首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
—Rat pups undernourished through 21 days of age show abnormal patterns of cerebral amino acid metabolism. The pattern of incorporation of radioactivity from l -[U-14C]leucine into amino acids derived from tricarboxylic acid cycle intermediates was altered, with significantly more 14C being incorporated into glutamate and aspartate in the underfed rats than in controls. Glutamate compartmentation, manifested in the ratio of specific radioactivities of glutamine to glutamate, developed more slowly in the. diet-restricted group. These results are similar to those seen in neonatally-thyroidectomized rats and suggest decreased growth of neuronal processes. This impairment of amino acid metabolism returns to normal after a 7-week period of adequate nutrition.  相似文献   

2.
Abstract– We have determined the incorporation of [3H]-, [1-14C]- and [2-14C]acetate into glutamate, glutamine and aspartate of the adult mouse brain. All these three acetates were incorporated more extensively into glutamine than into glutamate. This has been reported by several authors for each of these labelled acetates in separate experiments. It was shown that [3H, 2-14C]acetate can be used to obtain an acetate labelling ratio analogous to the previously used [2-14C]acetate/[1-14C]acetate labelling ratio. From these acetate labelling ratios of glutamine and glutamate conclusions can be deduced about the dynamic relationship of these amino acids with each other and with the tricarboxylic acid cycle.
A fairly large isotope effect between acetate and glutamate was observed. As this isotope effect is very likely caused by the citrate synthase reaction, it can be argued that citrate synthase involved in the conversion of labelled acetate into glutamate is far out of equilibrium in vivo. Comparing our data with literature data, the possibility can be suggested that citrate synthase in the acetate metabolizing compartment is in situ kinetically distinct from citrate synthase in other compartments of the brain.  相似文献   

3.
—Glucose is a major precursor of glutamate and related amino acids in the retina of adult rats. 14C from labelled glucose appears to gain access to a large glutamate pool, and the resulting specific activity of glutamate labelled from glucose is always higher than that of glutamine or the other amino acids. Radioactive acetate appeared to label a small glutamate pool. The specific activity of glutamine labelled from acetate relative to that of glutamate was always greater than 1.0. Other precursors of the small glutamate pool were found to include glutamate, aspartate, GABA, serine, leucine and sodium bicarbonate. The level of radioactivity present in retinae incubated with [U-14C]glucose or [1-14C]sodium acetate was reduced in the presence of 10?5m -ouabain. Under these conditions, the relative specific activity of glutamine labelled from [1-14C]sodium acetate was lowered, but it was raised when [U-14C]glucose was used as substrate. Ouabain also considerably reduced the synthesis of GABA from [1-14C]sodium acetate. In all cases ouabain caused a fall in the tissue levels of the amino acids. Aminooxyacetic acid (10?4m ) almost completely abolished the labelling of GABA from both [U-14C]glucose and [1-14C]sodium acetate, while the RSA of glutamine labelled from the latter substrate was significantly increased. Aminooxyacetic acid raised the tissue concentration of glutamate, but caused a fall in the tissue concentrations of glutamine, aspartate and GABA. The results suggest that there are separate compartments for the metabolism of glutamate in retina and that these can be modified in different ways by different drugs.  相似文献   

4.
The metabolism of N-acetyl-l -aspartic acid (NAA) was studied in rat brain. [Aspartyl-U-14C]NAA was metabolized predominantly by deacylation. Studies of NAA biosynthesis from l -[U-14C]aspartic acid have confirmed previous reports that NAA turns over slowly in rat brain. However, intracerebrally-injected N-acetyl-l -[U-14C]asparticacid was rapidly metabolized. Exogenous NAA appears to be taken up rapidly into a small, metabolically-active pool. This pool serves as substrate for a tricarboxylic acid cycle associated with the production of glutamate for the biosynthesis of glutamine. The bulk of the NAA content in brain appears to be relatively inactive metabolically.  相似文献   

5.
Abstract— [35S]cysteine, [3H]methionine, or [3H]fucose were injected into the supraoptic nuclei (SON) of rats, and the labelled proteins that were transported to and accumulated in the posterior pituitary 24h post-injection were analyzed electrophoretically. The transported, labelled proteins which were soluble in 0.1 m -HCl were primarily of low molecular weight (about 12,000 on SDS gels). However, the selectivity of labelling of these proteins by the three different labelled precursors could be revealed by isoelectric focusing. The 0.1 m -HCl insoluble labelled proteins, presumably reflecting membrane proteins transported from the SON to the pituitary, were more diverse and generally of higher molecular weight (> 43,000 on SDS gels).  相似文献   

6.
7.
AMINO ACID METABOLISM OF SALMONELLAE   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

8.
Abstract— Unilateral sympathetic decentralization of the superior cervical ganglion of rats was performed 3 days prior to the experiments. A two-compartment kinetic model was proposed to describe the effect of decentralization on (1) the uptake of a nonphysiological amino acid from plasma to the submaxillary gland and (2) the incorporation of a physiological amino acid from precursor pool into protein. The calculations based on the model showed that the fractional rate constant for efflux of the nonphysiological amino acid, α-[3-14C] aminoisobutyric acid, was greater in the decentralized than in the normal gland. However, efflux rate was equal in the two glands because the extrapolated zero time value of the initial concentration was greater in the normal gland.
The labelled physiological amino acid, [14C]leucine, was used in initial experiments to assess turnover rate of the gland proteins but it was rapidly metabolized to many other radioactive compounds. Therefore, arginine[14C]guanido was employed-arginine being the only labelled amino acid found after injection. Since the steady state content of submaxillary gland proteins was not changed but the fractional rate constant of conversion of free arginine into protein (kp) was greater in the decentralized gland (kp= 0-40 h_l) than in the normal (kp= 0-27 h−1), we can conclude that decentralization increases protein turnover rate; thus, assuming that arginine[14C]guanido is homogeneously distributed in the tissue pools of free arginine, the rate of protein turnover is greater in the sympathetically decentralized gland than in the normal.  相似文献   

9.
Abstract— The abilities of AOAA and EOS to modify the utilisation of radioactively labelled glucose, acetate, glutamine and GABA were studied in isolated rat retina. AOAA inhibited the activities of GAD and GABA-T, while EOS inhibited GABA-T but not GAD. AOAA lowered the free amino acid contents of incubated retinae and suppressed the outflow of amino acids into the incubation medium, while EOS had no effect on either parameter. AOAA strongly inhibited the incorporation of 14C from labelled glucose, acetate and glutamine into GABA, and also suppressed the labelling of glutamate, aspartate and glutamine. These effects were qualitatively similar but quantitatively smaller with EOS. Both compounds markedly decreased the syntheses of aspartate and glutamate from exogenous GABA, while the passage of carbon from GABA to glutamine was much less affected. It is suggested that AOAA and EOS may act predominantly on neurones. It appears that inhibition of GABA-T alone does not cause a profound disturbance of the metabolism of other amino acids. Other metabolic inhibitors such as ouabain, malonate and fluoroacetate did not greatly affect the metabolism of GABA in rat retina.  相似文献   

10.
—The time course of changes in glycolytic and citric acid cycle intermediates and in amino acids was studied in acute and steady state hypercapnia. Experiments on unanaesthetized animals exposed to 10% CO2 for 10, 20 and 60s showed that there was a transient decrease in glycogen concentration, progressive increases in glucose-6-phosphate and fructose-6-phosphate and decreases in pyruvate and lactate. During this time the levels of amino acids and Krebs cycle intermediates did not change, except for a small fall in malate at 60s. The results indicate that there was a decrease in glycolytic flux due to an inhibition of the phosphofructokinase reaction. Since the tissue levels of phosphocreatine, ATP, ADP and AMP were unchanged inhibition of phosphofructokinase was probably due to the fall in pH. Anaesthetized animals were exposed to about 5% CO2 (for 2, 5, 15, 30 and 60 min) or to about 45% CO2 (for 5 and 15 min). Except for succinate, which increased, all citric acid cycle metabolites analysed (citrate, α-ketoglutarate, fumarate and malate) decreased with the rise in CO2-tension. The sum of the amino acids analysed (glutamate, glutamine, aspartate, asparagine, alanine and GABA) decreased at extreme hypercapnia. The results suggest that Krebs cycle intermediates and amino acids are partly used as substrates for energy production when there is reduced pyruvate availability due to hypercapnia. It is proposed that amino acid carbon is made available for oxidation via transamination (aspartate aminotransferase reaction) and deamination (glutamate dehydrogenase reaction) and that citric acid cycle intermediates are metabolized following a reversal of reactions usually leading to CO2 fixation.  相似文献   

11.
沙门菌CWDMs氨基酸代谢的检测   总被引:3,自引:0,他引:3  
易旭  王和 《中国微生态学杂志》2000,12(3):142-143,145
采用氨基氨利用生长试验和谷丙转氨酶(GPT)、谷草转酶(GOT)、乳酸脱氨酶(LDH)、肌酸激酶(CK)、α-闳丁酸脱氢酶(α-HBD)、γ-谷志肽酶(γ-GT),酸性磷酸酶(ACP)定性与定量分析法,检测伤CWDMs变异的特点及其机制,探讨CWDMs变异的性质及其与细胞壁缺陷突变的关系。结果表明,沙门菌CWDMs变异的性质及其与细胞壁缺陷突变的关系。结果表明,沙门菌CWDMs在仅含蛋氨酸或脯氨  相似文献   

12.
13.
Abstract— δ-Aminolaevulinic acid (δ-ALA) is an omega amino acid structurally similar to γ-aminobutyric acid (GABA) and l -glutamate. We have examined the effect of δ-ALA on the uptake and efflux of radiolabelled GABA and l -glutamate in rat cortical synaptosomes and report: (1) low concentrations of δ-ALA reduced the potassium-stimulated release of [3H]GABA from the synaptosome preparation. This effect was reversed by the GABA receptor antagonist bicuculline. We postulate that GABA release is modulated by a feedback mechanism on presynaptic GABA receptors, and that δ-ALA has agonist activity at these receptors. (2) δ-ALA at high concentrations (0.75-5.0 m m ) stimulated the efflux of l -[14C]glutamate from preloaded synaptosomes. (3) δ-ALA had no effect on potassium-stimulated release of l -glutamate. (4) Uptake of labelled l -glutamate was inhibited by δ-ALA in a noncompetitive fashion. (5) Synaptosomes did not accumulate [14C]δ-ALA in the range 0.5-50 δ m . These results are discussed in relation to the control of GABA release from nerve endings, and the role of δ-ALA in the neuropsychiatric manifestations of the acute porphyric attack.  相似文献   

14.
KINETICS OF NEUTRAL AMINO ACID TRANSPORT IN RAT BRAIN IN VITRO   总被引:6,自引:3,他引:3  
  相似文献   

15.
16.
The concentrations of glycine and 6 other amino acids have been assayed in the CSF and plasma of the rat, and regional heterogeneity of CSF amino acid concentration has been found. Steady state flux rates into the cranial and spinal fluid compartments were determined during perfusion with amino acid free medium. The transfer of glycine from blood into both the cranial and spinal subarachnoid fluids was saturable with only several-fold elevations of plasma glycine. The results are discussed with regard to the putative neurotransmitter function of glycine in the spinal cord.  相似文献   

17.
18.
19.
The incorporation into brain slice protein of externally provided [1-14C]valine was measured at varying levels of valine in the medium, under conditions of constant protein synthesis and equilibration of intracellular valine specific activity. The results indicate that the valine pool used for protein synthesis is not identical to the pool of total free valine. Neither does the incorporation solely occur from an extracellular pool which is in equilibrium with the incubation medium. The data are compatible with a two-site activation model in which aminoacylation of tRNA occurs at both an internal site utilizing amino acid from the intracellular pool and an external (possibly membranous) site converting extracellular valine directly to valyl-tRNA. A good fit to the experimental observations is also provided by a compartmented intracellular valine pool model.  相似文献   

20.
Labeled malonic acid ([1-14C] and [2-14C]) was injected into the left cerebral hemisphere of anesthetized adult rats in order to determine the metabolic fate of this dicarboxylic acid in central nervous tissue. The animals were allowed to survive for 2, 5, 10. 15 or 30min. Blood was sampled from the torcular during the experimental period and labeled metabolites were extracted from the brain after intracardiac perfusion. There was a very rapid efflux of unreacted malonate in the cerebral venous blood. Labeled CO2 was recovered from the venous blood and the respired air after the injection of [1-14C]malonate but not after [2-14C]malonate. The tissue extracts prepared from the brain showed only minimal labeling of fatty acids and sterols. Much higher radioactivity was present in glutamate, glutamine, aspartate, and GABA. The relative specific activities (RSA) of glutamine never rose above 1.00. Aspartate was labeled very rapidly and revealed evidence of 14CO2 fixation in addition to labeling through the Krebs cycle. GABA revealed higher RSA after [1-14C]malonate than after [2-14C]malonate. Sequential degradations of glutamate and aspartate proved that labeling of these amino acids occurred from [1-14C] acetyl-CoA and [2-14C] acetyl-CoA, respectively, via the Krebs cycle. Malonate activation and malonyl-CoA decarboxylation in vivo were similar to experiments with isolated mitochondria. However, labeled malonate was not incorporated into the amino acids of free mitochondria. The results were compared to data obtained after intracerebral injection of [1-14C]acetate and [2-14C]acetate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号