodinium) of scleractinian corals respond strongly to temperature, nutrient and light changes. These factors vary greatly along the north-south gradient in the Red Sea and include conditions, which are outside of those typically considered optimal for coral growth. Nevertheless, coral communities thrive throughout the Red Sea, suggesting that zooxanthellae have successfully acclimatized or adapted to the harsh conditions they experience particularly in the south (high temperatures and high nutrient supply). As such, the Red Sea is a region, which may help to better understand how zooxanthellae and their coral hosts successfully acclimatize or adapt to environmental change (e.g. increased temperatures and localized eutrophication). To gain further insight into the physiology of coral symbionts in the Red Sea, we examined the abundance of dominant Symbiodinium types associated with the coral Pocillopora verrucosa, and measured Symbiodinium physiological characteristics (i.e. photosynthetic processes, cell density, pigmentation, and protein composition) along the latitudinal gradient of the Red Sea in summer and winter. Despite the strong environmental gradients from north to south, our results demonstrate that Symbiodinium microadriaticum (type A1) was the predominant species in P. verrucosa along the latitudinal gradient. Furthermore, measured physiological characteristics were found to vary more with prevailing seasonal environmental conditions than with region-specific differences, although the measured environmental parameters displayed much higher spatial than temporal variability. We conclude that our findings might present the result of long-term acclimatization or adaptation of S. microadriaticum to regionally specific conditions within the Red Sea. Of additional note, high nutrients in the South correlated with high zooxanthellae density indicating a compensation for a temperature-driven loss of photosynthetic performance, which may prove promising for the resilience of these corals under increase of temperature increase and eutrophication.  相似文献   

18.
Worldwide, the scleractinian corals that characterize contemporary coral reef communities are exhibiting a variety of pathological conditions. These conditions range from diseases linked with specific pathogens to the syndrome known as bleaching. The latter phenomenon involves the loss or reduction of the symbiotic zooxanthellae on which the corals depend. Bleaching appears to be a generalized stress syndrome, but in some cases it may be due to pathogenic infections. A full understanding of coral pathologies requires the development of laboratory models. We have developed two complementary protocols that will facilitate the study of coral pathologies at a number of levels. The first method involves the induction of bleaching by exposing the coral to an acute period of reduced temperature. The second protocol allows the dissociation of coral polyps into a number of cell types that can be maintained long-term in primary culture. Among these are multicellular endothelial isolates (MEI) that contain zooxanthellae and show a high rate of motility. The bleaching protocol will enable investigators to study the processes by which corals recover from bleaching, and it will offer a standard that can be compared to other conditions that lead to bleaching. The cell culture technique will enable the study of mechanisms underlying pathological conditions at the cellular level, and permit studies of how pathological conditions disrupt the relationship between corals and their zooxanthellae.  相似文献   

19.
Climate change scenarios suggest an increase in tropical ocean temperature by 1–3°C by 2099, potentially killing many coral reefs. But Arabian/Persian Gulf corals already exist in this future thermal environment predicted for most tropical reefs and survived severe bleaching in 2010, one of the hottest years on record. Exposure to 33–35°C was on average twice as long as in non-bleaching years. Gulf corals bleached after exposure to temperatures above 34°C for a total of 8 weeks of which 3 weeks were above 35°C. This is more heat than any other corals can survive, providing an insight into the present limits of holobiont adaptation. We show that average temperatures as well as heat-waves in the Gulf have been increasing, that coral population levels will fluctuate strongly, and reef-building capability will be compromised. This, in combination with ocean acidification and significant local threats posed by rampant coastal development puts even these most heat-adapted corals at risk. WWF considers the Gulf ecoregion as “critically endangered”. We argue here that Gulf corals should be considered for assisted migration to the tropical Indo-Pacific. This would have the double benefit of avoiding local extinction of the world''s most heat-adapted holobionts while at the same time introducing their genetic information to populations naïve to such extremes, potentially assisting their survival. Thus, the heat-adaptation acquired by Gulf corals over 6 k, could benefit tropical Indo-Pacific corals who have <100 y until they will experience a similarly harsh climate. Population models suggest that the heat-adapted corals could become dominant on tropical reefs within ∼20 years.  相似文献   

20.
Coral reefs are among the most biologically diverse and economically important ecosystems on the planet. The deposition of massive calcium carbonate skeletons (biomineralization or calcification) by scleractinian corals forms the coral reef framework/architecture that serves as habitat for a large diversity of organisms. This process would not be possible without the intimate symbiosis between corals and photosynthetic dinoflagellates, commonly called zooxanthellae. Carbonic anhydrases play major roles in those two essential processes of coral’s physiology: they are involved in the carbon supply for calcium carbonate precipitation as well as in carbon-concentrating mechanisms for symbiont photosynthesis. Here, we review the current understanding of diversity and function of carbonic anhydrases in corals and discuss the perspective of theses enzymes as a key to understanding impacts of environmental changes on coral reefs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号