首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of phospholipase C treatment on the binding activity of the Fc receptor of guinea pig macrophage was studied to analyze the interaction of the Fc receptor with membrane phospholipids necessary for the activity. It was confirmed by subcellular fractionation that the receptor is localized on the plasma membrane. Treatment of the whole cell or isolated plasma membrane with phospholipase C of Clostridium perfringens diminished the binding of soluble IgG2-immune complex to Fc receptors on the cell or membrane. On the other hand, phospholipase C of Bacillus cereus did not affect the activity when it acted on the whole cell but it did diminish the activity when it acted on the isolated plasma membrane. Analysis of the phospholipids of untreated and treated macrophages or plasma membrane showed that phosphatidylcholine molecules, particularly those located in the membrane (not accessible to attack from the cell surface by phospholipase C of B. cereus), appear to be crucial for efficient interaction of macrophage Fc receptors with immune complex. Ligand-binding experiments with macrophages showed that the diminished binding activity was due to a decrease of the avidity for immune complex, but did not seem to be due to a decrease in the number or affinity of Fc receptors for monomeric IgG2. Taken together with the previous results which demonstrated that Fc receptors which had apparently lost the activity due to delipidation could be reconstituted with phosphatidylcholine but not with most other phospholipids, the results seem to indicate that the diminution of the binding activity to the immune complex of macrophage or its plasma membrane caused by phospholipase C treatment is due to the impairment of multivalent interaction between Fc receptor molecules on the membrane and IgG2 molecules in the immune complex, probably as a result of the loss of interaction of the head groups of phospholipids with Fc receptor molecules and the change in membrane properties resulting from the increase of diglycerides.  相似文献   

2.
In this study, we compared qualitative and quantitative changes in the lateral mobility of phospholipid molecules in the plasma membrane of intact cells under various conditions of specific interaction of integrins in the cell membrane with two extracellular matrix (ECM) components viz. fibronectin (FN) and laminin (LN). We found a strong and specific correlation between the lower lateral mobility of phosphatidylcholine (PC) and higher lateral mobility of phosphatidylethanolamine (PE) when cells were expressing high levels of alpha5beta1 integrin and thus were adherent and motile on FN. The interaction between PC and FN in alpha5 integrin expressing cells was aided by the strong affinity of alpha5 integrin to the FN matrix. Cholesterol was involved in regulating the lateral mobility of PC to a great extent and of PE to a lesser extent without affecting the overall microviscosity of the plasma membrane or the distribution of caveolin-marked domains. The distribution and mobility of PC and PE molecules in the lamellipodial regions differed from that in the rest of the membrane and also in the more motile and in the less motile cells. We propose that these differences in distribution of PC and PE in different regions of cell membrane and their respective lateral mobility are observed due to the specific interaction of PC molecules with FN molecules in the ECM. Our results outline a new role of integrin-matrix interactions in the regulation of membrane phospholipid behavior.  相似文献   

3.
Intraplantar injection of the enzymatically stable, N-methylated kyotorphin analog Tyr(NMe)-Arg-OH produced marked and sharp nociceptive flexor responses in a dose-dependent manner. A significant response was observed with this compound at a dose of 0. 01 amol (6000 molecules). Tyr(NMe)-Arg-OH-nociception was completely blocked by the kyotorphin antagonist leucyl-arginine and its enzymatically stable, N-methylated analog, as well as by CP-99994, a specific neurokinin 1 antagonist. These findings suggest that the nociceptive effect produced by Tyr(NMe)-Arg-OH in subattomol doses occurs via specific interaction with the kyotorphin receptor and that the extraordinary potency observed may result from amplification through local substance P release.  相似文献   

4.
The effects of alpha-neoendorphin, kyotorphin, melatonin or diphenylhydantoin (DPH) on thyrotropin-releasing hormone (TRH) and thyrotropin (TSH) release in rats were studied. alpha-neoendorphin (1.0 mg/kg), kyotorphin (1.0 mg/kg), melatonin (2.5 mg/kg) or DPH (75 mg/kg) was injected iv or ip, and the rats were serially decapitated. TRH, TSH and thyroid hormone were determined by radioimmunoassay. The hypothalamic immunoreactive (ir-TRH) contents decreased significantly after melatonin injection, but not after alpha-neoendorphin, kyotorphin or DPH. The plasma ir-TRH concentrations decreased significantly after DPH injection, but not after alpha-neoendorphin, kyotorphin or melatonin. The plasma TSH levels decreased significantly in a dose-related manner with a nadir at 10 min. after melatonin, at 30 min. after DPH and at 40 min. after alpha-neoendorphin or kyotorphin injection. The plasma thyroid hormone levels did not change significantly after these drugs injection. The plasma ir-TRH and TSH responses to cold were inhibited by these drugs, but the plasma TSH response to TRH was not influenced. In the L-DOPA- or 5-hydroxy-tryptophan (5-HTP)-pretreated group, the inhibitory effect of alpha-neoendorphin or kyotorphin on TSH levels was prevented, but not in the haloperidol- or para-chloprophenylalanine (PCPA)- pretreated group. In the haloperidol- or PCPA-pretreated group, the inhibitory effect of melatonin on TSH levels was prevented, but not in the L-DOPA- or 5-HTP-pretreated group. These drugs alone did not affect plasma TSH levels in terms of the dose used. The inactivation of TRH immunoreactivity by hypothalamus or plasma in vitro after these drugs injection did not differ from that of the control.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The intracellular fate of radiolabeled T3 taken up by mice hepatocytes in vivo was determined at specific time intervals (2–120 min) after injection by quantitative electron microscopic radioautography. Injection of a 200-fold excess of unlabeled T3 together with [125I]-T3 resulted in a more than 90% inhibition of radioactivity detected in hepatocytes. A simple grain density (GD) analysis of radioautograms revealed that a specific labeling (GD > 1) was displayed by only five cell compartments: the plasma membrane, lipid droplets, mitochondria, nuclear envelope and nuclear matrix whereas other compartments were not labeled. Labeled compartments showed distinct changes in the pattern of labeling over time: the plasma membrane was labeled only 2 min after T3 injection, whereas labeling of the nuclear envelope was high at 2 min, decreased at 15 min and progressively increased to maximal measured levels at 120 min. After a lag time of 30 min, nuclear matrix labeling increased progressively with time. Mitochondrial labeling was found to be specific at any time point studied but showed no change over time. These ultrastructural data have been confirmed in vitro by the interaction of T3 with plasma membrane, nuclear membrane, nuclear matrix and mitochondria by real-time biospecific interaction analysis in a BIAcore system. These results demonstrate that T3 binds to hepatocytes before internalization, is transported both to mitochondria and to the nuclear envelope and translocated into the nuclear matrix.  相似文献   

6.
We attempted to identify the kyotorphin receptor and the post receptor mechanisms mediated by GTP-binding proteins (G-proteins), using reconstitution techniques. The specific binding of [3H]kyotorphin in rat brain membranes was composed of high affinity (Kd = 0.34 nM) and low affinity (Kd = 9.07 nM) binding. As the high affinity binding disappeared in the presence of guanosine 5'-O-(3-thiotriphosphate) and MgCl2, we investigated the kyotorphin receptor-mediated changes in membrane G-protein activity by measuring low Km GTPase activity. Kyotorphin produced a stimulation of low Km GTPase, and this stimulation was antagonized by Leu-Arg, a synthetic dipeptide which showed a potent displacement of [3H]kyotorphin binding, yet in itself had no effect on the low Km GTPase. The kyotorphin stimulation of low Km GTPase was abolished by pretreating membranes with islet-activating protein, pertussis toxin, and was recovered by reconstitution with purified G-protein, Gi, but not with Go. Similar evidence of selective coupling of kyotorphin receptor to Gi was obtained with the phospholipase C assay. Kyotorphin-induced stimulation of phospholipase C was also abolished by islet-activating protein-treatment and recovered by reconstitution with Gi but not with Go. These findings indicate that specific high and low affinity kyotorphin receptors exist in the rat brain and that the kyotorphin receptor is functionally coupled to stimulation of phospholipase C, through Gi. This study provides the first evidence of a selective involvement of Gi in the receptor-mediated activation of phospholipase C.  相似文献   

7.
To our knowledge, we present the first constant-pH molecular dynamics study of the neuropeptide kyotorphin in the presence of an explicit lipid bilayer. The overall conformation freedom of the peptide was found to be affected by the interaction with the membrane, in accordance with previous results using different methodologies. Analysis of the interactions between the N-terminus amine group of the peptide and several lipid atoms shows that the membrane is able to stabilize both ionized and neutral forms of kyotorphin, resulting in a pKa value that is similar to the one obtained in water. This illustrates how a detailed molecular model of the membrane leads to rather different results than would be expected from simply regarding it as a low-dielectric slab.  相似文献   

8.
TEMs (tetraspanin-enriched microdomains) are specialized platforms in the plasma membrane that include adhesion receptors and enzymes. Insertion into TEMs dictates the local concentration of these molecules, regulates their internalization rate, their interaction and cross-talk with other receptors at the plasma membrane and provides links with certain signalling pathways. We focus on the associations described for tetraspanins with membrane proteases and their substrates, reviewing the emerging evidence in the literature that suggests that TEMs might be essential platforms for regulating protein shedding, RIP (regulated intramembrane proteolysis) and matrix degradation and assembly.  相似文献   

9.
The inhibitory effects of the analgesic neuropeptides kyotorphin (Tyr-Arg) and neo-kyotorphin (Thr-Ser-Lys-Tyr-Arg) on enkephalin-degrading enzymes were studied. The enzyme used were aminopeptidase (AP), dipeptidyl aminopeptidase (DPP), enkephalinase-A (ENK-A), and angiotensin-converting enzyme (ACE), which were prepared from the monkey brain membrane fraction. Kyotorphin inhibited only DPP (IC50, 18 microM), and the mode of inhibition was non-competitive (Ki, 6 microM). Neo-kyotorphin inhibited AP, DPP, and ACE with IC50 values of 131, 306, and 200 microM, respectively, but the inhibition of the enzyme activities were not effective. The selective inhibition by kyotorphin suggested that kyotorphin might protect the released Met-enkephalin against enzymatic degradation by DPP. Thus, kyotorphin may not only induce the release of Met-enkephalin but also stabilize the released neuropeptide.  相似文献   

10.
Transglutaminase activity, arising potentially from transglutaminase 2 (TG2) and Factor XIIIA (FXIIIA), has been linked to osteoblast differentiation where it is required for type I collagen and fibronectin matrix deposition. In this study we have used an irreversible TG-inhibitor to 'block -and-track' enzyme(s) targeted during osteoblast differentiation. We show that the irreversible TG-inhibitor is highly potent in inhibiting osteoblast differentiation and mineralization and reduces secretion of both fibronectin and type I collagen and their release from the cell surface. Tracking of the dansyl probe by Western blotting and immunofluorescence microscopy demonstrated that the inhibitor targets plasma membrane-associated FXIIIA. TG2 appears not to contribute to crosslinking activity on the osteoblast surface. Inhibition of FXIIIA with NC9 resulted in defective secretory vesicle delivery to the plasma membrane which was attributable to a disorganized microtubule network and decreased microtubule association with the plasma membrane. NC9 inhibition of FXIIIA resulted in destabilization of microtubules as assessed by cellular Glu-tubulin levels. Furthermore, NC9 blocked modification of Glu-tubulin into 150 kDa high-molecular weight Glu-tubulin form which was specifically localized to the plasma membrane. FXIIIA enzyme and its crosslinking activity were colocalized with plasma membrane-associated tubulin, and thus, it appears that FXIIIA crosslinking activity is directed towards stabilizing the interaction of microtubules with the plasma membrane. Our work provides the first mechanistic cues as to how transglutaminase activity could affect protein secretion and matrix deposition in osteoblasts and suggests a novel function for plasma membrane FXIIIA in microtubule dynamics.  相似文献   

11.
Interaction of cardiotonic drugs (strophantidine acetate, suphan, para-oxybenzoic acid) and ubiquinone with phospholipid bilayers has been studied. Exothermic effect of the reaction followed by an increase in microviscosity and hydrophobicity of the bilayer from cardiolipin, but by a decrease of the microviscosity of the bilayer from lecithin has been estimated. A correlation is observed between changes in the lecithin bilayer fluidity and the heat effect of the interaction at the initial period of time after mixing of reagents.  相似文献   

12.
Both adipocyte plasma membranes and microsomes possess insulin-sensitive low Km cyclic AMP phosphodiesterase activity. The activity of the enzyme from both sources was susceptible to activation by several anionic phospholipids. Activators of the plasma membrane enzyme were lysophosphatidylglycerol > lysophosphatidylcholine > lysophosphatidylserine > phosphatidylserine > phosphatidylglycerol. These same phospholipids activated the microsomal enzyme but the extent of activation by each phospholipid was reversed. Neutral phospholipids and other anionic phospholipids were without effect. The phospholipids had no effect on high Km cAMP phosphodiesterase in either membrane. The results suggest that the phospholipid headgroup was an important determinant for enzyme activation by phospholipid. The increased susceptibility of the plasma membrane enzyme to lysophospholipid may be attributed to a difference in the plasma membrane enzyme compared to the microsomal membrane enzyme or to differences in plasma membrane and microsomal membrane phospholipid composition and their ability to regulate low Km cAMP phosphodiesterase activity.  相似文献   

13.
The continuous alpha-chymotrypsin-catalyzed peptide synthesis of kyotorphin, tyrosyl-arginine, via the N(alpha) formyltyrosyl-arginine propyl ester is described. For continuous process development, two reaction systems were studied: immobilized alpha-chymotrypsin covalently bound to Eupergit C packed in a column, and soluble alpha-chymotrypsin utilizing an enzyme membrane reactor. Selectivities and kinetic parameters are discussed. The use of soluble enzyme in an enzyme membrane reactor proved superior to the covalently immobilized enzyme. A significant loss of enzyme activity and a certain decrease of selectivity was observed during immobilization. It was shown that the addition of organic solvent, in this case n-propanol, causes a severe diminuation of the enzyme activity.  相似文献   

14.
The sialylation level of molecules, sialoglycoproteins and gangliosides, protruding from plasma membranes regulates multiple facets of erythrocyte function, from interaction with endothelium to cell lifespan. Our results demonstrate that: (a) Both sialidases NEU1 and NEU3 are present on erythrocyte plasma membrane; (b) NEU1 is kept on the plasma membrane in absence of the protective protein/cathepsin A (PPCA); (c) NEU1 and NEU3 are retained on the plasma membrane, as peripheral proteins, associated to the external leaflet and released by alkaline treatments; (d) NEU1 and NEU3 are segregated in Triton X‐100 detergent‐resistant membrane domains (DRMs); (e) NEU3 shows activity also at neutral pH; and (f) NEU1 and NEU3 are progressively lost during erythrocyte life. Interestingly, sialidase activity released from erythrocyte membranes after an alkaline treatment preserves its functionality and recognizes sialoglycoproteins and gangliosides. On the other hand, the weak anchorage of sialidases to the plasma membrane and their loss during erythrocyte life could be a tool to preserve the cellular sialic acid content in order to avoid the early ageing of erythrocyte and processes of cell aggregation in the capillaries. J. Cell. Biochem. 114: 204–211, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Bone remodelling is regulated by osteogenic cells which act individually through cellular and molecular interaction. These interactions can be established either through a cell–cell contact, involving molecules of the integrin family, or by the release of many polypeptidic factors and/or their soluble receptor chains. Proteolytic shedding of membrane-associated proteins regulates the physiological activity of numerous proteins. Proteases located on the plasma membrane, either as transmembrane proteins or anchored to cell-surface molecules, serve as activators or inhibitors of different cellular and physiological processes. This review will focus on the role of the proteases implicated in bone remodelling either through the proteolytic degradation of the extracellular matrix or through their relations with osteogenic factors. Their implication in bone tumor progression will be also considered.  相似文献   

16.
Dopamine (DA) increases Na(+),K(+)-ATPase activity in lung alveolar epithelial cells. This effect is associated with an increase in Na(+),K(+)-ATPase molecules within the plasma membrane (). Analysis of Na(+),K(+)-ATPase motion was performed in real-time in alveolar cells stably expressing Na(+),K(+)-ATPase molecules carrying a fluorescent tag (green fluorescent protein) in the alpha-subunit. The data demonstrate a distinct (random walk) pattern of basal movement of Na(+),K(+)-ATPase-containing vesicles in nontreated cells. DA increased the directional movement (by 3.5 fold) of the vesicles and an increase in their velocity (by 25%) that consequently promoted the incorporation of vesicles into the plasma membrane. The movement of Na(+),K(+)-ATPase-containing vesicles and incorporation into the plasma membrane were microtubule dependent, and disruption of this network perturbed vesicle motion toward the plasma membrane and prevented the increase in the Na(+),K(+)-ATPase activity induced by DA. Thus, recruitment of new Na(+),K(+)-ATPase molecules into the plasma membrane appears to be a major mechanism by which dopamine increases total cell Na(+),K(+)-ATPase activity.  相似文献   

17.
Trypanosoma cruzi epimastigotes cultured in vitro were disrupted by successive freezing and thawing and subsequent sonication. The total homogenate was fractionated by differential centrifugation to obtain an enriched plasma membrane fraction. The proteins of subcellular parasite fractions were labeled with 131I and their binding to membrane fractions from human placenta syncytiotrophoblast was studied. Syncytiotrophoblast fractions enriched in plasma showed higher specific activity for binding an enriched T. cruzi plasma membrane fraction compared with other fractions of syncytiotrophoblast. The properties of this interaction were studied with digestive enzymes (trypsin and phospholipase A2). The results showed that both proteins and lipids could be involved in this interaction. The Ca2+ requirements for the membrane-membrane interaction are different for the two membranes studied. Also the enriched plasma membrane T. cruzi fraction had a higher capacity to induce fusion processes than the other subcellular fractions. The above results indicate that a preferential syncytiotrophoblast-T. cruzi interaction may occur between the two cell surfaces as compared to intracellular membranes and that the parasite surface is able to induce an instability process leading to membrane fusion. These results may have implications in regard to the mechanism of entry of the parasite into cells.  相似文献   

18.
Aberrant (glyco)sphingolipid expression deeply affects several properties of tumor cells that are involved in tumor progression and metastasis formation: cell adhesion (to the extracellular matrix or to the endothelium of blood vessels), motility, recognition and invasion of host tissues. In particular, (glyco)sphingolipids might contribute to the modulation of integrin-dependent interactions of tumor cells (determining their adhesion, motility and invasiveness) with the extracellular matrix as well as with host cells present in the stromal compartment of the tumor. A model based on solid experimental evidence has been proposed: (glyco)sphingolipids at the cell surface interact with plasma membrane receptors (e.g., integrin receptors and growth factor receptors) and adapter molecules (including tetraspanins) forming signaling complexes that are able to influence the activity of signal transduction molecules oriented at the cytosolic surface of the plasma membrane (mainly the Src kinases pathway members). The function of these signaling complexes appears to be strictly dependent on their (glyco)sphingolipid composition, and likely on specific sphingolipid-protein interactions. From this point of view, particularly intriguing is the connection between (glyco)sphingolipids and caveolin-1, a membrane protein that plays multiple roles as a suppressor of tumor growth and metastasis in ovarian, breast and colon human carcinomas.  相似文献   

19.
The effect of <5 KDa (low molecular weight, LMW) and >5 KDa (high molecular weight, HMW) humic fractions on transport activities of isolated plasma membrane vesicles was studied. The K+-stimulated component of the ATP-hydrolyzing activity was considerably increased by LMW humic substances at concentrations ranging from 0.075 mg org CL-1 to 1 mg org CL-1. The stimulation was still evident when the detergent Brij-35 was added in the assay mixture, indicating a direct effect of LMW humic substances on plasma membrane ATPase activity. The LMW humic fraction stimulated ATP-dependent intravesicular H+-accumulation with a pattern similar to that recorded for ATP hydrolysis. LMW humic substances induced also an increase in passive membrane permeability to protons, as revealed by following the dissipation of an artificially imposed pH gradient. Membrane permeability to anions, as measured by the anion-dependent active proton accumulation was affected by LMW humic substances. In the presence of NO3 - these molecules clearly enhanced proton transport, while Cl--dependent activity was almost unaffected, thus suggesting a specific action of LMW humic fraction on transmembrane NO3 - fluxes. On the other hand, HMW humic substances decreased the passive permeability to protons and reduced the anion-dependent intravesicular H+-accumulation. The results suggest that the stimulatory effect of soil humic substances on plant nutrition and growth might be, at least in part, explained on the basis of both direct action of LMW humic molecules on plasma membrane H+-ATPase and specific modification of cell membrane permeability.  相似文献   

20.
Hagfish intestinal antimicrobial peptides (HFIAPs) are a family of polycationic peptides exhibiting potent, broad-spectrum bactericidal activity. In an attempt to unravel the mechanism of action of HFIAPs, we have studied their interaction with model membranes. Synthetic HFIAPs selectively bound to liposomes mimicking bacterial membranes, and caused the release of vesicle-encapsulated fluorescent markers in a size-dependent manner. In planar lipid bilayer membranes, HFIAPs induced erratic current fluctuations and reduced membrane line tension according to a general theory for lipidic pores, suggesting that HFIAP pores contain lipid molecules. Consistent with this notion, lipid transbilayer redistribution accompanied HFIAP pore formation, and membrane monolayer curvature regulated HFIAP pore formation. Based on these studies, we propose that HFIAPs kill target cells, at least in part, by interacting with their plasma membrane to induce formation of lipid-containing pores. Such a membrane-permeabilizing function appears to be an evolutionarily conserved host-defense mechanism of antimicrobial peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号