首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Maltosyltransferase (MTase) from the hyperthermophile Thermotoga maritima represents a novel maltodextrin glycosyltransferase acting on starch and malto-oligosaccharides. It catalyzes the transfer of maltosyl units from alpha-1,4-linked glucans or malto-oligosaccharides to other alpha-1,4-linked glucans, malto-oligosaccharides or glucose. It belongs to the glycoside hydrolase family 13, which represents a large group of (beta/alpha)(8) barrel proteins sharing a similar active site structure. The crystal structures of MTase and its complex with maltose have been determined at 2.4 A and 2.1 A resolution, respectively. MTase is a homodimer, each subunit of which consists of four domains, two of which are structurally homologous to those of other family 13 enzymes. The catalytic core domain has the (beta/alpha)(8) barrel fold with the active-site cleft formed at the C-terminal end of the barrel. Substrate binding experiments have led to the location of two distinct maltose-binding sites; one lies in the active-site cleft, covering subsites -2 and -1; the other is located in a pocket adjacent to the active-site cleft. The structure of MTase, together with the conservation of active-site residues among family 13 glycoside hydrolases, are consistent with a common double-displacement catalytic mechanism for this enzyme. Analysis of maltose binding in the active site reveals that the transfer of dextrinyl residues longer than a maltosyl unit is prevented by termination of the active-site cleft after the -2 subsite by the side-chain of Lys151 and the stretch of residues 314-317, providing an explanation for the strict transfer specificity of MTase.  相似文献   

2.
The three-dimensional structure of Aspergillus aculeatus beta-1,4-galactanase (AAGAL), an enzyme involved in pectin degradation, has been determined by multiple isomorphous replacement to 2.3 and 1.8 A resolution at 293 and 100 K, respectively. It represents the first known structure for a polysaccharidase with this specificity and for a member of glycoside hydrolase family 53 (GH-53). The enzyme folds into a (beta/alpha)(8) barrel with the active site cleft located at the C-terminal side of the barrel consistent with the classification of GH-53 in clan GH-A, a superfamily of enzymes with common fold and catalytic machinery but diverse specificities. Putative substrate-enzyme interactions were elucidated by modeling of beta-1,4-linked galactobioses into the possible substrate binding subsites. The structure and modeling studies identified five potential subsites for the binding of galactans, of which one is a pocket suited for accommodating the arabinan side chain in arabinogalactan, one of the natural substrates. A comparison with the substrate binding grooves of other Clan GH-A enzymes suggests that shape complementarity is crucial in determining the specificity of polysaccharidases.  相似文献   

3.
Trehalose (alpha-D-glucopyranosyl-1,1-alpha-D-glucopyranose) is a non-reducing diglucoside found in various organisms that serves as a carbohydrate reserve and as an agent that protects against a variety of physical and chemical stresses. Deinococcus radiodurans possesses an alternative biosynthesis pathway for the synthesis of trehalose from maltooligosaccharides. This reaction is mediated by two enzymes: maltooligosyltrehalose synthase (MTSase) and maltooligosyltrehalose trehalohydrolase (MTHase). Here, we present the 1.1A resolution crystal structure of MTHase. It consists of three major domains: two beta-sheet domains and a conserved glycosidase (beta/alpha)8 barrel catalytic domain. Three subdomains consisting of short insertions were identified within the catalytic domain. Subsequently, structures of MTHase in complex with maltose and trehalose were obtained at 1.2 A and 1.5 A resolution, respectively. These structures reveal the importance of the three inserted subdomains in providing the key residues required for substrate recognition. Trehalose is recognised specifically in the +1 and +2 binding subsites by an extensive hydrogen-bonding network and a strong hydrophobic stacking interaction in between two aromatic residues. Moreover, upon binding to maltose, which mimics the substrate sugar chain, a major concerted conformational change traps the sugar chain in the active site. The presence of magnesium in the active site of the MTHase-maltose complex suggests that MTHase activity may be regulated by divalent cations.  相似文献   

4.
BACKGROUND: Hyaluronic acid (HA) is the most abundant glycosaminoglycan of vertebrate extracellular spaces and is specifically degraded by a beta-1,4 glycosidase. Bee venom hyaluronidase (Hya) shares 30% sequence identity with human hyaluronidases, which are involved in fertilization and the turnover of HA. On the basis of sequence similarity, mammalian enzymes and Hya are assigned to glycosidase family 56 for which no structure has been reported yet. RESULTS: The crystal structure of recombinant (Baculovirus) Hya was determined at 1.6 A resolution. The overall topology resembles a classical (beta/alpha)(8) TIM barrel except that the barrel is composed of only seven strands. A long substrate binding groove extends across the C-terminal end of the barrel. Cocrystallization with a substrate analog revealed the presence of a HA tetramer bound to subsites -4 to -1 and distortion of the -1 sugar. CONCLUSIONS: The structure of the complex strongly suggest an acid-base catalytic mechanism, in which Glu113 acts as the proton donor and the N-acetyl group of the substrate is the nucleophile. The location of the catalytic residues shows striking similarity to bacterial chitinase which also operates via a substrate-assisted mechanism.  相似文献   

5.
Cheng YS  Ko TP  Wu TH  Ma Y  Huang CH  Lai HL  Wang AH  Liu JR  Guo RT 《Proteins》2011,79(4):1193-1204
Cellulases have been used in many applications to treat various carbohydrate-containing materials. Thermotoga maritima cellulase 12A (TmCel12A) belongs to the GH12 family of glycoside hydrolases. It is a β-1,4-endoglucanase that degrades cellulose molecules into smaller fragments, facilitating further utilization of the carbohydrate. Because of its hyperthermophilic nature, the enzyme is especially suitable for industrial applications. Here the crystal structure of TmCel12A was determined by using an active-site mutant E134C and its mercury-containing derivatives. It adopts a β-jellyroll protein fold typical of the GH12-family enzymes, with two curved β-sheets A and B and a central active-site cleft. Structural comparison with other GH12 enzymes shows significant differences, as found in two longer and highly twisted β-strands B8 and B9 and several loops. A unique Loop A3-B3 that contains Arg60 and Tyr61 stabilizes the substrate by hydrogen bonding and stacking, as observed in the complex crystals with cellotetraose and cellobiose. The high-resolution structures allow clear elucidation of the network of interactions between the enzyme and its substrate. The sugar residues bound to the enzyme appear to be more ordered in the -2 and -1 subsites than in the +1, +2 and -3 subsites. In the E134C crystals the bound -1 sugar at the cleavage site consistently show the α-anomeric configuration, implicating an intermediate-like structure.  相似文献   

6.
Thermococcus litoralis 4-alpha-glucanotransferase (TLGT) belongs to glucoside hydrolase family 57 and catalyzes the disproportionation of amylose and the formation of large cyclic alpha-1,4-glucan (cycloamylose) from linear amylose. We determined the crystal structure of TLGT with and without an inhibitor, acarbose. TLGT is composed of two domains: an N-terminal domain (domain I), which contains a (beta/alpha)7 barrel fold, and a C-terminal domain (domain II), which has a twisted beta-sandwich fold. In the structure of TLGT complexed with acarbose, the inhibitor was bound at the cleft within domain I, indicating that domain I is a catalytic domain of TLGT. The acarbose-bound structure also clarified that Glu123 and Asp214 were the catalytic nucleophile and acid/base catalyst, respectively, and revealed the residues involved in substrate binding. It seemed that TLGT produces large cyclic glucans by preventing the production of small cyclic glucans by steric hindrance, which is achieved by three lids protruding into the active site cleft, as well as an extended active site cleft. Interestingly, domain I of TLGT shares some structural features with the catalytic domain of Golgi alpha-mannosidase from Drosophila melanogaster, which belongs to glucoside hydrolase family 38. Furthermore, the catalytic residue of the two enzymes is located in the same position. These observations suggest that families 57 and 38 evolved from a common ancestor.  相似文献   

7.
The nonreducing end of the substrate-binding site of human salivary alpha-amylase contains two residues Trp58 and Trp59, which belong to beta2-alpha2 loop of the catalytic (beta/alpha)(8) barrel. While Trp59 stacks onto the substrate, the exact role of Trp58 is unknown. To investigate its role in enzyme activity the residue Trp58 was mutated to Ala, Leu or Tyr. Kinetic analysis of the wild-type and mutant enzymes was carried out with starch and oligosaccharides as substrates. All three mutants exhibited a reduction in specific activity (150-180-fold lower than the wild type) with starch as substrate. With oligosaccharides as substrates, a reduction in k(cat), an increase in K(m) and distinct differences in the cleavage pattern were observed for the mutants W58A and W58L compared with the wild type. Glucose was the smallest product generated by these two mutants in the hydrolysis oligosaccharides; in contrast, wild-type enzyme generated maltose as the smallest product. The production of glucose by W58L was confirmed from both reducing and nonreducing ends of CNP-labeled oligosaccharide substrates. The mutant W58L exhibited lower binding affinity at subsites -2, -3 and +2 and showed an increase in transglycosylation activity compared with the wild type. The lowered affinity at subsites -2 and -3 due to the mutation was also inferred from the electron density at these subsites in the structure of W58A in complex with acarbose-derived pseudooligosaccharide. Collectively, these results suggest that the residue Trp58 plays a critical role in substrate binding and hydrolytic activity of human salivary alpha-amylase.  相似文献   

8.
The crystal structures of alpha-galactosidase from the mesophilic fungus Trichoderma reesei and its complex with the competitive inhibitor, beta-d-galactose, have been determined at 1.54 A and 2.0 A resolution, respectively. The alpha-galactosidase structure was solved by the quick cryo-soaking method using a single Cs derivative. The refined crystallographic model of the alpha-galactosidase consists of two domains, an N-terminal catalytic domain of the (beta/alpha)8 barrel topology and a C-terminal domain which is formed by an antiparallel beta-structure. The protein contains four N-glycosylation sites located in the catalytic domain. Some of the oligosaccharides were found to participate in inter-domain contacts. The galactose molecule binds to the active site pocket located in the center of the barrel of the catalytic domain. Analysis of the alpha-galactosidase- galactose complex reveals the residues of the active site and offers a structural basis for identification of the putative mechanism of the enzymatic reaction. The structure of the alpha-galactosidase closely resembles those of the glycoside hydrolase family 27. The conservation of two catalytic Asp residues, identified for this family, is consistent with a double-displacement reaction mechanism for the alpha-galactosidase. Modeling of possible substrates into the active site reveals specific hydrogen bonds and hydrophobic interactions that could explain peculiarities of the enzyme kinetics.  相似文献   

9.
The human cartilage glycoprotein-39 (HCgp-39 or YKL40) is expressed by synovial cells and macrophages during inflammation. Its precise physiological role is unknown. However, it has been proposed that HCgp-39 acts as an autoantigen in rheumatoid arthritis, and high expression levels have been associated with cancer development. HCgp-39 shares high sequence homology with family 18 chitinases, and although it binds to chitin it lacks enzymatic activity. The crystal structure of HCgp-39 shows that the protein displays a (beta/alpha)8-barrel fold with an insertion of an alpha + beta domain. A 43-A long carbohydrate-binding cleft is present at the C-terminal side of the beta-strands in the (beta/alpha)8 barrel. Binding of chitin fragments of different lengths identified nine sugar-binding subsites in the groove. Protein-carbohydrate interactions are mainly mediated by stacking of side chains of aromatic amino acid residues. Surprisingly, the specificity of chitin binding to HCgp-39 depends on the length of the oligosaccharide. Although chitin disaccharides tend to occupy the distal subsites, longer chains bind preferably to the central subsites in the groove. Despite the absence of enzymatic activity, long chitin fragments are distorted upon binding, with the GlcNAc at subsite -1 in a boat conformation, similar to what has been observed in chitinases. The presence of chitin in the human body has never been documented so far. However, the binding features observed in the complex structures suggest that either chitin or a closely related oligosaccharide could act as the physiological ligand for HCgp-39.  相似文献   

10.
N-acylamino acid racemase (NAAAR) catalyzes the racemization of N-acylamino acids and can be used in concert with an aminoacylase to produce enantiopure alpha-amino acids, a process that has potential industrial applications. Here we have cloned and characterized an NAAAR homologue from a radiation-resistant ancient bacterium, Deinococcus radiodurans. The expressed NAAAR racemized various substrates at an optimal temperature of 60 degrees C and had Km values of 24.8 mM and 12.3 mM for N-acetyl-D-methionine and N-acetyl-L-methionine, respectively. The crystal structure of NAAAR was solved to 1.3 A resolution using multiwavelength anomalous dispersion (MAD) methods. The structure consists of a homooctamer in which each subunit has an architecture characteristic of enolases with a capping domain and a (beta/alpha)7 beta barrel domain. The NAAAR.Mg2+ and NAAAR.N-acetyl-L-glutamine.Mg2+ structures were also determined, allowing us to define the Lys170-Asp195-Glu220-Asp245-Lys269 framework for catalyzing 1,1-proton exchange of N-acylamino acids. Four subsites enclosing the substrate are identified: catalytic site, metal-binding site, side-chain-binding region, and a flexible lid region. The high conservation of catalytic and metal-binding sites in different enolases reflects the essentiality of a common catalytic platform, allowing these enzymes to robustly abstract alpha-protons of various carboxylate substrates efficiently. The other subsites involved in substrate recognition are less conserved, suggesting that divergent evolution has led to functionally distinct enzymes.  相似文献   

11.
iota-Carrageenans are sulfated 1,3-alpha-1,4-beta-galactans from the cell walls of red algae, which auto-associate into crystalline fibers made of aggregates of double-stranded helices. iota-Carrageenases, which constitute family 82 of glycoside hydrolases, fold into a right-handed beta-helix. Here, the structure of Alteromonas fortis iota-carrageenase bound to iota-carrageenan fragments was solved at 2.0A resolution (PDB 1KTW). The enzyme holds a iota-carrageenan tetrasaccharide (subsites +1 to +4) and a disaccharide (subsites -3, -4), thus providing the first direct determination of a 3D structure of iota-carrageenan. Electrostatic interactions between basic protein residues and the sulfate substituents of the polysaccharide chain dominate iota-carrageenan recognition. Glu245 and Asp247 are the proton donor and the base catalyst, respectively. C-terminal domain A, which was highly flexible in the native enzyme structure, adopts a alpha/beta-fold, also found in DNA/RNA-binding domains. In the substrate-enzyme complex, this polyanion-binding module shifts toward the beta-helix groove, forming a tunnel. Thus, from an open conformation which allows for the initial endo-attack of iota-carrageenan chains, the enzyme switches to a closed-tunnel form, consistent with its highly processive character, as seen from the electron-microscopy analysis of the degradation of iota-carrageenan fibers.  相似文献   

12.
Crystal structures of Bacillus stearothermophilus TRS40 neopullulanase and its complexes with panose, maltotetraose and isopanose were determined at resolutions of 1.9, 2.4, 2.8 and 3.2A, respectively. Since the latter two carbohydrates are substrates of this enzyme, a deactivated mutant at the catalytic residue Glu357-->Gln was used for complex crystallization. The structures were refined at accuracies with r.m.s. deviations of bond lengths and bond angles ranging from 0.005A to 0.008A and 1.3 degrees to 1.4 degrees, respectively. The active enzyme forms a dimer in the crystalline state and in solution. The monomer enzyme is composed of four domains, N, A, B and C, and has a (beta/alpha)(8)-barrel in domain A. The active site lies between domain A and domain N from the other monomer. The results show that dimer formation makes the active-site cleft narrower than those of ordinary alpha-amylases, which may contribute to the unique substrate specificity of this enzyme toward both alpha-1,4 and alpha-1,6-glucosidic linkages. This specificity may be influenced by the subsite structure. Only subsites -1 and -2 are commonly occupied by the product and substrates, suggesting that equivocal recognition occurs at the other subsites, which contributes to the wide substrate specificity of this enzyme.  相似文献   

13.
The crystal structure of beta-amylase from Bacillus cereus var. mycoides was determined by the multiple isomorphous replacement method. The structure was refined to a final R-factor of 0.186 for 102,807 independent reflections with F/sigma(F) > or = 2.0 at 2.2 A resolution with root-mean-square deviations from ideality in bond lengths, and bond angles of 0.014 A and 3.00 degrees, respectively. The asymmetric unit comprises four molecules exhibiting a dimer-of-dimers structure. The enzyme, however, acts as a monomer in solution. The beta-amylase molecule folds into three domains; the first one is the N-terminal catalytic domain with a (beta/alpha)8 barrel, the second one is the excursion part from the first one, and the third one is the C-terminal domain with two almost anti-parallel beta-sheets. The active site cleft, including two putative catalytic residues (Glu172 and Glu367), is located on the carboxyl side of the central beta-sheet in the (beta/alpha)8 barrel, as in most amylases. The active site structure of the enzyme resembles that of soybean beta-amylase with slight differences. One calcium ion is bound per molecule far from the active site. The C-terminal domain has a fold similar to the raw starch binding domains of cyclodextrin glycosyltransferase and glucoamylase.  相似文献   

14.
Sugar beet α-glucosidase (SBG), a member of glycoside hydrolase family 31, shows exceptional long-chain specificity, exhibiting higher kcat/Km values for longer malto-oligosaccharides. However, its amino acid sequence is similar to those of other short chain-specific α-glucosidases. To gain structural insights into the long-chain substrate recognition of SBG, a crystal structure complex with the pseudotetrasaccharide acarbose was determined at 1.7 Å resolution. The active site pocket of SBG is formed by a (β/α)8 barrel domain and a long loop (N-loop) bulging from the N-terminal domain similar to other related enzymes. Two residues (Phe-236 and Asn-237) in the N-loop are important for the long-chain specificity. Kinetic analysis of an Asn-237 mutant enzyme and a previous study of a Phe-236 mutant enzyme demonstrated that these residues create subsites +2 and +3. The structure also indicates that Phe-236 and Asn-237 guide the reducing end of long substrates to subdomain b2, which is an additional element inserted into the (β/α)8 barrel domain. Subdomain b2 of SBG includes Ser-497, which was identified as the residue at subsite +4 by site-directed mutagenesis.  相似文献   

15.
The crystal structure of xylose isomerase [E.C. 5.3.1.5] from Streptomyces olivochromogenes has been determined to 3.0 A resolution. The crystals belong to space group P22(1)2(1) with unit cell parameters a = 98.7, b = 93.9, c = 87.7. The asymmetric unit contains half of a tetrameric molecule of 222 symmetry. The two-fold axis relating the two molecules in the asymmetric unit is close to where a crystallographic two-fold would be if the space group were I222. This causes the diffraction pattern to have strong I222 pseudo-symmetry, so all data were collected in this pseudo-space group. Since the sequence of this enzyme has not been reported, a polyalanine backbone has been fitted to the electron density. Xylose isomerase has two domains: the N-terminal domain is an eight-stranded alpha/beta barrel of 299 residues. The C-terminal domain is a large loop of 50 residues which is involved in intermolecular contacts. Comparison of xylose isomerase with the archetypical alpha/beta barrel protein, triose phosphate isomerase, reveals that the proteins overlap best when the third (alpha beta) strand of xylose isomerase is superimposed on the first (alpha beta) strand of triose phosphate isomerase. This same overlap has also been found between the muconate lactonising enzyme and triose phosphate isomerase [Goldman et al. (1987) J. Mol. Biol., in press].  相似文献   

16.
G Buisson  E Due  R Haser    F Payan 《The EMBO journal》1987,6(13):3909-3916
The crystal structure of porcine pancreatic alpha-amylase (PPA) has been solved at 2.9 A resolution by X-ray crystallographic methods. The enzyme contains three domains. The larger, in the N-terminal part, consists of 330 amino acid residues. This central domain has the typical parallel-stranded alpha-beta barrel structure (alpha beta)8, already found in a number of other enzymes like triose phosphate isomerase and pyruvate kinase. The C-terminal domain forms a distinct globular unit where the chain folds into an eight-stranded antiparallel beta-barrel. The third domain lies between a beta-strand and a alpha-helix of the central domain, in a position similar to those found for domain B in triose phosphate isomerase and pyruvate kinase. It is essentially composed of antiparallel beta-sheets. The active site is located in a cleft within the N-terminal central domain, at the carboxy-end of the beta-strands of the (alpha beta)8 barrel. Binding of various substrate analogues to the enzyme suggests that the amino acid residues involved in the catalytic reaction are a pair of aspartic acids. A number of other residues surround the substrate and seem to participate in its binding via hydrogen bonds and hydrophobic interactions. The 'essential' calcium ion has been located near the active site region and between two domains, each of them providing two calcium ligands. On the basis of sequence comparisons this calcium binding site is suggested to be a common structural feature of all alpha-amylases. It represents a new type of calcium-protein interaction pattern.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The enzyme S-adenosylmethionine:tRNA ribosyltransferase-isomerase (QueA) is involved in the biosynthesis of the hypermodified tRNA nucleoside queuosine. It is unprecedented in nature as it uses the cofactor S-adenosylmethionine as the donor of a ribosyl group. We have determined the crystal structure of Bacillus subtilis QueA at a resolution of 2.9A. The structure reveals two domains representing a 6-stranded beta-barrel and an alpha beta alpha-sandwich, respectively. All amino acid residues invariant in the QueA enzymes of known sequence cluster at the interface of the two domains indicating the localization of the substrate binding region and active center. Comparison of the B. subtilis QueA structure with the structure of QueA from Thermotoga maritima suggests a high domain flexibility of this enzyme.  相似文献   

18.
Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) catalyzes the irreversible carboxylation of phosphoenolpyruvate (PEP) to form oxaloacetate and Pi using Mg2+ or Mn2+ as a cofactor. PEPC plays a key role in photosynthesis by C4 and Crassulacean acid metabolism plants, in addition to its many anaplerotic functions. Recently, three-dimensional structures of PEPC from Escherichia coli and the C4 plant maize (Zea mays) were elucidated by X-ray crystallographic analysis. These structures reveal an overall square arrangement of the four identical subunits, making up a "dimer-of-dimers" and an eight-stranded beta barrel structure. At the C-terminal region of the beta barrel, the Mn2+ and a PEP analog interact with catalytically essential residues, confirmed by site-directed mutagenesis studies. At about 20A from the beta barrel, an allosteric inhibitor (aspartate) was found to be tightly bound to down-regulate the activity of the E. coli enzyme. In the case of maize C4-PEPC, the putative binding site for an allosteric activator (glucose 6-phosphate) was also revealed. Detailed comparison of the various structures of E. coli PEPC in its inactive state with maize PEPC in its active state shows that the relative orientations of the two subunits in the basal "dimer" are different, implicating an allosteric transition. Dynamic movements were observed for several loops due to the binding of either an allosteric inhibitor, a metal cofactor, a PEP analog, or a sulfate anion, indicating the functional significance of these mobile loops in catalysis and regulation. Information derived from these three-dimensional structures, combined with related biochemical studies, has established models for the reaction mechanism and allosteric regulation of this important C-fixing enzyme.  相似文献   

19.
A glucodextranase (iGDase) from Arthrobacter globiformis I42 hydrolyzes alpha-1,6-glucosidic linkages of dextran from the non-reducing end to produce beta-D-glucose via an inverting reaction mechanism and classified into the glycoside hydrolase family 15 (GH15). Here we cloned the iGDase gene and determined the crystal structures of iGDase of the unliganded form and the complex with acarbose at 2.42-A resolution. The structure of iGDase is composed of four domains N, A, B, and C. Domain A forms an (alpha/alpha)(6)-barrel structure and domain N consists of 17 antiparallel beta-strands, and both domains are conserved in bacterial glucoamylases (GAs) and appear to be mainly concerned with catalytic activity. The structure of iGDase complexed with acarbose revealed that the positions and orientations of the residues at subsites -1 and +1 are nearly identical between iGDase and GA; however, the residues corresponding to subsite 3, which form the entrance of the substrate binding pocket, and the position of the open space and constriction of iGDase are different from those of GAs. On the other hand, domains B and C are not found in the bacterial GAs. The primary structure of domain C is homologous with a surface layer homology domain of pullulanases, and the three-dimensional structure of domain C resembles the carbohydrate-binding domain of some glycohydrolases.  相似文献   

20.
Human quinolinate phosphoribosyltransferase (EC 2.4.2.19) (hQPRTase) is a member of the type II phosphoribosyltransferase family involved in the catabolism of quinolinic acid (QA). It catalyses the formation of nicotinic acid mononucleotide from quinolinic acid, which involves a phosphoribosyl transfer reaction followed by decarboxylation. hQPRTase has been implicated in a number of neurological conditions and in order to study it further, we have carried out structural and kinetic studies on recombinant hQPRTase. The structure of the fully active enzyme overexpressed in Escherichia coli was solved using multiwavelength methods to a resolution of 2.0 A. hQPRTase has a alpha/beta barrel fold sharing a similar overall structure with the bacterial QPRTases. The active site of hQPRTase is located at an alpha/beta open sandwich structure that serves as a cup for the alpha/beta barrel of the adjacent subunit with a QA binding site consisting of three arginine residues (R102, R138 and R161) and two lysine residues (K139 and K171). Mutation of these residues affected substrate binding or abolished the enzymatic activity. The kinetics of the human enzyme are different to the bacterial enzymes studied, hQPRTase is inhibited competitively and non-competitively by one of its substrates, 5-phosphoribosylpyrophosphate (PRPP). The human enzyme adopts a hexameric arrangement, which places the active sites in close proximity to each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号