首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We have studied the requirements for efficient histone-specific RNA 3' processing in nuclear extract from mammalian tissue culture cells. Processing is strongly impaired by mutations in the pre-mRNA spacer element that reduce the base-pairing potential with U7 RNA. Moreover, by exchanging the hairpin and spacer elements of two differently processed H4 genes, we find that this difference is exclusively due to the spacer element. Finally, processing is inhibited by the addition of competitor RNAs, if these contain a wild-type spacer sequence, but not if their spacer element is mutated. Conversely, the importance of the hairpin for histone RNA 3' processing is highly variable: A hairpin mutant of the H4-12 gene is processed with almost wild-type efficiency in extract from K21 mouse mastocytoma cells but is strongly affected in HeLa cell extract, whereas an identical hairpin mutant of the H4-1 gene is affected in both extracts. The hairpin defect of H4-12-specific RNA in HeLa cells can be overcome by a compensatory mutation that increases the base complementarity to U7 snRNA. Very similar results were also obtained in RNA competition experiments: processing of H4-12-specific RNA can be competed by RNA carrying a wild-type hairpin element in extract from HeLa, but not K21 cells, whereas processing of H4-1-specific RNA can be competed in both extracts. With two additional histone genes we obtained results that were in one case intermediate and in the other similar to those obtained with H4-1. These results suggest that hairpin binding factor(s) can cooperatively support the ability of U7 snRNPs to form an active processing complex, but is(are) not directly involved in the processing mechanism.  相似文献   

4.
In studies of RNA synthesis by intact cells and cell-free extracts of Streptomyces antibioticus, it has been found that 48 hr cells (producing actinomycin) and cell-free extracts are less efficient than 12 hr cells (not producing actinomycin) and extracts in the synthesis of RNA. Analysis of the products of “in vivo” and “in vitro” RNA synthesis by sucrose gradient centrifugation reveals that both 12 and 48 hr cultures and cell-free extracts synthesize ribosomal RNA as well as RNA species of higher and lower molecular weights. However, 50–60% of the 3H-uridine labelled RNA synthesized by intact cells sediments as rRNA as compared with only 5–10% of the cell-free product. The addition of 2 × 10?5 M actinomycin D to incubation mixtures for cell-free RNA synthesis does not significantly alter the relative amounts of the various RNA species synthesized by 12 or 48 hr extracts.  相似文献   

5.
We have characterized a new member (U19) of a group of mammalian small nuclear RNAs that are not precipitable with antibodies against fibrillarin, a conserved nucleolar protein associated with most of the small nucleolar RNAs characterized to date. Human U19 RNA is 200 nucleotides long and possesses 5'-monophosphate and 3'-hydroxyl termini. It lacks functional boxes C and D, sequence motifs required for fibrillarin binding in many other snoRNAs. Human and mouse RNA are 86% homologous and can be folded into similar secondary structures, a finding supported by the results of nuclease probing of the RNA. In the human genome, U19 RNA is encoded in the intron of an as yet not fully characterized gene and could be faithfully processed from a longer precursor RNA in HeLa cell extracts. During fractionation of HeLa cell nucleolar extracts on glycerol gradients, U19 RNA was associated with higher-order structures of approximately 65S, cosedimenting with complexes containing 7-2/MRP RNA, a conserved nucleolar RNA shown to be involved in 5.8S rRNA processing in yeast cells.  相似文献   

6.
7.
Processing of bacteriophage T4 tRNAs. The role of RNAase III   总被引:2,自引:0,他引:2  
In order to assess the contribution of the processing enzyme RNAase III to the maturation of bacteriophage T4 transfer RNA, RNAase III+ and RNAase III? strains were infected with T4 and the tRNAs produced were analyzed. Infection of the RNAase III+ strains of Escherichia coli with T4Δ27, a deletion strain missing seven of the ten genes in the T4 tRNA cluster, results in the appearance of a transient 10.1 S RNA molecule as well as the three stable RNAs encoded by T4Δ27, species 1, rRNALeu and tRNAGln. Infection of an RNAase III? strain results in the appearance of a larger, transient RNA molecule, 10.5 S, and a severe reduction in the accumulation of tRNAGln. The 10.5 S RNA is similar to 10.1 S RNA but contains extra nucleotides (about 50) at the 5′ end. (10.1 S contains all the three final molecules plus about 70 extra nucleotides at the 3′ end.) Both 10.5 S and 10.1 S RNAs can be processed in vitro into the three final molecules. When 10.1 S is the substrate, the three final molecules are obtained whether extracts of RNAase III+ or RNAase III? cells are used. However, when 10.5 S is the substrate RNAase III+ extracts bring out normal maturation, while using RNAase III? extracts the level of tRNAGln is severely reduced. When 10.5 S is used with RNAase III+ extracts maturation proceeds via 10.1 S RNA, while when RNAase III? extracts were used 10.1 S is not detected. The 10.5 S RNA can be converted to 10.1 S RNA by RNAase III in a reaction which produces only two fragments. The sequence at the 5′ end of the 10.5 S suggests a secondary structure in which the RNAase III cleavage site is in a stem. These experiments show that the endonucleolytic RNA processing enzyme RNAase III is required for processing at the 5′ end of the T4 tRNA cluster where it introduces a cleavage six nucleotides proximal to the first tRNA, tRNAGln, in the cluster.  相似文献   

8.
9.
10.
11.
The pre-mRNA encoding calcitonin (CT) and calcitonin gene-related peptide (CGRP) is differentially processed in a tissue-specific fashion to include or exclude the calcitonin-specific exon 4. A minigene containing a viral first exon and exons 4, 5, and 6 from the human CT/CGRP gene was correctly processed in transfected HeLa or F9 teratocarcinoma cells to produce mRNA that included or excluded exon 4, respectively. This processing decision could be reproduced in vitro using nuclear extracts from these two cell lines and an RNA precursor from a similar minigene. Supplementation of extract from HeLa cells with extract from F9 cells resulted in the F9 splicing pattern in which exon 4 was excluded. This model system may be useful for the purification of splicing factors important in the regulation of this splice choice.  相似文献   

12.
Analytical and preparative electrophoresis of RNA in agarose-urea.   总被引:24,自引:0,他引:24  
Agarose-6 m urea gels at neutral pH stained with ethidium bromide give high resolution of complex mixtures of RNA molecules. These RNA species can be readily distinguished from contaminating DNA, which does not have to be purified away from the RNA, and electrophoresis can be carried out using phenol-saturated deproteinated cellular extracts without loss of resolution. Individual RNA species can be extracted from the gels by freezing, thawing, and centrifugation; the RNA may then be purified by phenol extraction and ethanol precipitation. Such purified RNA is an excellent substrate for RNA-DNA hybridization and cell-free translation. In addition, the RNA can be easily transferred with high resolution from the agarose-6 m urea gels to diazobenzyloxymethyl paper for subsequent hybridization to labeled DNA.  相似文献   

13.
Analyses of bunyavirus-infected cell extracts identified at least two virus-induced nonstructural polypeptides. With snowshoe hare (SSH), La Crosse (LAC), and six SSH-LAC reassortant viruses, it was shown that one of these nonstructural polypeptides (NSs, approximate molecular weight, 7.4 X 10(3)) is coded by the SSH small (S)-size viral RNA species. This nonstructural polypeptide was not detected (at least in the same relative abundancies) in LAC virus-infected cells or in cells infected with reassortants having LAC S RNA. For SSH virus, tryptic peptide analyses of either [3H]leucine- or [3H]arginine-labeled NSs indicated that it contains unique sequences not present in the SSH nucleocapsid (N) polypeptide (also coded by the S RNA; J. R. Gentsch and D. H. L. Bishop, J. Virol. 28:417-419, 1978). Analyses of SSH virus-infected cell extracts and extracts of cells infected with SSH-LAC reassortants having SSH medium (M)-size RNA species indicated that a nonstructural polypeptide (NSM; approximate molecular weight, 12 X 10(3)) is coded by the SSH M RNA species. In extracts of LAC virus-infected cells (or cells infected with SSH-LAC reassortants having LAC M RNA), a polypeptide with an electrophoretic mobility slightly faster than that of the SSH NSM polypeptide was observed (approximate molecular weight, 11 X 10(3)); it has been designated LAC NSM. The relationships of the NSM polypeptides to the other M RNA-coded polypeptides (G1 and G2; J. R. Gentsch and D. H. L. Bishop, J. Virol. 30;767-770, 1979) have not been determined. Two additional polypeptides present in both LAC- and SSH-infected cell extracts also appear to be virus induced (one with an approximate molecular weight of 10 X 10(3), p10; the other with an approximate molecular weight of 18 X 10(3), p18). Whether these polypeptides are virus coded has not been determined.  相似文献   

14.
15.
16.
17.
18.
The VAI RNA of adenovirus is a small, RNA polymerase III-transcribed species required for efficient translation of host cell and viral mRNAs late after infection. The growth of a viral mutant that is unable to produce the RNA is inhibited by interferon, while wild-type virus is not affected. VAI RNA prevents activation of the interferon-induced P1/eIF-2 alpha kinase. This inhibition can be reproduced in extracts of interferon-treated cells where purified VAI RNA prevents activation of latent kinase by double-stranded RNA.  相似文献   

19.
20.
Branched RNA     
The only RNA molecules known to be branched are circular structures with tails known as lariats that arise during nuclear pre-mRNA splicing. Lariats accumulate within a large multicomponent particle called a spliceosome that forms upon the addition of unspliced mRNA to nuclear extracts. Recently an RNA molecule has been observed to catalyze branch formation. In this case a single intron of a yeast mitochondrial pre-mRNA participates in a self-splicing reaction that results in the accumulation of branched lariats that are processed to correctly spliced exons. An enzyme highly specific for branch removal found in the same extracts that form branches during pre-mRNA splicing can debranch RNA lariats to their linear forms without loss of nucleotides. The chemical synthesis of branched RNA has recently been achieved. High yields of sequence-specific oligonucleotides are now available for the analysis of RNA splicing by techniques dependent on branch-site recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号