首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Redox-sensing repressor Rex was previously implicated in the control of anaerobic respiration in response to the cellular NADH/NAD(+) levels in gram-positive bacteria. We utilized the comparative genomics approach to infer candidate Rex-binding DNA motifs and assess the Rex regulon content in 119 genomes from 11 taxonomic groups. Both DNA-binding and NAD-sensing domains are broadly conserved in Rex orthologs identified in the phyla Firmicutes, Thermotogales, Actinobacteria, Chloroflexi, Deinococcus-Thermus, and Proteobacteria. The identified DNA-binding motifs showed significant conservation in these species, with the only exception detected in Clostridia, where the Rex motif deviates in two positions from the generalized consensus, TTGTGAANNNNTTCACAA. Comparative analysis of candidate Rex sites revealed remarkable variations in functional repertoires of candidate Rex-regulated genes in various microorganisms. Most of the reconstructed regulatory interactions are lineage specific, suggesting frequent events of gain and loss of regulator binding sites in the evolution of Rex regulons. We identified more than 50 novel Rex-regulated operons encoding functions that are essential for resumption of the NADH:NAD(+) balance. The novel functional role of Rex in the control of the central carbon metabolism and hydrogen production genes was validated by in vitro DNA binding assays using the TM0169 protein in the hydrogen-producing bacterium Thermotoga maritima.  相似文献   

4.
5.
A site-directed mutagenesis, D244E, of S-adenosylhomocysteine hydrolase (AdoHcyase) changes drastically the nature of the protein, especially the NAD(+) binding affinity. The mutant enzyme contained NADH rather than NAD(+) (Gomi, T., Takata, Y., Date, T., Fujioka, M., Aksamit, R. R., Backlund, P. S., and Cantoni, G. L. (1990) J. Biol. Chem. 265, 16102-16107). In contrast to the site-directed mutagenesis study, the crystal structures of human and rat AdoHcyase recently determined have shown that the carboxyl group of Asp-244 points in a direction opposite to the bound NAD molecule and does not participate in any hydrogen bonds with the NAD molecule. To explain the discrepancy between the mutagenesis study and the x-ray studies, we have determined the crystal structure of the recombinant rat-liver D244E mutant enzyme to 2.8-A resolution. The D244E mutation changes the enzyme structure from the open to the closed conformation by means of a approximately 17 degrees rotation of the individual catalytic domains around the molecular hinge sections. The D244E mutation shifts the catalytic reaction from a reversible to an irreversible fashion. The large affinity difference between NAD(+) and NADH is mainly due to the enzyme conformation, but not to the binding-site geometry; an NAD(+) in the open conformation is readily released from the enzyme, whereas an NADH in the closed conformation is trapped and cannot leave the enzyme. A catalytic mechanism of AdoHcyase has been proposed on the basis of the crystal structures of the wild-type and D244E enzymes.  相似文献   

6.
7.
转录因子Rex是一种广泛存在于革兰氏阳性菌,能够与NADH或者NAD+直接结合响应胞内NADH/NAD+的氧化还原传感器,与靶基因的结合可调节细胞内的多种生理代谢。NAD(H)是调节细胞能量代谢的必需辅酶,显示微生物细胞内的氧化还原状态。研究发现Rex的调节活性与细胞内NADH/NAD+比率相关。需氧和厌氧菌属中Rex单体和复合物晶体结构的解析揭示了Rex、NADH/NAD+和靶基因间的作用关系及调控机制。通过比较分析了不同菌株中Rex单体和复合物的晶体蛋白结构,并揭示了NADH/NAD+对Rex调控活性的影响,进一步解析了Rex与碳和能量代谢、厌氧代谢、发酵、生物膜等之间的联系,并展望了Rex的研究和应用方向。  相似文献   

8.
Complex I (NADH:ubiquinone oxidoreductase) is the largest protein complex of bacterial and mitochondrial respiratory chains. The first three-dimensional structure of bacterial complex I in vitrified ice was determined by electron cryo-microscopy and single particle analysis. The structure of the Escherichia coli enzyme incubated with either NAD(+) (as a reference) or NADH was calculated to 35 and 39 A resolution, respectively. The X-ray structure of the peripheral arm of Thermus thermophilus complex I was docked into the reference EM structure. The model obtained indicates that Fe-S cluster N2 is close to the membrane domain interface, allowing for effective electron transfer to membrane-embedded quinone. At the current resolution, the structures in the presence of NAD(+) or NADH are similar. Additionally, side-view class averages were calculated for the negatively stained bovine enzyme. The structures of bovine complex I in the presence of either NAD(+) or NADH also appeared to be similar. These observations indicate that conformational changes upon reduction with NADH, suggested to occur by a range of studies, are smaller than had been thought previously. The model of the entire bacterial complex I could be built from the crystal structures of subcomplexes using the EM envelope described here.  相似文献   

9.
Brekasis D  Paget MS 《The EMBO journal》2003,22(18):4856-4865
We describe the identification of Rex, a novel redox-sensing repressor that appears to be widespread among Gram-positive bacteria. In Streptomyces coelicolor Rex binds to operator (ROP) sites located upstream of several respiratory genes, including the cydABCD and rex-hemACD operons. The DNA-binding activity of Rex appears to be controlled by the redox poise of the NADH/NAD+ pool. Using electromobility shift and surface plasmon resonance assays we show that NADH, but not NAD+, inhibits the DNA-binding activity of Rex. However, NAD+ competes with NADH for Rex binding, allowing Rex to sense redox poise over a range of NAD(H) concentrations. Rex is predicted to include a pyridine nucleotide-binding domain (Rossmann fold), and residues that might play key structural and nucleotide binding roles are highly conserved. In support of this, the central glycine in the signature motif (GlyXGlyXXGly) is shown to be essential for redox sensing. Rex homologues exist in most Gram-positive bacteria, including human pathogens such as Staphylococcus aureus, Listeria monocytogenes and Streptococcus pneumoniae.  相似文献   

10.
Inosine monophosphate dehydrogenase (IMPDH) catalyzes the rate-limiting step in GMP biosynthesis. The resulting intracellular pool of guanine nucleotides is of great importance to all cells for use in DNA and RNA synthesis, metabolism, and signal transduction. The enzyme binds IMP and the cofactor NAD(+) in random order, IMP is converted to XMP, NAD(+) is reduced to NADH, and finally, NADH and then XMP are released sequentially. XMP is subsequently converted into GMP by GMP synthetase. Drugs that decrease GMP synthesis by inhibiting IMPDH have been shown to have antiproliferative as well as antiviral activity. Several drugs are in use that target the substrate- or cofactor-binding site; however, due to differences between the mammalian and microbial isoforms, most drugs are far less effective against the microbial form of the enzyme than the mammalian form. The high resolution crystal structures of the protozoan parasite Tritrichomonas foetus IMPDH complexed with the inhibitor ribavirin monophosphate as well as monophosphate together with a second inhibitor, mycophenolic acid, are presented here. These structures reveal an active site cation identified previously only in the Chinese hamster IMPDH structure with covalently bound IMP. This cation was not found previously in apo IMPDH, IMPDH in complex with XMP, or covalently bound inhibitor, indicating that the cation-binding site may be catalysis-dependent. A comparison of T. foetus IMPDH with the Chinese hamster and Streptococcus pyogenes structures reveals differences in the active site loop architecture, which contributes to differences in cation binding during the catalytic sequence and the kinetic rates between bacterial, protozoan, and mammalian enzymes. Exploitation of these differences may lead to novel inhibitors, which favor the microbial form of the enzyme.  相似文献   

11.
Phenylalanine dehydrogenase catalyzes the reversible, pyridine nucleotide-dependent oxidative deamination of L-phenylalanine to form phenylpyruvate and ammonia. We have characterized the steady-state kinetic behavior of the enzyme from Rhodococcus sp. M4 and determined the X-ray crystal structures of the recombinant enzyme in the complexes, E.NADH.L-phenylalanine and E.NAD(+). L-3-phenyllactate, to 1.25 and 1.4 A resolution, respectively. Initial velocity, product inhibition, and dead-end inhibition studies indicate the kinetic mechanism is ordered, with NAD(+) binding prior to phenylalanine and the products' being released in the order of ammonia, phenylpyruvate, and NADH. The enzyme shows no activity with NADPH or other 2'-phosphorylated pyridine nucleotides but has broad activity with NADH analogues. Our initial structural analyses of the E.NAD(+).phenylpyruvate and E.NAD(+). 3-phenylpropionate complexes established that Lys78 and Asp118 function as the catalytic residues in the active site [Vanhooke et al. (1999) Biochemistry 38, 2326-2339]. We have studied the ionization behavior of these residues in steady-state turnover and use these findings in conjunction with the structural data described both here and in our first report to modify our previously proposed mechanism for the enzymatic reaction. The structural characterizations also illuminate the mechanism of the redox specificity that precludes alpha-amino acid dehydrogenases from functioning as alpha-hydroxy acid dehydrogenases.  相似文献   

12.
X-ray crystallographic and kinetic studies of human sorbitol dehydrogenase   总被引:4,自引:0,他引:4  
Sorbitol dehydrogenase (hSDH) and aldose reductase form the polyol pathway that interconverts glucose and fructose. Redox changes from overproduction of the coenzyme NADH by SDH may play a role in diabetes-induced dysfunction in sensitive tissues, making SDH a therapeutic target for diabetic complications. We have purified and determined the crystal structures of human SDH alone, SDH with NAD(+), and SDH with NADH and an inhibitor that is competitive with fructose. hSDH is a tetramer of identical, catalytically active subunits. In the apo and NAD(+) complex, the catalytic zinc is coordinated by His69, Cys44, Glu70, and a water molecule. The inhibitor coordinates the zinc through an oxygen and a nitrogen atom with the concomitant dissociation of Glu70. The inhibitor forms hydrophobic interactions to NADH and likely sterically occludes substrate binding. The structure of the inhibitor complex provides a framework for developing more potent inhibitors of hSDH.  相似文献   

13.
Uronate dehydrogenase from Agrobacterium tumefaciens (AtUdh) belongs to the short-chain dehydrogenase/reductase superfamily and catalyzes the oxidation of D-galacturonic acid and D-glucuronic acid with NAD(+) as a cofactor. We have determined the crystal structures of an apo-form of AtUdh, a ternary form in complex with NADH and product (substrate-soaked structure), and an inactive Y136A mutant in complex with NAD(+). The crystal structures suggest AtUdh to be a homohexamer, which has also been observed to be the major form in solution. The monomer contains a Rossmann fold, essential for nucleotide binding and a common feature of the short-chain dehydrogenase/reductase family enzymes. The ternary complex structure reveals a product, D-galactaro-1,5-lactone, which is bound above the nicotinamide ring. This product rearranges in solution to D-galactaro-1,4-lactone as verified by mass spectrometry analysis, which agrees with our previous NMR study. The crystal structure of the mutant with the catalytic residue Tyr-136 substituted with alanine shows changes in the position of Ile-74 and Ser-75. This probably altered the binding of the nicotinamide end of NAD(+), which was not visible in the electron density map. The structures presented provide novel insights into cofactor and substrate binding and the reaction mechanism of AtUdh. This information can be applied to the design of efficient microbial conversion of D-galacturonic acid-based waste materials.  相似文献   

14.
15.
Comparison of crystal structures of S-adenosylhomocysteine (AdoHcy) hydrolase in the substrate-free, NAD(+) form [Hu, Y., Komoto, J., Huang, Y., Gomi, T., Ogawa, H., Takata, Y., Fujioka, M., and Takusagawa, F. (1999) Biochemistry 38, 8323-8333] and a substrate-bound, NADH form [Turner, M. A., Yuan, C.-S., Borchardt, R. T., Hershfield, M. S., Smith, G. D., and Howell, P. L. (1998) Nat. Struct. Biol. 5, 369-376] indicates large differences in the spatial arrangement of the catalytic and NAD(+) binding domains. The substrate-free, NAD(+) form exists in an "open" form with respect to catalytic and NAD(+) binding domains, whereas the substrate-bound, NADH form exists in a closed form with respect to those domains. To address whether domain closure is induced by substrate binding or its subsequent oxidation, we have measured the rotational dynamics of spectroscopic probes covalently bound to Cys(113) and Cys(421) within the catalytic and carboxyl-terminal domains. An independent domain motion is associated with the catalytic domain prior to substrate binding, suggesting the presence of a flexible hinge element between the catalytic and NAD(+) binding domains. Following binding of substrates (i.e., adenosine or neplanocin A) or a nonsubstrate (i.e., 3'-deoxyadenosine), the independent domain motion associated with the catalytic domain is essentially abolished. Likewise, there is a substantial decrease in the average hydrodynamic volume of the protein that is consistent with a reduction in the overall dimensions of the homotetrameric enzyme following substrate binding and oxidation observed in earlier crystallographic studies. Thus, the catalytic and NAD(+) binding domains are stabilized to form a closed active site through interactions with the substrate prior to substrate oxidation.  相似文献   

16.
Transhydrogenase couples the redox reaction between NADH and NADP+ to proton translocation across a membrane. The enzyme comprises three components; dI binds NAD(H), dIII binds NADP(H), and dII spans the membrane. The 1,4,5,6-tetrahydro analogue of NADH (designated H2NADH) bound to isolated dI from Rhodospirillum rubrum transhydrogenase with similar affinity to the physiological nucleotide. Binding of either NADH or H2NADH led to closure of the dI mobile loop. The 1,4,5,6-tetrahydro analogue of NADPH (H2NADPH) bound very tightly to isolated R. rubrum dIII, but the rate constant for dissociation was greater than that for NADPH. The replacement of NADP+ on dIII either with H2NADPH or with NADPH caused a similar set of chemical shift alterations, signifying an equivalent conformational change. Despite similar binding properties to the natural nucleotides, neither H2NADH nor H2NADPH could serve as a hydride donor in transhydrogenation reactions. Mixtures of dI and dIII form dI2dIII1 complexes. The nucleotide charge distribution of complexes loaded either with H2NADH and NADP+ or with NAD+ and H2NADPH should more closely mimic the ground states for forward and reverse hydride transfer, respectively, than previously studied dead-end species. Crystal structures of such complexes at 2.6 and 2.3 A resolution are described. A transition state for hydride transfer between dihydronicotinamide and nicotinamide derivatives determined in ab initio quantum mechanical calculations resembles the organization of nucleotides in the transhydrogenase active site in the crystal structure. Molecular dynamics simulations of the enzyme indicate that the (dihydro)nicotinamide rings remain close to a ground state for hydride transfer throughout a 1.4 ns trajectory.  相似文献   

17.
The binding of NAD(+) and NADH to bovine liver UDP-glucose dehydrogenase was studied by using gel-filtration and fluorescence-titration methods. The enzyme bound 0.5mol of NAD(+) and 2 mol of NADH/mol of subunit at saturating concentrations of both substrate and product. The dissociation constant for NADH was 4.3mum. The binding of NAD(+) to the enzyme resulted in a small quench of protein fluorescence whereas the binding of NADH resulted in a much larger (60-70%) quench of protein fluorescence. The binding of NADH to the enzyme was pH-dependent. At pH8.1 a biphasic profile was obtained on titrating the enzyme with NADH, whereas at pH8.8 the titration profile was hyperbolic. UDP-xylose, and to a lesser extent UDP-glucuronic acid, lowered the apparent affinity of the enzyme for NADH.  相似文献   

18.
BACKGROUND: Bacillus stearothermophilus glycerol dehydrogenase (GlyDH) (glycerol:NAD(+) 2-oxidoreductase, EC 1.1.1.6) catalyzes the oxidation of glycerol to dihydroxyacetone (1,3-dihydroxypropanone) with concomitant reduction of NAD(+) to NADH. Analysis of the sequence of this enzyme indicates that it is a member of the so-called iron-containing alcohol dehydrogenase family. Despite this sequence similarity, GlyDH shows a strict dependence on zinc for activity. On the basis of this, we propose to rename this group the family III metal-dependent polyol dehydrogenases. To date, no structural data have been reported for any enzyme in this group. RESULTS: The crystal structure of B. stearothermophilus glycerol dehydrogenase has been determined at 1.7 A resolution to provide structural insights into the mechanistic features of this family. The enzyme has 370 amino acid residues, has a molecular mass of 39.5 kDa, and is a homooctamer in solution. CONCLUSIONS: Analysis of the crystal structures of the free enzyme and of the binary complexes with NAD(+) and glycerol show that the active site of GlyDH lies in the cleft between the enzyme's two domains, with the catalytic zinc ion playing a role in stabilizing an alkoxide intermediate. In addition, the specificity of this enzyme for a range of diols can be understood, as both hydroxyls of the glycerol form ligands to the enzyme-bound Zn(2+) ion at the active site. The structure further reveals a previously unsuspected similarity to dehydroquinate synthase, an enzyme whose more complex chemistry shares a common chemical step with that catalyzed by glycerol dehydrogenase, providing a striking example of divergent evolution. Finally, the structure suggests that the NAD(+) binding domain of GlyDH may be related to that of the classical Rossmann fold by switching the sequence order of the two mononucleotide binding folds that make up this domain.  相似文献   

19.
Ritter H  Koch-Nolte F  Marquez VE  Schulz GE 《Biochemistry》2003,42(34):10155-10162
The structures of beta-methylenethiazole-4-carboxamide adenine dinucleotide (TAD), NAD(+), and NADH as bound to ecto-ADP-ribosyltransferase 2.2 from rat and to its mutants E189I and E189A, respectively, have been established. The positions and conformations of NAD(+) and its analogues agree in general with those in other ADP-ribosyltransferases. The kinetic constants for NAD(+) hydrolysis were determined by RP-HPLC. The specific activity amounts to 26 units/mg, which is 6000-fold higher than a previously reported rate and 500-fold higher than the hydrolysis rates of other ADP-ribosyltransferases, confirming that hydrolysis is the major function of this enzyme. On the basis of structures and mutant activities, a catalytic mechanism is proposed. The known auto-ADP-ribosylation of the enzyme at the suggested position R184 is supported by one of the crystal structures where the nucleophile position is occupied by an Neta atom of this arginine which in turn is backed up by the base E159.  相似文献   

20.
Sir2 (silent information regulator 2) enzymes catalyze a unique protein deacetylation reaction that requires the coenzyme NAD(+) and produces nicotinamide and a newly discovered metabolite, O-acetyl-ADP-ribose (OAADPr). Conserved from bacteria to humans, these proteins are implicated in the control of gene silencing, metabolism, apoptosis, and aging. Here we examine the role of NAD(+) metabolites/derivatives and salvage pathway intermediates as activators, inhibitors, or coenzyme substrates of Sir2 enzymes in vitro. Also, we probe the coenzyme binding site using inhibitor binding studies and alternative coenzyme derivatives as substrates. Sir2 enzymes showed an exquisite selectivity for the nicotinamide base coenzyme, with the most dramatic losses in binding affinity/reactivity resulting from relatively minor changes in the nicotinamide ring, either by reduction, as in NADH, or by converting the amide to its acid analogue. Both ends of the dinucleotide NAD(+) are shown to be critical for high selectivity and high affinity. Among the NAD(+) metabolites tested none were able to allosterically activate, although all led to various extents of inhibition, consistent with competition at the coenzyme binding site. Nicotinamide was the most potent inhibitor examined, suggesting that cellular nicotinamide levels would provide an effective small molecule regulator of protein deacetylation and generation of OAADPr. The presented findings also suggest that changes in the physiological NAD(+):NADH ratio, without a change in NAD(+), would yield little alteration in Sir2 activity. That is, NADH is an extremely ineffective inhibitor of Sir2 enzymes (average IC(50) of 17 mm). We propose that changes in both free nicotinamide and free NAD(+) afford the greatest contribution to cellular activity of Sir2 enzymes but with nicotinamide having a more dramatic effect during smaller fluctuations in concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号