首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Partially purified preparations of catechol 2,3-dioxygenase from toluene-grown cells of Pseudomonas putida catalyzed the stoichiometric oxidation of 3-methylcatechol to 2-hydroxy-6-oxohepta-2,4-dienoate. Other substrates oxidized by the enzyme preparation were catechol, 4-methylcatechol, and 4-fluorocatechol. The apparent Michaelis constants for 3-methylcatechol and catechol were 10.6 and 22.0 muM, respectively. Substitution at the 4-position decreases the affinity and activity of the enzyme for the substrate. Catechol 2,3-dioxygenase preparations did not oxidize 3-chlorocatechol. In addition, incubation of the enzyme with 3-chlorocatechol led to inactivation of the enzyme. Kinetic analyses revealed that both 3-chlorocatechol and 4-chlorocatechol were noncompetitive or mixed-type inhibitors of the enzyme. 3-Chlorocatechol (Ki = 0.14 muM) was a more potent inhibitor than 4-chlorocatechol (Ki = 50 muM). The effect of the ion-chelating agents Tiron and o-phenanthrolene were compared with that of 3-chlorocatechol on the inactivation of the enzyme. Each inhibitor appeared to remove iron from the enzyme, since inactive enzyme preparations could be fully reactivated by treatment with ferrous iron and a reducing agent.  相似文献   

2.
A Gram-negative bacterium, designated as strain 12S, was isolated from a heavy metal-polluted soil. According to the biochemical characteristics, FAME analysis, and 16S rRNA gene sequence analysis, the isolated strain was identified as Variovorax sp. 12S. In the presence of 0.1 mM cadmium, 12S was able to completely utilize up to 1.5 mM of phenol as the sole carbon and energy source in an MSM–TRIS medium. Degradation of phenol was accompanied by a slow bacterial growth rate and an extension of the lag phase. The cells grown on phenol showed catechol 2,3-dioxygenase (C23O) activity. The activity of C23O from 12S cultivated in medium with Cd2+ was almost 20 % higher than in the control. Since environmental contamination with aromatic compounds is often accompanied by the presence of heavy metals, Variovorax sp. 12S and its C23O appear to be very powerful and useful tools in the biotreatment of wastewaters and soil decontamination.  相似文献   

3.
Pseudomonas putida (UWC1), containing a genetically-engineered plasmid (pQM899), that encodes for the production of catechol 2,3-dioxygenase (C230), was used as a potential means of rapidly estimating bactericidal activity of chlorhexidine diacetate (CHA), phenol, cetylpyridinium chloride (CPC) and phenylmercuric nitrate (PMN). Enzyme C230 converts catechol to 2-hydroxymuconic semialdehyde (2-HMS), which is yellow in colour, via a meta cleavage pathway. Ideal conditions for production and measurement spectrophotometrically of 2-HMS were determined. However, the correlation between this method and viable plate counts was not sufficiently accurate to enable 2-HMS production to provide a sufficiently sensitive determination of biocidal activity. An alternative method, synchronous scanning fluorimetry, in which the decrease in catechol concentration was measured under standardized conditions, provided a good dose-response histogram for all the biocides tested. Although, in comparison with plate counts, there was an underestimation of the bactericidal effects of phenol an PMN, the results of this study suggest that this method has potential in determining the bactericidal efficacy of agents such as CHA and CPC.  相似文献   

4.
The meta-cleavage operon of the TOL plasmid pWW0 of Pseudomonas putida contains 13 genes responsible for the oxidation of benzoate and toluates to Krebs cycle intermediates via estradiol (meta) cleavage of (methyl)catechol. The functions of all the genes are known with the exception of xylT. We constructed pWW0 mutants defective in the xylT gene, and found that these mutants were not able to grow on p-toluate while they were still capable of growing on benzoate and m-toluate. In the xylT mutants, all the meta-cleavage enzymes were induced by p-toluate with the exception of catechol 2,3-dioxygenase whose activity was 1% of the p-toluate-induced activity in wild-type cells. Addition of 4-methylcatechol to m-toluate-grown wild-type and xylT cells resulted in the inactivation of catechol 2,3-dioxygenase in these cells. In the wild-type strain but not in the xylT mutant, the catechol 2,3-dioxygenase activity was regenerated in a short time. The regeneration of the catechol 2,3-dioxygenase activity was also observed in H2O2-treated wild-type cells, but not in H2O2-treated xylT cells. We concluded that the xylT product is required for the regeneration of catechol 2,3-dioxygenase.  相似文献   

5.
Carbazole is a nitrogen-containing heteroaromatic compound that occurs as a widespread and mutagenic environmental pollutant. The 2'aminobiphenyl-2,3-diol 1,2-dioxygenase involved in carbazole degradation was purified to near electrophoretic homogeneity from Pseudomonas sp. LD2 by a combination of ion-exchange chromatography, ammonium sulfate precipitation, and hydrophobic interaction chromatography. This purification was challenging due to the great instability of the enzyme under many standard conditions. The enzyme was also purified to electrophoretic homogeneity from recombinant Escherichia coli expressing the 2'aminobiphenyl-2,3-diol 1,2-dioxygenase-encoding gene cloned from Pseudomonas sp. LD2. The molecular mass of the native enzyme was determined by gel filtration to be 70 kDa. The subunit molecular masses were determined to be 25 and 8 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that the dioxygenase is an [alpha2beta2] heterotetramer. The optimal temperature and pH for the enzymatic production of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) from 2,3-dihydroxybiphenyl were determined to be 40 degrees C and 8.0, respectively. The maximum observed specific activity on 2,3-dihydroxybiphenyl was 48.1 mmol HOPDA min(-1) mg(-1). This indicated a maximum observed turnover rate of 360,000 molecules HOPDA enz(-1) s(-1). The K'm inhibition constant Ks and Vmax on 2,3 dihydroxybiphenyl were determined to be 5 microM, 37 microM, and 44 mmol min(-1) mg(-1), respectively. These results show that 2'aminobiphenyl-2,3-diol 1,2-dioxygenase is a meta-cleavage enzyme related to the 4,5-protocatechuate dioxygenase family, with comparable purification challenges posed by intrinsic enzyme instability.  相似文献   

6.
The catechol 2,3-dioxygenase (C23O) gene in naphthalene catabolic plasmid pND6-1 of Pseudomonas sp. ND6 was cloned and sequenced. The C23O gene was consisted of 924 nucleotides and encoded a polypeptide of molecular weight 36 kDa containing 307 amino acid residues. The C23O of Pseudomonas sp. ND6 exhibited 93% and 89% identities in amino acid sequence with C23Os encoded by naphthalene catabolic plasmid NAH7 from Pseudomonas putida G7 and the chromosome of Pseudomonas stutzeri AN10 respectively. The Pseudomonas sp. ND6 C23O gene was overexpressed in Escherichia coli DH 5alpha using the lac promoter of pUC18, and its gene product was purified by DEAE-Sephacel and Phenyl-Sepharose CL-4B chromatography. The enzymology experiments indicated that the specific activity and thermostability of C23O from Pseudomonas sp. ND6 were better than those of C23O from Pseudomonas putida G7.  相似文献   

7.
Chen Y-  Liu H  Zhu L-  Jin Y- 《Mikrobiologiia》2004,73(6):802-809
Catechol 2,3-dioxygenase (C23O), one of extradiol-type dioxygenases cleaving the aromatic C-C bond at the meta-position of dihydroxylated aromatic substrates, catalyzes the conversion of catechol to 2-hydroxymuconic semialdehyde. Based on curing experiment, PCR identification, and Southern hybridization, the gene responsible for C23O was localized on a 3.5-kb EcoRI/BamHI fragment and cloned from P. aeruginosa ZD 4-3 able to degrade both single and bicyclic compounds via the meta-cleavage pathway. A complete nucleotide sequence analysis of the C23O revealed that it had one ORF, which showed a strong amino acid sequence similarity to the known C23Os of mesophilic gram-negative bacteria. The alignment analysis indicated that distinct difference existed between the C23O in this study and the 2,3-dihydroxybiphenyl dioxygenases cleaving bicyclic aromatic compounds. The heterogenous expression of the pheB gene in Escherichia coli BL21(DE3) demonstrated that this C23O possessed a meta-cleavage activity.  相似文献   

8.
9.
The iron-sulfur protein of biphenyl 2,3-dioxygenase (ISPBPH) was purified from Pseudomonas sp. strain LB400. The protein is composed of a 1:1 ratio of a large (alpha) subunit with an estimated molecular weight of 53,300 and a small (beta) subunit with an estimated molecular weight of 27,300. The native molecular weight was 209,000, indicating that the protein adopts an alpha 3 beta 3 native conformation. Measurements of iron and acid-labile sulfide gave 2 mol of each per mol of alpha beta heterodimer. The absorbance spectrum showed peaks at 325 and 450 nm with a broad shoulder at 550 nm. The spectrum was bleached upon reduction of the protein with NADPH in the presence of catalytic amounts of ferredoxinBPH and ferredoxinBPH oxidoreductase. The electron paramagnetic resonance spectrum of the reduced protein showed three signals at gx = 1.74, gy = 1.92, and gz = 2.01. These properties are characteristic of proteins that contain a Rieske-type [2Fe-2S] center. Biphenyl was oxidized to cis-(2R,3S)-dihydroxy-1-phenylcyclohexa-4,6-diene by ISPBPH in the presence of ferredoxinBPH, ferredoxinBPH oxidoreductase, NADPH, and ferrous iron. Naphthalene was also oxidized to a cis-dihydrodiol, but only 3% was converted to product under the same conditions that gave 92% oxidation of biphenyl. Benzene, toluene, 2,5-dichlorotoluene, carbazole, and dibenzothiophene were not oxidized. ISPBPH is proposed to be the terminal oxygenase component of biphenyl 2,3-dioxygenase where substrate binding and oxidation occur via addition of molecular oxygen and two reducing equivalents.  相似文献   

10.
Oxidation of biphenyl and nine chlorinated biphenyls (CBs) by the biphenyl 2,3-dioxygenase from Pseudomonas sp. strain LB400 was examined. The purified terminal oxygenase required the addition of partially purified electron transport components, NAD(P)H, and ferrous iron to oxidize biphenyl and CBs. cis-Biphenyl 2,3-dihydrodiol was produced with biphenyl as the substrate. Dihydrodiols were produced from all CBs, and more than one compound was produced with most substrates. Catechols were produced when the dioxygenase-catalyzed reaction occurred at the 2,3 position of a 2-chlorophenyl ring, resulting in dechlorination of the substrate. Oxidation at the 3,4 position of a 2,5-dichlorophenyl ring produced a 3,4-dihydrodiol. Compounds resulting from both types of reaction were produced during oxidation of 2,5,2'-trichlorobiphenyl. The broad substrate specificity and the ability to oxidize at different ring positions suggest that the biphenyl 2,3-dioxygenase is responsible for the wide range of CBs oxidized by Pseudomonas sp. strain LB400.  相似文献   

11.
A shaken thermal gradient device providing temperatures between 8.3 and 33.5° C was used to investigate the effects of silver ion on the duration of the lag phase and on minimum apparent growth temperatures of Hyphomicrobium spp. grown at 29 and 9°C. With 29°C-grown inocula, at lower temperatures, an increased time was required for growth initiation in the presence of silver ion added at 5 ng ml-1. With silver ion added at 10 or 100 ng ml-1, growth initiation was not observed at lower temperatures. With 100 ng ml-1 added silver ion, this effect also was observed with 9°C-grown inocula. This increased sensitivity to silver ion could limit the ability of Hyphomicrobium spp., and possibly other microbes, to initiate growth and to contribute to microbial functioning in silver-impacted low temperature environments.  相似文献   

12.
Catechol 2,3-dioxygenase from the meta-cleavage pathway encoded on the TOL plasmid of Pseudomonas putida (pWWO) was investigated by electron microscopy. Negatively stained samples of the purified catechol 2,3-dioxygenase revealed that the enzyme consists of four subunits arranged in a tetrahedral conformation. Monoclonal antibodies raised against catechol 2,3-dioxygenase showed highly specific reactions and were used to localize the enzyme in Escherichia coli (pAW31) and P. putida (pWWO), using the protein A-gold technique carried out as a post-embedding immunoelectron microscopy procedure. Our in situ labeling studies revealed a cytoplasmic location of the catechol 2,3-dioxygenase in both cell types.Abbreviations C23O Catechol 2,3-dioxygenase - 3MB 3 Methylbenzoate - AK1 Anti-C23O-IgG-antibody - G Gold particle  相似文献   

13.
Abstract In order to characterize the metabolites produced in vivo by biphenyl-2,3-dioxygenase and biphenyl-2,3-dihydrodiol-2,3-dehydrogenase, the first two enzymes of the (polychloro)biphenyl catabolic pathway encoded by the bph locus of Pseudomonas sp. LB400, recombinant E. coli strains expressing the respective genes were constructed. Biphenyl-2,3-dioxygenase attack on 2,2'- or 2,4'-dichlorobiphenyl was shown to give rise to virtually quantitative ortho -dechlorination of these congeners by hydroxylation at the chlorinated carbon 2 and its unsubstituted neighbour. Elimination of hydrochloric acid directly leads to 2,3-dihydroxy-chlorobiphenyls and obviates the need for biphenyl-2,3-dihydrodiol-2,3-dehydrogenase for the catabolism of such congeners.  相似文献   

14.
Phenol- and p-cresol-degrading pseudomonads isolated from phenol-polluted water were analysed by the sequences of a large subunit of multicomponent phenol hydroxylase (LmPH) and catechol 2,3-dioxygenase (C23O), as well as according to the structure of the plasmid-borne pheBA operon encoding catechol 1,2-dioxygenase and single component phenol hydoxylase. Comparison of the carA gene sequences (encodes the small subunit of carbamoylphosphate synthase) between the strains showed species- and biotype-specific phylogenetic grouping. LmPHs and C23Os clustered similarly in P. fluorescens biotype B, whereas in P. mendocina strains strong genetic heterogeneity became evident. P. fluorescens strains from biotypes C and F were shown to possess the pheBA operon, which was also detected in the majority of P. putida biotype B strains which use the ortho pathway for phenol degradation. Six strains forming a separate LmPH cluster were described as the first pseudomonads possessing the Mop type LmPHs. Two strains of this cluster possessed the genes for both single and multicomponent PHs, and two had genetic rearrangements in the pheBA operon leading to the deletion of the pheA gene. Our data suggest that few central routes for the degradation of phenolic compounds may emerge in bacteria as a result of the combination of genetically diverse catabolic genes.  相似文献   

15.
16.
Mucor circinelloides LU M40 and Penicillium aurantiogriseum P 35 produce extracellular β-glycosidases that are active on the cyanogenic glycoside amygdalin. From the culture broths of M. circinelloides, only one β-glycosidase could be identified, while two different enzymes – both having amygdalase activity – were found in culture broths of P. aurantiogriseum. The study of the mechanism of hydrolysis of the β-bis-glycoside amygdalin with purified enzymes from the two organisms indicated a possible sequential (two-step) reaction. In all cases, the first step of hydrolysis from amygdalin to prunasin was very rapid, while the second step from prunasin to cyanohydrin was much slower. No cyanohydrin lyase activity was found in the culture broths of either fungus. Received: 16 May 1997 / Accepted: 11 September 1997  相似文献   

17.
Pseudomonas sp. K82 has been reported to be an aniline-assimilating soil bacterium. However, this strain can use not only aniline as a sole carbon and energy source, but can also utilize benzoate, p-hydroxybenzoate, and aniline analogues. The strain accomplishes this metabolic diversity by using different aerobic pathways. Pseudomonas sp. K82, when cultured in p-hydroxybenzoate, showed extradiol cleavage activity of protocatechuate. In accordance with those findings, our study attempted the purification of protocatechuate 4,5-dioxygenase (PCD 4,5). However the purified PCD 4,5 was found to be very unstable during purification. After Q-sepharose chromatography was performed, the crude enzyme activity was augmented by a factor of approximately 4.7. From the Q-sepharose fraction which exhibited PCD 4,5 activity, two subunits of PCD4,5 (alpha subunit and beta subunit) were identified using the N-terminal amino acid sequences of 15 amino acid residues. These subunits were found to have more than 90% sequence homology with PmdA and PmdB of Comamonas testosteroni. The molecular weight of the native enzyme was estimated to be approximately 54 kDa, suggesting that PCD4,5 exists as a heterodimer (alpha1beta1). PCD 4,5 exhibits stringent substrate specificity for protocatechuate and its optimal activity occurs at pH 9 and 15 degrees C. PCR amplification of these two subunits of PCD4,5 revealed that the alpha subunit and beta subunit occurred in tandem. Our results suggest that Pseudomonas sp. K82 induced PCD 4,5 for the purpose of p-hydroxybenzoate degradation.  相似文献   

18.
Detection of catechol 2,3-dioxygenase genes in aromatic hydrocarbon contaminated environments gives the opportunity to measure the diversity of bacteria involved in the degradation of the contaminants under aerobic conditions. In this study, we investigated the diversity and distribution of Comamonadaceae family (Betaproteobacteria) related catechol 2,3-dioxygenase genes, which belong to the I.2.C subfamily of extradiol dioxygenase genes. These catabolic genes encode enzymes supposed to function under hypoxic conditions as well, and may play a notable role in BTEX degradation in oxygen limited environments. Therefore, their diversity was analyzed in oxygen limited, petroleum hydrocarbon contaminated groundwater by terminal restriction fragment length polymorphism and cloning. Subfamily I.2.C related catechol 2,3-dioxygenase genes were detected in every investigated groundwater sample and a dynamic change was observed in the case of the structure of C23O gene possessing bacterial communities. To link the metabolic capability to the microbial structure, 16S rRNA gene-based clone libraries were generated and it was concluded that Betaproteobacteria were abundant in the bacterial communities of the contaminated samples. These results support the opinion that Betaproteobacteria may play a significant role in BTEX degradation under hypoxic conditions.  相似文献   

19.
Catechol 2,3-dioxygenase encoded by TOL plasmid pWW0 of Pseudomonas putida consists of four identical subunits, each containing one ferrous ion. The enzyme catalyzes ring cleavage of catechol, 3-methylcatechol, and 4-methylcatechol but shows only weak activity toward 4-ethylcatechol. Two mutants of catechol 2,3-dioxygenases (4ECR1 and 4ECR6) able to oxidize 4-ethylcatechol, one mutant (3MCS) which exhibits only weak activity toward 3-methylcatechol but retained the ability to cleave catechol and 4-methylcatechol, and one phenotypic revertant of 3MCS (3MCR) which had regained the ability to oxidize 3-methylcatechol were characterized by determining their Km and partition ratio (the ratio of productive catalysis to suicide catalysis). The amino acid substitutions in the four mutant enzymes were also identified by sequencing their structural genes. Wild-type catechol 2,3-dioxygenase was inactivated during the catalysis of 4-ethylcatechol and thus had a low partition ratio for this substrate, whereas the two mutant enzymes, 4ECR1 and 4ECR6, had higher partition ratios for it. Similarly, mutant enzyme 3MCS had a lower partition ratio for 3-methylcatechol than that of 3MCR. Molecular oxygen was required for the inactivation of the wild-type enzyme by 4-ethylcatechol and of 3MCS by 3-methylcatechol, and the inactivated enzymes could be reactivated by incubation with FeSO4 plus ascorbic acid. The enzyme inactivation is thus most likely mechanism based and occurred principally by oxidation and/or removal of the ferrous ion in the catalytic center. In general, partition ratios for catechols lower than 18,000 did not support bacterial growth. A possible meaning of the critical value of the partition ratio is discussed.  相似文献   

20.
Four strains with high phenanthrene-degrading ability were isolated from petroleum badly polluted soil. The strainPseudomonas sp. ZJF08 demonstrated the highest rate of degradation (138. 1 mg·L?1·day?1) among them and degraded 97.1% of the phenanthrene in one week. The activities of two key enzymes of ZJF08, polycyclic aromatic hydrocarbon dioxygenase and catechol-2,3-oxygenase (C23O), were also assayed during the degradation of phenanthrene. Both of them reached their maximums on the 2nd day of degradation. The C23O gene (C7) ofPseudomonas sp. ZJF08 was cloned and expressed inEscherichia coli, and its gene product was purified by a Ni-NTA-agarose column. The optimum temperature for the purified C23O was 40°C at pH 7.5 and the C23O activity could be still detected when the temperature reached 70°C. The results showed that the C23O fromPseudomonas sp. strain ZJF08 exhibited better thermostability than its homologs reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号