首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-peptide small-molecule antagonists for cholecystokinin (CCK)-A and -B receptors, tachykinin NK-1, NK-2 and NK-3 receptors and bombesin BB-1 receptors have been designed and synthesized starting from the chemical structure of the endogenous mammalian neuropeptides cholecystokinin, substance-P and bombesin, respectively. A non-peptide CCK-A agonist, with weak potency but high efficacy, was also identified from the same strategy.  相似文献   

2.
Summary Non-peptide small-molecule antagonists for cholecystokinin (CCK)-A and-B receptors, tachykinin NK-1, NK-2 and NK-3 receptors and bombesin BB-1 receptors have been designed and synthesized starting from the chemical structure of the endogenous mammalian neuropeptides cholecystokinin, substance-P and bombesin, respectively. A non-peptide CCK-A agonist, with weak potency but high efficacy, was also identified from the same strategy.  相似文献   

3.

Aims

Bombesin receptors (BB receptors) and bombesin related peptides are expressed in the lower urinary tract of rodents. Here we investigated whether in vivo activation of BB receptors can contract the urinary bladder and facilitate micturition in sham rats and in a diabetic rat model of voiding dysfunction.

Material and methods

In vivo cystometry experiments were performed in adult female Sprague–Dawley rats under urethane anesthesia. Diabetes was induced by streptozotocin (STZ; 65 mg/kg, i.p.) injection. Experiments were performed 9 and 20 weeks post STZ-treatment. Drugs included neuromedin B (NMB; BB1 receptor preferring agonist), and gastrin-releasing peptide (GRP; BB2 receptor preferring agonist).

Key findings

NMB and GRP (0.01–100 μg/kg in sham rats; 0.1–300 μg/kg in STZ-treated rats, i.v.) increased micturition frequency, bladder contraction amplitude and area under the curve dose dependently in both sham and STZ-treated rats. In addition, NMB (3, 10 μg/kg i.v.) triggered voiding in > 80% of STZ-treated rats when the bladder was filled to a sub-threshold voiding volume. NMB and GRP increased mean arterial pressure and heart rate at the highest doses, 100 and 300 μg/kg.

Significance

Activation of bombesin receptors facilitated neurogenic bladder contractions in vivo. Single applications of agonists enhanced or triggered voiding in sham rats as well as in the STZ-treated rat model of diabetic voiding dysfunction. These results suggest that BB receptors may be targeted for drug development for conditions associated with poor detrusor contraction such as an underactive bladder condition.  相似文献   

4.
Bombesin pseudo‐peptide analogues containing a hydroxamide function on the C‐terminal part of the molecule, e.g. H‐D‐Phe‐Gln‐Trp‐Ala‐Val‐Gly‐His‐Leu‐NHOBzl 1 and H‐D‐Phe‐Gln‐Trp‐Ala‐Val‐Gly‐His‐Leu‐NHOH 2 were synthesized. These compounds were tested for their ability to recognize the bombesin receptor on rat pancreatic acini and on 3T3 cells, to stimulate (i) amylase secretion from rat pancreatic acini and (ii) accumulation of tritiated thymidine in 3T3 cells. Compounds 1 and 2 were able to recognize bombesin receptors on both models with high affinity (Ki=7±2 and 5.8±0.9 nm on rat pancreatic acini, and Ki=4.1±1.2 and 7.7±1.9 nm on 3T3 cells, respectively). Interestingly, compound 1 behaved as a potent agonist in stimulating amylase secretion from rat pancreatic acini and is able to stimulate thymidine accumulation in 3T3 cells, while compound 2 was able to potently antagonize bombesin‐stimulated amylase secretion (Ki=22±5 nm ) in rat pancreatic acini and had no proper effect on 3T3 cells; however, it was able to inhibit bombesin‐stimulated thymidine accumulation in 3T3 cells with high potency (Ki=1.6±0.6 nm ). Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
The neuropeptide bombesin acts on a variety of target cells to stimulate the processes of secretion and cell proliferation. In this study we determined whether bombesin receptors interact with known guanine nucleotide-binding proteins in four different cell types: GH4C1 pituitary cells, HIT pancreatic islet cells, Swiss 3T3 fibroblasts, and rat brain tissue. Maximal concentrations of nonhydrolyzable GTP analogs decreased agonist binding to bombesin receptors in membranes from all four sources. In GH4C1 and HIT cell membranes GTP analogs inhibited bombesin receptor binding with IC50 values of about 0.1 microM, whereas GDP analogs were approximately 10-fold less potent. In contrast, GMP and the nonhydrolyzable ATP analog adenylyl-imidodiphosphate had no effect at 100 microM. Equilibrium binding experiments in GH4C1 and HIT cell membranes indicated a single class of binding sites with a dissociation constant (Kd) for [125I-Tyr4]bombesin of 24.4 +/- 7.0 pM and a binding capacity of 176 +/- 15 fmol/mg protein. Guanine nucleotides decreased the apparent affinity of the receptors without significantly changing receptor number. Consistent with this observation, guanine nucleotides also increased the rate of ligand dissociation. Pretreatment of GH4C1 or HIT cells with either pertussis toxin (100 ng/ml) or cholera toxin (500 ng/ml) for 18 h did not affect agonist binding to membrane bombesin receptors, its regulation by guanine nucleotides, or bombesin stimulation of hormone release. Although pertussis toxin pretreatment has been reported to block bombesin stimulation of DNA synthesis in Swiss 3T3 cells, it did not alter the binding properties of bombesin receptors in Swiss 3T3 membranes or inhibit the rapid increase in intracellular [Ca2+] produced by bombesin in these cells. In summary, our results indicate that the bombesin receptor interacts with a guanine nucleotide-binding protein which exhibits a different toxin sensitivity from those which regulate adenylate cyclase as well as those which couple some receptors to phospholipases.  相似文献   

6.
Andoh T  Kuwazono T  Lee JB  Kuraishi Y 《Peptides》2011,32(10):2098-2103
Gastrin-releasing peptide (GRP), secreted from the central terminals of primary afferents, is involved in the transmission of itch signals in the spinal dorsal horn. Although primary afferents containing GRP are distributed throughout the skin, the role of peripherally released GRP in the itch response is unknown. We investigated whether GRP acts on the skin to induce an itch response in mice. Intradermal injections of GRP(18-27) (1-300 nmol/site) elicited scratching. GRP(18-27)-induced scratching was inhibited by the μ-opioid receptor antagonist naltrexone hydrochloride, the BB(2) bombesin receptor antagonist RC-3095, the H(1) histamine receptor antagonists fexofenadine hydrochloride and chlorpheniramine maleate, and the PAR(2) proteinase-activated receptor antagonist FSLLRY-NH(2). Mast cell deficiency significantly, but not completely, reduced the GRP(18-27)-induced scratching. BB(2) bombesin receptors are present in mast cells in the skin, and intradermal injection of GRP(18-27), not only induced scratching, but also led to mast cell degranulation. GRP(18-27)-induced mast cell degranulation was inhibited by the BB(2) bombesin receptor antagonist RC-3095. These results suggest that peripherally released GRP can induce an itch response, at least partly, through activation of BB(2) receptors present in the mast cells, triggering their degradation and the release of histamine and the serine proteinase, tryptase.  相似文献   

7.
It has been suggested that mammalian gastrin-releasing peptide (GRP) and bombesin (BBS) might inhibit gastric secretion by a central nervous system action. The present investigations were intended to define the gastric effect and to look for an effect on the exocrine pancreas. Wistar male rats were provided with a chronic cannula allowing cerebroventricular injections in the 3rd ventricle, and with chronic gastric and/or pancreatic fistulas allowing the collection of gastric and/or pancreatic secretions in conscious animals. Both basal secretions were studied. Gastric secretion was stimulated with a 75 mg/kg s.c. injection of 2-deoxyglucose (2-dGlc). The dose range of bombesin was 0.01–1 μg (6–600 pmol) and GRP was 0.01–10 μg/rat (3.5 pmol to 3.5 nmol). A significant dose related decrease of basal gastric secretion was observed with the two peptides. The gastric acid response to 2-dGlc was inhibited by both peptides in a dose-related fashion and the reduction of gastric acid output mainly resulted from a decrease in the volume of gastric juice. The exocrine pancreatic secretion was also decreased by 30–55% after GRP but the BBS inhibitory effect was poorly dose-related. No significant difference was found after removal of gastric secretion, indicating that most of the pancreatic inhibition was independent of gastric secretion.  相似文献   

8.
The gastrin‐releasing peptide receptor (GRPR) is part of the bombesin receptor family and a well‐known target in cancer diagnosis and therapy. In the last decade, promising results have been achieved by using peptide‐drug conjugates, which allow selective targeting of GRPR expressing tumor cells. Most ligands, however, have been antagonists even though agonists can lead to higher tumor uptake owing to their internalization. So far, only a few studies focused on the identification of small GRPR‐selective agonists that are metabolically stable. Here, we developed novel bombesin analogs with high selectivity for the GRPR and improved blood plasma stability. The most promising analog [d ‐Phe6, β‐Ala11, NMe‐Ala13, Nle14]Bn(6‐14) displays an activity of 0.3nM at the GRPR, a more than 4000‐fold selectivity over the other two bombesin receptors and more than 75% stability in human blood plasma after 24 hours. This analog is proposed as a promising drug shuttle for the intracellular delivery of different payloads in targeted tumor therapy approaches.  相似文献   

9.
The development of non-viral gene delivery systems, with the capacity to overcome most of the biological barriers facing gene delivery, is challenging. We have developed peptide-based, multicomponent, non-viral delivery systems, incorporating: a bombesin peptide ligand (BBN(6–14)), to selectively target the gastrin releasing peptide receptor (GRPR); oligoarginine peptides (hexa- (R6) and nona-arginine (R9)), for plasmid DNA (pDNA) condensation; and GALA, to facilitate endosome escape. The uptake and endosome escape efficiency of bombesin/oligoarginine and bombesin/oligoarginine/GALA fusion peptides for oligonucleotide delivery was evaluated in terms of their complex size, cellular uptake, endosome escape, and cellular toxicity. Complex size and cell uptake studies demonstrated that the nona-arginine/bombesin delivery system was more efficient at condensing and delivering pDNA into PC-3 prostate cancer cells compared to the hexa-arginine/bombesin delivery system. Further, competition with free bombesin peptide, and comparative uptake studies in Caco-2 cells, which express GRPR at a lower level, suggested that GRPR contributes to the targeted uptake of this system. The addition of GALA into the nona-arginine/bombesin-based system further increased the pDNA cellular uptake at all tested N/P ratios; facilitated endosomal pDNA release; and had limited effects on cell viability. In conclusion, the delivery system combining BBN(6–14) with nona-arginine and GALA had optimal characteristics for the delivery of pDNA into the GRPR overexpressing cell line PC-3.  相似文献   

10.
宋愉  于吉人 《生理学报》1991,43(5):428-435
本工作从三个不同的层次对铃蟾肽防止胰岛 B 细胞损伤的作用进行了研究:(1)在整体水平,预先注射铃蟾肽(50μg/kg,iv)可明显抑制单独给予四氧嘧啶(200mg/kg,s.c.)引起的大鼠血糖升高和血浆胰岛素水平下降的趋势。(2)在离体胰腺灌流实验发现,在四氧嘧啶之前预灌流铃蟾肽(10~(-2)mmol/L)可使胰腺对高糖刺激产生反应性分泌;而仅以四氧嘧啶灌流时,胰腺对高糖刺激无反应。(3)在离体胰岛水平,初步研究了在四氧嘧啶引起胰岛 B 细胞功能改变时,铃蟾肽对胰岛内胰岛素、胰高血糖素和生长抑素分泌的影响。结果表明,铃蟾肽可防止四氧嘧啶引起的胰岛素和生长抑素分泌的抑制及胰高血糖素分泌的增加趋势。  相似文献   

11.
Dose-response studies were performed in 6 human volunteer subjects to determine the threshold and optimal doses of intravenous bombesin for stimulation of gastric acid secretion and gastrin release. A significant stimulation of both acid and gastrin was obtained with a very low dose, 3 pmol · kg?1 · h?1. Peak stimulation of acid secretion (67% of pentagastrin PAO) was obtained at 12.5 pmol · kg?1 · h?1. Serum gastrin response to this dose of bombesinn was similar to that obtained after a high protein meal. Higher doses of bombesin caused further increases in serum gastrin but not in acid secretion. Since very low doses of bombesin, too small to produce detectable increases in immunoreactive serum bombesim, caused parallel increases in gastrin and acid secretion, it is possible that the bombesin-like peptides present in human gastrointestinal tissues contribute to regulation of human gastric secretion.  相似文献   

12.
G-protein-coupled bombesin receptors are capable of signaling through the G(i) protein even when receptor-coupling to G(q) is blocked by [D-Arg1,D-Phe5,D-Trp7,9,Leu11]substance P (SpD), a neurokinin-1 receptor antagonist and "biased" agonist to bombesin receptors. As bombesin is a monocyte and tumor cell attractant, we were interested in the effects of SpD on cell migration. Chemotaxis of monocytes was tested in micropore filter assays. SpD was a dose-dependent agonist in monocyte migration and was not inhibited by antagonists to neurokinin-1 or -2 receptors. SpD failed to inhibit chemotaxis toward bombesin, suggesting that inhibition of bombesin receptor coupling to G(q) with SpD does not impair migratory responses elicited by bombesin. As pertussis toxin inhibited migration, coupling of receptors to G(i) may signal migration. Chemotaxis toward SpD was inhibited by bombesin receptor antagonists as well as by blocking signaling enzymes downstream of G(q) (phospholipase-3 and protein kinase C with wortmannin and bisindolylmaleimide, respectively), suggesting transactivation of G(q)-mediated chemotaxis signaling by SpD via bombesin receptors. Protein kinase C that induces sphingosine kinase activation and production of sphingosine-1-phosphate, which may lead to G(q)-dependent chemoattraction, was involved in SpD-dependent migration. Inhibition of sphingosine-1-phosphate production with dimethylsphingosine inhibited monocyte migration toward SpD. Data suggest that SpD induces migration in monocytes and signaling events involving activation of sphingosine kinase in a G(i) protein- and protein kinase C-dependent fashion. "Biased" agonism of SpD at bombesin receptors may affect normal and tumor cell migration.  相似文献   

13.
Extensive SAR studies on the unselective BRS3 agonist, [H-D-Phe6,beta-Ala11,Phe13,Nle14]-bombesin-(6-14)-nonapeptide amide, have highlighted structural features important for BRS3 activity and have provided guidance as to the design of selective agonists. A radically modified heptapeptide agonist, maintaining only the Trp-Ala moiety of the parent [H-D-Phe6,betaAla11,Phe13,Nle14]-peptide amide, and with a very different carboxyl terminal region, has been produced which was potent at BRS3 and essentially had no NMB or GRP receptor activity. Its structure is Ac-Phe-Trp-Ala-His(tauBzl)-Nip-Gly-Arg-NH2.  相似文献   

14.
本研究用离体大鼠胃灌流技术来观察铃蟾肽对胃-肠激素及胃酸分泌的影响。2×10~(?)mol/L铃蟾肽以0.3ml/min速度作动脉内输注,可刺激胃酸的分泌,自2.50±0.05×10~(-1)增至5.50±1.50×10~(-1)mEq/min,但与外源性五肽胃泌素无协同作用。铃蟾肽引起两次性的门脉中胃泌索及生长抑素的释放,但抑制胰升糖素释放。这三种激素的基础释放率分别为:胃泌素62±8pg,生长抑素5.9±1.1ng,胰升糖素0.40±0.03ng/min;2×10~(-8)mol/L铃蟾肽以0.3ml/min作动脉内输注,胃泌素及生长抑素的峰值分别为1,000±20pg及12.2±2.0ng/min,胰升糖素的最低值为0.17±0.05ng/min,三种激素的反应均与铃蟾肽的浓度成正比。在胃腔流出液中也可测到上述三种激素,但量要少得多。  相似文献   

15.
Bombesin-induced gastrin release from extragastric sources has been investigated in two groups of patients without gastric antrum: 11 patients with total gastrectomy and 11 patients with subtotal (Billroth II) gastrectomy. A 30-min bombesin infusion (5 ng . kg-1 . min-1) caused a prompt significant gastrin increase (P less than 0.05) in both groups of patients. The gastrin response to bombesin was significantly (P less than 0.005) lower in patients without antral tissue than in the control group (n = 7). The individual peak gastrin responses, in totally (TG) and subtotally (SG) gastrectomized patients, were significantly over basal levels (TG: peak 100.3 +/- 12 vs. basal 62.8 +/- 9.1, P less than 0.005; SG: peak 96.9 +/- 9.4 vs. basal 72.4 +/- 6.8, P less than 0.001; pg/ml, mean +/- S.E.M.). These data indicate that bombesin acts not only on antral G cells, but on all gastrin cells in the gastrointestinal tract.  相似文献   

16.
Substance P analogues including [d-Arg1,d-Phe5,d-Trp7,9,Leu11]substance P (SpD) act as "broad spectrum neuropeptide antagonists" and are potential anticancer agents that inhibit the growth of small cell lung cancer cells in vitro and in vivo. However, their mechanism of action is controversial and not fully understood. Although these compounds block bombesin-induced mitogenesis and signal transduction, they also have agonist activity. The mechanism underlying this agonist activity was examined. SpD binds to the ligand-binding site of the bombesin/gastrin-releasing peptide receptor and blocks the bombesin-stimulated increase in [Ca2+]i within the same concentration range that causes sustained activation of c-Jun N-terminal kinase and extracellular signal-regulated protein kinase (ERK). The activation of c-Jun N-terminal kinase by SpD and bombesin is blocked by dominant negative inhibition of G(alpha12). The ERK activation by SpD is pertussis toxin-sensitive in contrast to ERK activation by bombesin, which is pertussis toxin-insensitive but dependent on epidermal growth factor receptor phosphorylation. SpD does not simply act as a partial agonist but differentially modulates the activation of the G-proteins G(alpha12), G(i), and G(q) compared with bombesin. This unique ability allows the bombesin receptor to couple to G(i) and at the same time block receptor activation of G(q). Our results provide direct evidence that SpD is acting as a "biased agonist" and that this has physiological relevance in small cell lung cancer cells. This validation of the concept of biased agonism has important implications in the development of novel pharmacological agents to dissect receptor-mediated signal transduction and of highly selective drugs to treat human disease.  相似文献   

17.
Bombesin receptor subtype 3 (BRS-3) is an orphan G-protein coupled receptor expressed primarily in the hypothalamus which plays a role in the onset of both diabetes and obesity. We report herein our progress made towards identifying a potent, selective bombesin receptor subtype-3 (BRS-3) agonist related to the previously described MK-7725(1) Chobanian et al. (2012) that would prevent atropisomerization through the increase of steric bulk at the C-2 position. This would thereby make clinical development of this class of compounds more cost effective by inhibiting racemization which can occur over long periods of time at room/elevated temperature.  相似文献   

18.
The orphan receptor, human bombesin receptor subtype 3 (BRS-3) was assigned to the G-protein coupled bombesin receptor family because of its high sequence homology with the neuromedin B receptor (NMB-R) and gastrin-releasing peptide receptor (GRP-R). Since its pharmacology is stiIl unknown, new highly potent and selective tool-substances are needed, that may be able to elucidate its possible role in obesity and cancer. We have performed structure activity relationship studies on the high affinity peptide agonists [D-Phe6,beta-Ala11,Phe13,Nle14]Bn(6-14) and [D-Phe6,Phe13]Bn(6-13)propylamide, using their ability to mobilize intracellular calcium in BRS-3 transfected CHOGa-16 cells combined with receptor binding studies. It was demonstrated that for [D-Phe,beta-Ala11,Phe13,Nle14]Bn(6-14) the side chains of the residues Trp8 and Phe13, and to a smaller extent beta-Ala11, are the important amino acid side chains for receptor activation and binding, however for [D-Phe6,Phe13]Bn(6-13) propylamide His12 seems to be more important than Phe13. C-and N-terminal deletions and amino acid substitutions allowed further understanding. It was demonstrated that substitution of His 12 by Tyr leads to a high selectivity towards GRP-R. Using the acquired information, a small tetrapeptide library was designed with compounds presenting Trp and Phe at varying stereochemistry and distances, which led to the discovery of the lead-structure H-D-Phe-Gln-D-Trp-Phe-NH2. Systematic SAR revealed the important structural features of this peptide, C-terminal optimization resulted in the highly active and selective BRS-3 agonist H-D-Phe-Gln-D-Trp-1-(2-phenylethyl)amide. In summary, the size of the peptide was reduced from 8 or 9 amino acids to a tripeptide for BRS-3.  相似文献   

19.
Prolonged exposure (40 h) of Swiss 3T3 cells to bombesin induced homologous desensitization to bombesin and structurally related peptides including mammalian gastrin releasing peptide (GRP). The ability of bombesin to mobilize intracellular Ca2+, inhibit epidermal growth factor binding, and stimulate DNA synthesis was profoundly and selectively inhibited. In contrast, Ca2+ mobilization by either vasopressin or bradykinin was unaffected, indicating that chronic desensitization is mechanistically distinct from acute desensitization of Ca2+ mobilization. Prolonged (24 or 40 h) pretreatment with bombesin also induced a 78 +/- 5% loss of bombesin receptor binding sites in both intact and plasma membrane preparations of Swiss 3T3 cells without an apparent change in receptor affinity (Kd = 1.9 +/- 0.1 x 10(-9) M and Kd = 1.8 +/- 0.2 x 10(-9) M for control and pretreated cells, respectively). Loss of 125I-GRP binding was slow and progressive with half-maximal loss of binding occurring after 7 h and maximal after approximately 14 h. Cross-linking of 125I-GRP to intact cultures and membrane preparations revealed an identical time-dependent loss of the Mr = 75,000-85,000 cross-linked band, previously identified as the bombesin receptor. Prolonged exposure of the cells to phorbol 12,13-dibutyrate, epidermal growth factor, cholera toxin, or mitogenic combinations of these agents did not alter 125I-GRP binding. Receptor down-regulation and loss of mitogenic responsiveness to bombesin were: (a) induced in a parallel dose-dependent manner by bombesin (ED50 = 1 nM), GRP (ED50 = 2 nM), and neuromedin B (ED50 = 20 nM), but not by the biologically inactive fragment GRP (1-16); (b) inhibited by the specific bombesin antagonist [Leu13-psi(CH2NH)-Leu14] bombesin, and (c) reversed upon removal of bombesin with a similar time course (full recovery after 15 h). On the basis of these observations, we propose that prolonged pretreatment of Swiss 3T3 cells with bombesin induces homologous desensitization to peptides of the bombesin family by down-regulation of cell surface bombesin receptors.  相似文献   

20.
The physiological role of gastrin-releasing peptide (GRP) and of its cognate receptors in regulating the intestinal peristaltic reflex was examined in a three-compartment flat-sheet preparation of rat colon. Mucosal stimulation applied to the central compartment at high, but not low levels of intensity, induced GRP release in the caudad compartment where descending relaxation was measured, but not into the ascending compartment where ascending contraction was measured or into the central compartment where the stimuli were applied. The selective GRP (BB(2)) receptor antagonist, [D-Phe(6),des-Met(14)]bombesin(6-14), inhibited descending relaxation and VIP release in the caudad compartment induced by high but not by low levels of stimulation applied to the mucosa in the central compartment. The selective neuromedin B (BB(1)) receptor antagonist, BIM-23127, had no effect on descending relaxation or VIP release. Neither the BB(1) nor the BB(2) antagonist had any effect on ascending contraction or substance P release in the orad compartment. Consistent with the effects of the antagonists on the peristaltic reflex, the BB(2) antagonist but not the BB(1) antagonist decreased the velocity of propulsion of artificial fecal pellets through isolated segments of guinea pig distal colon. The results indicate that GRP is selectively released from myenteric neurons in descending pathways during the peristaltic reflex and that it acts via BB(2) receptors to augment the descending phase of the peristaltic reflex and propulsion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号