首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Liver regeneration after partial hepatectomy (PH) is achieved through proliferation of hepatocytes and non-parenchymal cells. The nuclear peroxisome proliferator-activated receptor alpha (PPARalpha) is involved in regulation of lipid metabolism and proliferation of hepatic cells. The sphingomyelin signal transduction pathway is involved in the regulation of the cell cycle in eukaryotic organisms. Sphingosine-1-phosphate (S1P) and ceramide (CER)-- the intermediates of the pathway--are known to stimulate and to inhibit cellular proliferation. The aim of the present study was to investigate the effect of PPARalpha activation by bezafibrate on the sphingomyelin signaling pathway during the first 24h of liver regeneration after PH in the rat. The content of sphingomyelin, ceramide, sphingosine, sphinganine, sphingosine-1-phosphate and the activity of sphingomyelinases and ceramidases were determined at various time points after PH. It has been found that the activity of neutral Mg(2+)-dependent sphingomyelinase (nSMase) increased, whereas the activity of acidic sphingomyelinase (aSMase) decreased in the regenerating liver. Activation of PPARalpha by bezafibrate lower the activity of nSMase and increased the activity of aSMase in the regenerating rat liver. The content of ceramide was higher in bezafibrate-treated rats, whereas the content of sphingosine-1-phosphate was markedly lower as compared to the untreated rats. Therefore, it is concluded that activation of PPARalpha by bezafibrate decreases the growth-stimulatory activity of the sphingomyelin pathway in regenerating rat liver.  相似文献   

2.
Oxidized LDL (oxLDL) have been implicated in diverse biological events leading to the development of atherosclerotic lesions. We previously demonstrated that the proliferation of cultured vascular smooth muscle cells (SMC) induced by oxLDL is preceded by an increase in neutral sphingomyelinase activity, sphingomyelin turnover to ceramide, and stimulation of mitogen-activated protein kinases (Augé, N., Escargueil-Blanc, I., Lajoie-Mazenc, I., Suc, I., Andrieu-Abadie, N., Pieraggi, M. T., Chatelut, M., Thiers, J. C., Jaffrézou, J. P., Laurent, G., Levade, T., Nègre-Salvayre, A., and Salvayre, R. (1998) J. Biol. Chem. 273, 12893-12900). Since ceramide can be converted to other bioactive metabolites, such as the well established mitogen sphingosine 1-phosphate (S1P), we investigated whether additional ceramide metabolites are involved in the oxLDL-induced SMC proliferation. We report here that incubation of SMC with oxLDL increased the activities of both acidic and alkaline ceramidases as well as sphingosine kinase, and elevated cellular sphingosine and S1P. Furthermore, the mitogenic effect of oxLDL was inhibited by D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol and N,N-dimethylsphingosine which are inhibitors of ceramidase and sphingosine kinase, respectively. These findings suggest that S1P is a key mediator of the mitogenic effect of oxLDL. In agreement with this conclusion, exogenous addition of sphingosine stimulated the proliferation of cultured SMC, and this effect was abrogated by dimethylsphingosine but not by fumonisin B1, an inhibitor of the acylation of sphingosine to ceramide. Exogenous S1P also promoted SMC proliferation. Altogether, these results strongly suggest that the mitogenic effect of oxLDL in SMC involves the combined activation of sphingomyelinase(s), ceramidase(s), and sphingosine kinase, resulting in the turnover of sphingomyelin to a number of sphingolipid metabolites, of which at least S1P is critical for mitogenesis.  相似文献   

3.
Cytokine-stimulated metabolism of sphingomyelin results in the accumulation of ceramide and sphingosine which play a part in the regulation of cell proliferation, differentiation, and reception, as well as in oncogenesis. Formation of TNF-alpha (a member of the cytokine family), accumulation of sphingosine, and DNA synthesis (measured by immunoblotting, HPLC, and [3H]thymidine incorporation, respectively) were studied in rat liver after partial hepatectomy. The content of TNF-alpha was found to increase during 12 h following hepatectomy. The maximum of sphingomyelinase activity and accumulation of sphingosine precede the maximum of DNA synthesis. Sphingosine is known to inhibit protein kinase C. On the other hand, it stimulates the metabolism of phosphatidylinositol, thus causing accumulation of diacylglycerol and inositol-1,4,5-triphosphate, which in turn activate protein kinase C. Hence, the release of TNF-alpha in regenerating liver may modulate DNA synthesis through the accumulation of sphingosine which is involved in regulation of protein kinase C activity and of phosphatidylinositol turnover.  相似文献   

4.
Inhibition of thyroid gland function in rats with mercasolil sharply decreased thyroxine and triiodothyronine levels in blood serum and increased acid sphingomyelinase activity and sphingomyelin content in liver. Thyroxine injected into hypothyroid rats normalized the sphingomyelin content, reduced the free ceramide content, and further increased the acid sphingomyelinase activity in liver. Thyroxine stimulated de novo sphingomyelin synthesis. Changing the thyroid status of the rats did not influence the free sphingosine content. Thyroxine blocks the accumulation of free sphingosine in the liver during activation of sphingomyelinases.  相似文献   

5.
It was shown that high-fat feeding of mice with cardiac-specific overexpression of peroxisome proliferator-activated receptor (PPAR) alpha but not wild type animals leads to the accumulation of ceramide (an important mediator of lipotoxicity) in the heart [Finck et al. 2003 Proc Natl Acad Sci USA]. To investigate the mechanism of this phenomenon we examined the effects of PPARalpha activation on ceramide metabolism in the myocardium. Male Wistar rats were fed either a standard chow or a high-fat diet. Each group was divided into two subgroups: control and treated with selective PPARalpha activator - WY-14643. In the rats fed on the standard diet WY-14643 did not affect the myocardial content of sphingomyelin and ceramide but reduced the content of sphinganine and sphingosine. It also inhibited the activity of neutral sphingomyelinase and increased the activity of acid sphingomyelinase, whereas the activity of ceramidases and serine palmitoyltransferase (SPT) remained stable. High-fat diet itself did not affect the content of the examined sphingolipids. However, it reduced the activity of sphingomyelinases and ceramidases having no effect on the activity of SPT. Administration of WY-14643 to this group significantly increased the content of myocardial free palmitate, ceramide, sphingomyelin and the activity of SPT. Our results demonstrated that PPARalpha activation modulates myocardial ceramide metabolism and leads to the accumulation of ceramide in the heart of the high-fat fed rats due to its increased synthesis de novo.  相似文献   

6.
Human umbilical vein endothelial cells (HUVEC), like most normal cells, are resistant to tumor necrosis factor-alpha (TNF)-induced apoptosis in spite of TNF activating sphingomyelinase and generating ceramide, a known inducer of apoptosis. Here we report that TNF activates another key enzyme, sphingosine kinase (SphK), in the sphingomyelin metabolic pathway resulting in production of sphingosine-1-phosphate (S1P) and that S1P is a potent antagonist of TNF-mediated apoptosis. The TNF-induced SphK activation is independent of sphingomyelinase and ceramidase activities, suggesting that TNF affects this enzyme directly other than through a mass effect on sphingomyelin degradation. In contrast to normal HUVEC, in a spontaneously transformed endothelial cell line (C11) TNF stimulation failed to activate SphK and induced apoptosis as characterized by morphological and biochemical criteria. Addition of exogenous S1P or increasing endogenous S1P by phorbol ester markedly protected C11 cell line from TNF-induced apoptosis. Conversely, N, N-dimethylsphingosine, an inhibitor of SphK, profoundly sensitized normal HUVEC to killing by TNF. Thus, we demonstrate that the activation of SphK by TNF is an important signaling for protection from the apoptotic effect of TNF in endothelial cells.  相似文献   

7.
The relative content of phosphatidylcholine is lower and that of sphingomyelin is higher in transplantable fast growing mouse hepatoma-22, thus decreasing their ratio approximately 2.5-fold versus normal liver. The ceramide content and the neutral sphingomyelinase activity is markedly higher (3- and 6.5-fold, respectively), whereas the acid sphingomyelinase activity is 4-fold lower in hepatoma-22 versus normal liver. The content of saturated fatty acids in ceramide and sphingomyelin of hepatoma-22 is higher than in normal liver. All sphingolipids of hepatoma-22 contain a considerable amount (25-37%) of sphinganine (dihydrosphingosine) along with sphingenine (sphingosine), whereas sphingolipids of normal liver contain predominantly sphingenine (over 95%). These results indicate that the activity of enzymes involved in sphingolipid biosynthesis and catabolism is disturbed in the transplantable mouse hepatoma-22 compared to normal liver.  相似文献   

8.
Ceramide, ceramide-1-phosphate (C1P) sphingosine (SPH) and sphingosine-1-phosphate (S1P) effects on proliferation and extracellular-signal regulated kinases, ERKs (also known as MAPKs), activation were investigated in human and rat osteoblastic cells. MAPK activation was sphingolipid-specific in cells from both species. In human osteoblastic cells, S1P and C1P markedly stimulated ERK2 phosphorylation with a slight increase in phosphorylation of ERK1. SPH nor ceramide induced phosphorylation of either ERK isoform. In rat osteoblastic cells, SIP, ceramide and SPH stimulated phosphorylation of both isoforms. C1P did not induce phosphorylation of ERK1 but produced a mild increase in phosphorylation of ERK2. In human cells, only S1P significantly (P<0.05) increased osteoblastic cell proliferation, while in the rat cells all four sphingolipids significantly (P<0.05) induced proliferation. The calcium channel blocker verapamil blocked (P<0.05) these effects in both cell types. The MAPK inhibitor, PD98059, inhibited (P<0.05) the mitogenic effect of SIP in human cells. In rat cells, PD98059 effects were less substantial but significant for S1P and C1P. This study demonstrates that sphingolipids are mitogens for both human and rat osteoblastic cells with the MAPK pathway and calcium mediating in part these effects in a species specific manner.  相似文献   

9.
Contents of sphingolipids (ceramide, sphingomyelin, gangliosides) and the composition of their sphingoid bases were studied in the transplantable rat nephroma-RA and in rat kidneys. The content of sphingomyelin was about 1.3-fold decreased and the content of ceramide was about 1.4-fold increased in the nephroma compared to normal kidneys, and this correlated with a 1.4-fold increased activity of neutral sphingomyelinase; however, the activity of the acidic isoform of the enzyme was virtually unchanged. The content of gangliosides was also increased in the nephroma. Ceramide and sphingomyelin of the nephroma, in addition to sphingosine, contained a significant amount of sphinganine, although a considerable amount of the latter was also found in the renal ceramide. The ratio sphingosine/sphinganine in sphingomyelins changed from 65:1 in kidneys to 5:1 in the nephroma. Thus, the biosynthesis of sphingoid bases seems to be disturbed in the transplantable rat nephroma-RA compared to normal kidneys.  相似文献   

10.
Post-hepatectomy liver dysfunction is a life-threatening morbidity that lacks efficient therapy. Bioactive lipids involved in macrophage polarization crucially regulate tissue injury and regeneration. Herein, we investigate the key bioactive lipids that mediate the cytotherapeutic potential of polarized-macrophage for post-hepatectomy liver dysfunction. Untargeted lipidomics identified elevation of ceramide (CER) metabolites as signature lipid species relevant to M1/M2 polarization in mouse bone-marrow-derived-macrophages (BMDMs). M1 BMDMs expressed a CER-generation-metabolic pattern, leading to elevation of CER; M2 BMDMs expressed a CER-breakdown-metabolic pattern, resulting in upregulation of sphingosine-1-phosphate (S1P). After infusing M1- or M2-polarized BMDMs into the mouse liver after hepatectomy, we found that M1-BMDM infusion increased M1 polarization and CER accumulation, resulting in exaggeration of hepatocyte apoptosis and liver dysfunction. Conversely, M2-BMDM infusion enhanced M2 polarization and S1P generation, leading to alleviation of liver dysfunction with improved hepatocyte proliferation. Treatment of exogenous CER and S1P or inhibition CER and S1P synthesis by siRNA targeting relevant enzymes further revealed that CER induced apoptosis while S1P promoted proliferation in post-hepatectomy primary hepatocytes. In conclusion, CER and S1P are uncovered as critical lipid mediators for M1- and M2-polarized BMDMs to promote injury and regeneration in the liver after hepatectomy, respectively. Notably, the upregulation of hepatic S1P induced by M2-BMDM infusion may have therapeutic potential for post-hepatectomy liver dysfunction.Subject terms: Cell growth, Metabolomics  相似文献   

11.
Recent studies reveal that metabolites of sphingomyelin are critically important for initiation and maintenance of diverse aspects of immune cell activation and function. The conversion of sphingomyelin to ceramide, sphingosine, or sphingosine-1-phosphate (S1P) provides interconvertible metabolites with distinct biological activities. Whereas ceramide and sphingosine function to induce apoptosis and to dampen mast cell responsiveness, S1P functions as a chemoattractant and can up-regulate some effector responses. Many of the S1P effects are mediated through S1P receptor family members (S1P(1-5)). S1P(1), which is required for thymocyte emigration and lymphocyte recirculation, is also essential for Ag-induced mast cell chemotaxis, whereas S1P(2) is important for mast cell degranulation. S1P is released to the extracellular milieu by Ag-stimulated mast cells, enhancing inflammatory cell functions. Modulation of S1P receptor expression profiles, and of enzymes involved in sphingolipid metabolism, particularly sphingosine kinases, are key in balancing mast cell and immune cell responses. Current efforts are unraveling the complex underlying mechanisms regulating the sphingolipid pathway. Pharmacological intervention of these key processes may hold promise for controlling unwanted immune responses.  相似文献   

12.
We have studied the localization of neutral sphingomyelinase (N-SMase) in rat liver nuclei. The levels of neutral sphingomyelinase in regenerating liver nuclei were also assessed.We found that rat liver nuclei contain a sphingomyelinase having a pH optima of 7.2 and a kDa of 92. In intact nuclei, neutral sphingomyelinase was associated predominantly with the nuclear envelope. In regenerating/proliferating rat liver (during DNA synthesis), neutral sphingomyelinase was translocated from the nuclear envelope to the nuclear matrix. The levels of sphingomyelin in whole nuclei decreased in reverse proportion to an increase in the levels of neutral sphingomyelinase. By contrast, there was a corresponding increase in the levels of ceramide and sphingosine during cell regeneration/proliferation. Thus, endogenous nuclear neutral sphingomyelinase may play a role in the regulation of sphingomyelin levels and in relevant signal transduction reactions involving cell regeneration/proliferation. The potential significance of ceramide generation may be aimed at programmed cell death to allow the regeneration of liver mediated via target proteins such as, ceramide activated protein kinases/phospholipases or other unknown mechanisms.Abbreviations N-SMase neutral sphingomyelinase - A-SMase acid sphingomyelinase  相似文献   

13.
Zhou Y  Lin XW  Yang Q  Zhang YR  Yuan JQ  Lin XD  Xu R  Cheng J  Mao C  Zhu ZR 《Biochimie》2011,93(7):1124-1131
Ceramidase plays an important role in regulating the metabolism of sphingolipids, such as ceramide, sphingosine (SPH), and sphingosine-1-phosphate (S1P), by controlling the hydrolysis of ceramide. Here we report the cloning and biochemical characterization of a neutral ceramidase from the red flour beetle Tribolium castaneum which is an important storage pest. The Tribolium castaneum neutral ceramidase (Tncer) is a protein of 696 amino acids. It shares a high degree of similarity in protein sequence to neutral ceramidases from various species. Tncer mRNA levels are higher in the adult stage than in pre-adult stages, and they are higher in the reproductive organs than in head, thorax, and midgut. The mature ovary has higher mRNA levels than the immature ovary. Tncer is localized to the plasma membrane. It uses various ceramides (D-erythro-C6, C12, C16, C18:1, and C24:1-ceramide) as substrates and has an abroad pH optimum for its in vitro activity. Tncer has an optimal temperature of 37 °C for its in vitro activity. Its activity is inhibited by Fe2+. These results suggest that Tncer has distinct biochemical properties from neutral ceramidases from other species.  相似文献   

14.
Ceramide is the key compound on crossroads of sphingolipid metabolism. The content and composition of ceramides in skeletal muscles have been shown to be affected by prolonged exercise. The aim of this study was to examine the effect of exercise on the activity of key enzymes of ceramide metabolism in skeletal muscles. The experiments were carried out on male Wistar rats (200-250 g) divided into four groups: sedentary, exercised for 30 min, 90 min, and until exhaustion. The activity of serine palmitoyltransferase (SPT), neutral and acid sphingomyelinase (nSMase and aSMase), neutral and alkaline ceramidases (nCDase and alCDase) and the content of ceramide, sphingosine, sphinganine and sphingosine-1-phosphate were determined in three types of muscle. We have found that the activity and expression of SPT increase gradually in each muscle with duration of exercise. These changes were followed by elevation in the content of sphinganine. These data indicate that exercise increases de novo synthesis of ceramide. The aSMase activity gradually decreased with duration of exercise in each type of muscle. After exhaustive exercise the activity of both isoforms of ceramidase were reduced in each muscle. The ceramide level depends both on duration of exercise and muscle type. The ceramide level in the soleus and white gastrocnemius decreased after 30 min of running. After exhaustive exercise it was elevated in the soleus and red gastrocnemius. It is concluded that exercise strongly affects the activity of key enzymes involved in ceramide metabolism and in consequence the level of sphingolipid intermediates in skeletal muscles.  相似文献   

15.
Sphingolipids mediate a number of cellular functions in a variety of cell systems. The role they play in osteoblast signaling is yet unknown. This study investigated the effects of epidermal growth factor (EGF) on the levels of ceramide, sphingosine (SPH), and sphingosine-1-phosphate (S1P) in rat calvariae osteoblastic cells, and whether these metabolites mediated cytosolic calcium ([Ca2+]i) mobilization in these cells. EGF significantly (P<0.05) increased the levels of all three sphingolipids, and the phorbol ester PMA partially inhibited these effects. SPH and S1P markedly increased [Ca2+]i levels, with thapsigargin (depletes [Ca2+]i pools) decreasing the response by 60%. Verapamil (calcium channel blocker) only inhibited ceramide's effects on [Ca2+]i. Furthermore, SPH enhanced the EGF' induced increase in [Ca2+]i. This study demonstrates that ceramide, SPH and S1P mediate [Ca2+]i mobilization in rat calvarial osteoblastic cells, and that EGF induces changes in the levels of these metabolites with PKC playing an important role in the mechanisms regulating these events.  相似文献   

16.
DNA specific activity in the liver, the total DNA content of the liver and the mitotic index of the hepatocytes were studied after the infusion of glucose or lipid emulsions in female laboratory rats with a mean pre-operation weight of 250 +/- 30 g after partial (65-70%) hepatectomy (PH). The infusions were administered in the early prereplication phase (the 1st to 6th hour after the operation), in the late prereplication phase (the 7th to 12th hour after the operation), or continuously from the 1st to the 12th, or the 1st to the 24th, hour after partial hepatectomy. The effect of these parenterally administered energy substrates on the initiation of liver regeneration was evaluated 18 and 24 hours after partial hepatectomy. The results indicate that the infusion of glucose, in any interval after the operation, inhibited the initial phases of liver DNA synthesis (18 h after PH), but not its further development (24 h after PH). Neither the mitotic index of the hepatocytes, nor the total DNA content of the liver differed from the control groups in the case of rats given a glucose infusion. In the experimental groups given lipid emulsions, inhibition of liver DNA synthesis was recorded 18 h after PH only when the infusions were given from the 1st to the 12th or the 1st to the 18th hour after PH. The total DNA content of the liver 18 h after PH was raised in all the experimental groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Neutral ceramidase is a type II integral membrane protein, which is occasionally secreted into the extracellular milieu after the processing of its N-terminal anchor. We found that when overexpressed in CHOP cells, neutral ceramidase hydrolyzed cell surface ceramide, which increased in amount after the treatment of cells with bacterial sphingomyelinase, leading to an increase in the cellular level of sphingosine and sphingosine 1-phosphate. On the other hand, knockdown of the endogenous enzyme by siRNA decreased the cellular level of both sphingolipid metabolites. The treatment of cells with bovine serum albumin significantly reduced the cellular level of sphingosine, but not sphingosine 1-phosphate, generated by overexpression of the enzyme. The cellular level of sphingosine 1-phosphate increased with overexpression of the cytosolic sphingosine kinase. These results suggest that sphingosine 1-phosphate is mainly produced inside of the cell after the incorporation of sphingosine generated on the plasma membranes. The enzyme also seems to participate in the hydrolysis of serum-derived ceramide in the vascular system. Significant amounts of sphingosine as well as sphingosine 1-phosphate were generated in the cell-free conditioned medium of ceramidase transfectants, compared with mock transfectants. No increase in these metabolites was observed if serum or bacterial sphingomyelinase was omitted from the conditioned medium, suggesting that the major source of ceramide is the serum-derived sphingomyelin. A sphingosine 1-phosphate receptor, S1P(1), was internalized much faster by the treatment of S1P(1)-overexpressing cells with conditioned medium of ceramidase transfectants than that of mock transfectants. Collectively, these results clearly indicate that the enzyme is involved in the metabolism of ceramide at the plasma membrane and in the extracellular milieu, which could regulate sphingosine 1-phosphate-mediated signaling through the generation of sphingosine.  相似文献   

18.
鞘磷脂特别是鞘脂是髓鞘的主要成分,高度集中在中枢神经系统。在生理和病理生理条件下,具有生物活性的鞘磷脂及其代谢产物以及信号传导过程的重要性正在逐步被人们所认识。鞘脂代谢产物鞘氨醇及其前体物质神经酰胺与细胞生长停滞和凋亡有关,而1-磷酸鞘氨醇与增强细胞增殖、分化和细胞生存以及调节细胞的生理和病理过程有关,具有细胞外第一信使和细胞内第二信使的双重功能。这三者之间的相互转换、鞘脂代谢物的相对水平以及细胞的命运,受到鞘氨醇激酶的活性的强烈影响。鞘氨醇激酶可催化磷酸鞘氨醇产生1-磷酸鞘氨醇。1-磷酸鞘氨醇在中枢神经系统中与G蛋白偶联受体家族结合对中枢神经系统发挥作用。本文对鞘磷脂代谢过程中的鞘氨醇激酶、1-磷酸鞘氨醇及其受体与脑缺血之间的关系进行概述。  相似文献   

19.
The sphingomyelin signalling pathway has been shown to function in different skeletal muscle types. The aim of the present study was to examine the effect of endurance training on the functioning of the pathway in the muscles. The experiments were carried out on two groups of male Wistar rats: sedentary and trained for six weeks. 24h after cessation of the training rats were anaesthetized and samples of the soleus, red and white section of the gastrocnemius were taken. The content and composition of sphingomyelin-fatty acids and ceramide - fatty acids was determined by means of gas-liquid chromatography. The content of sphingosine and sphinganine was determined by means of high-pressure liquid chromatography. The activity of neutral Mg(++)-dependent sphingomyelinase was determined spectophotometrically using trinitrophenylaminolauroyl-sphingomyelin as the substrate. It has been found that training reduces the total content of sphingomyelin- and ceramide-fatty acids, increases the content of sphinganine and does not affect the content of sphingosine in individual muscle types. The activity of the enzyme in the muscles is also elevated. It is concluded that training affects functioning of the sphingomyelin -signalling pathway in skeletal muscles. The reduction in the content of ceramide may contribute to elevation in glucose uptake in skeletal muscles observed after training.  相似文献   

20.
Various sphingolipids are being viewed as bioactive molecules and/or second messengers. Among them, ceramide (or N-acylsphingosine) and sphingosine generally behave as pro-apoptotic mediators. Indeed, ceramide mediates the death signal initiated by numerous stress agents which either stimulate its de novo synthesis or activate sphingomyelinases that release ceramide from sphingomyelin. For instance, the early generation of ceramide promoted by TNF is mediated by a neutral sphingomyelinase the activity of which is regulated by the FAN adaptor protein, thereby controlling caspase activation and the cell death programme. In addition, the activity of this neutral sphingomyelinase is negatively modulated by caveolin, a major constituent of some membrane microdomains. The enzyme sphingosine kinase also plays a crucial role in apoptosis signalling by regulating the intracellular levels of two sphingolipids having opposite effects, namely the pro-apoptotic sphingosine and the anti-apoptotic sphingosine 1-phosphate molecule. Ceramide and sphingosine metabolism therefore appears as a pivotal regulatory pathway in the determination of cell fate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号