共查询到5条相似文献,搜索用时 15 毫秒
1.
This review focuses on the recent developments in the study of drug interactions with biological membranes and membrane-associated proteins using nuclear magnetic resonance (NMR) spectroscopy and other spectroscopic techniques. Emphasis is placed on a class of low-affinity neurological agents as exemplified by volatile general anesthetics and structurally related compounds. The technical aspects are reviewed of how to prepare membrane-mimetic systems and of NMR approaches that are either in current use or opening new prospects. A brief literature survey covers studies ranging from drug distribution in simplified lipid matrix to specific drug interaction with neuronal receptors reconstituted in complicated synthetic membrane systems. 相似文献
2.
A new derivative of racemic gossypol with 2-thiophenecarbohydrazide (GHHT) and its complexes with monovalent cations have been synthesized and studied by electrospray ionization-mass spectroscopy (ESI-MS), multinuclear nuclear magnetic resonance (NMR), as well as by the Parametric Method 5 (PM5) methods. It is demonstrated that GHHT forms stable complexes of 1:1 stoichiometry with monovalent metal cations. The structures of the complexes are stabilized by three types of intramolecular hydrogen bonds. The spectroscopic methods have provided clear evidence that GHHT and its complexes exist in the DMSO-d6 solution in the N-imine-N-imine tautomeric forms. The structures of the GHHT and its complexes with Li+, Na+, K+, Rb+, and Cs+ cations are visualized and discussed in detail. 相似文献
3.
Fraceto LF Oyama S Nakaie CR Spisni A de Paula E Pertinhez TA 《Biophysical chemistry》2006,123(1):29-39
The peptide pIV/S4-S5 encompasses the cytoplasmic linker between helices S4-S5 in domain IV of the voltage-gated Na+ channel, residues 1644-1664. The interaction of two local anesthetics (LA), lidocaine and benzocaine, with pIV/S4-S5 has been studied by DOSY, heteronuclear NMR 1H-15N-HSQC spectroscopy and computational methods. DOSY indicates that benzocaine, a neutral ester, exhibits stronger interaction with pIV/S4-S5 than lidocaine, a charged amine-amide. Weighted average chemical shifts, Deltadelta(1H-15N), show that benzocaine affects residues L1653, M1655 and S1656 while lidocaine slightly perturbs residues I1646, L1649 and A1659, L1660, near the N- and C-terminus, respectively. Computational methods confirmed the stability of the benzocaine binding and the existence of two binding sites for lidocaine. Even considering that the approach of studying the peptide in the presence of a co-solvent (TFE/H2O, 30%/70% v/v) has an inherently limited implication, our data strongly support the existence of multiple LA binding sites in the IV/S4-S5 linker, as suggested in the literature. In addition, we consider that LA can bind to the S4-S5 linker with diverse binding modes and strength since this linker is part of the receptor for the "inactivation gate particle". Conditions for devising new functional studies, aiming to better understand Na+ channel functionality as well as the various facets of LA pharmacological activity are proposed in this work. 相似文献
4.
Zhang J Li X Yao B Shen W Sun H Xu C Wu J Shi Y 《Biochemical and biophysical research communications》2007,357(4):931-937
Solution structure of the first Src homology (SH) 3 domain of human vinexin (V_SH3_1) was determined using nuclear magnetic resonance (NMR) method and revealed that it was a canonical SH3 domain, which has a typical beta-beta-beta-beta-alpha-beta fold. Using chemical shift perturbation and surface plasmon resonance experiments, we studied the binding properties of the SH3 domain with two different peptides from vinculin hinge regions: P856 and P868. The observations illustrated slightly different affinities of the two peptides binding to V_SH3_1. The interaction between P868 and V_SH3_1 belonged to intermediate exchange with a modest binding affinity, while the interaction between P856 and V_SH3_1 had a low binding affinity. The structure and ligand-binding interface of V_SH3_1 provide a structural basis for the further functional study of this important molecule. 相似文献
5.
《Bioorganic & medicinal chemistry》2020,28(13):115510
Nanoscale design and construction of affinity-based drug delivery systems (ADDS) is an active research area with enormous potential for the improvement of cancer treatment. For the therapeutic load of these ADDS, a promising strategy is the design of pH-sensitive prodrugs based on the construction of conjugates between adamantane and doxorubicin (Ad-Dox), which stands out as an excellent model system to obtain novel supramolecular materials. Construction of these prodrugs involves a modification of three zones of doxorubicin which in principle does not affect the action mechanism: the carbonyl group C13 (hydrazone linker), the primary alcohol neighboring the carbonyl (ester linker) and the 3′ amino group of daunosamine sugar (amide linker). These modifications are aimed to improve the efficacy and reduce the systemic toxicity of the drug chemotherapy by controlling its release in cancer cells. In this work, we performed 2D NMR experiments and molecular dynamics simulations to characterize the conformational changes of three constructed prodrugs. Our results demonstrated that ring A and the daunsamine sugar of the hydrazone and amide linkers conserve the half-chair state 9H8, while the ester linker disrupts this conformation. Our study also showed that the hydrazone-linked compound (Ad-h-Dox) does not modify the conformation of the original drug and maintains cytotoxic activity. Moreover, the inclusion complex (IC) of Ad-h-Dox with β-cyclodextrin (βCD) generated a highly soluble platform in water, whereas the ester-linked compound (Ad-e-Dox) causes the loss of biological activity. This study proves that Ad-h-Dox prodrug can be an optimum prodrug and act as a building block for a more complex drug transport system. 相似文献