首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Throughout development cell-cell interactions are of pivotal importance. Cells bind to each other or share information via secreted signaling molecules. To a large degree, these processes are modulated by post-translational modifications of membrane proteins. Glycan-chains are frequently added to membrane proteins and assist their exact function at the cell surface. In addition, the glycosylation pathway is required to generate GPI-linkage in the endoplasmatic reticulum. Here, we describe the analysis of the cabrio/mummy gene, which encodes an UDP-N-acetylglucosamine diphosphorylase. This is a well-conserved and central enzyme in the glycosylation pathway. As expected from this central role in glycosylation, cabrio/mummy mutants show many phenotypic traits ranging from CNS fasciculation defects to defects in dorsal closure and eye development. These phenotypes correlate well with specific glycosylation and GPI-anchorage defects in mummy mutants.  相似文献   

2.
3.
Many organs, such as the liver, neural tube, and lung, form by the precise remodeling of flat epithelial sheets into tubes. Here we investigate epithelial tubulogenesis in Drosophila melanogaster by examining the development of the dorsal respiratory appendages of the eggshell. We employ a culture system that permits confocal analysis of stage 10-14 egg chambers. Time-lapse imaging of GFP-Moesin-expressing egg chambers reveals three phases of morphogenesis: tube formation, anterior extension, and paddle maturation. The dorsal-appendage-forming cells, previously thought to represent a single cell fate, consist of two subpopulations, those forming the tube roof and those forming the tube floor. These two cell types exhibit distinct morphological and molecular features. Roof-forming cells constrict apically and express high levels of Broad protein. Floor cells lack Broad, express the rhomboid-lacZ marker, and form the floor by directed cell elongation. We examine the morphogenetic phenotype of the bullwinkle (bwk) mutant and identify defects in both roof and floor formation. Dorsal appendage formation is an excellent system in which cell biological, molecular, and genetic tools facilitate the study of epithelial morphogenesis.  相似文献   

4.
The coordinated migration and fusion of epithelial sheets is a crucial morphogenetic tool used on numerous occasions during the normal development of an embryo and re-activated as part of the wound healing response. Drosophila dorsal closure, whereby a hole in the embryonic epithelium is zipped closed late in embryogenesis, serves as an excellent, genetically tractable model for epithelial migration. Using live confocal imaging, we have dissected multiple roles for the small GTPase Rac in this process. We show that constitutive activation of Rac1 leads to excessive assembly of lamellipodia and precocious halting of epithelial sweeping, possibly through premature activation of contact-inhibition machinery. Conversely, blocking Rac activity, either by loss-of-function mutations or expression of dominant negative Rac1, disables the assembly of both actin cable and protrusions by epithelial cells. Movies of mutant embryos show that continued contraction of the amnioserosa is sufficient to draw the epithelial edges towards one another, allowing the zipper machinery to bypass non-functioning regions of leading edge. In addition to illustrating the key role of Rac in organization of leading edge actin, loss-of-function mutants also provide substantive proof that Rac acts upstream in the Jun N-terminal kinase (JNK) cascade to direct epithelial cell shape changes during dorsal closure.  相似文献   

5.
Morphogenesis of the Drosophila tracheal system relies on different signalling pathways that have distinct roles in specifying both the migration of the tracheal cells and the particular morphological features of the primary branches. The current view is that the tracheal cells are initially specified as an equivalent group of cells whose diversification depends on signals from the surrounding cells. In this work, we show that the tracheal primordia are already specified as distinct dorsal and ventral cell populations. This subdivision depends on the activity of the spalt (sal) gene and occurs prior to the activity of the signalling pathways that dictate the development of the primary branches. Finally, we show that the specification of these two distinct cell populations, which are not defined by cell lineage, are critical for proper tracheal patterning. These results indicate that tracheal patterning depends not only on signalling from surrounding cells but also in the different response of the tracheal cells depending on their allocation to the dorsal or ventral domains.  相似文献   

6.
During epithelial development cells become polarized along their apical-basal axis and some epithelia also exhibit polarity in the plane of the tissue. Mutations in the gene encoding a Drosophila Pak family serine/threonine kinase, dPak, disrupt the follicular epithelium that covers developing egg chambers during oogenesis. The follicular epithelium normally exhibits planar polarized organization of basal F-actin bundles such that they lie perpendicular to the anterior-posterior axis of the egg chamber, and requires contact with the basement membrane for apical-basal polarization. During oogenesis, dPak becomes localized to the basal end of follicle cells and is required for polarized organization of the basal actin cytoskeleton and for epithelial integrity and apical-basal polarity. The receptor protein tyrosine phosphatase Dlar and integrins, all receptors for extracellular matrix proteins, are required for polarization of the basal F-actin bundles, and for correct dPak localization in follicle cells. dpak mutant follicle cells show increased beta(Heavy)-spectrin levels, and we speculate that dPak regulation of beta(Heavy)-spectrin, a known participant in the maintenance of membrane domains, is required for correct apical-basal polarization of the membrane. We propose that dPak mediates communication between the basement membrane and intracellular proteins required for polarization of the basal F-actin and for apical-basal polarity.  相似文献   

7.
Dorsal closure in Drosophila embryogenesis involves expansion of the dorsal epidermis, followed by closure of the opposite epidermal edges. This process is driven by contractile force generated by an extraembryonic epithelium covering the yolk syncytium known as the amnioserosa. The secreted signaling molecule Dpp is expressed in the leading edge of the dorsal epidermis and is essential for dorsal closure. We found that the outermost row of amnioserosa cells (termed pAS) maintains a tight basolateral cell-cell adhesion interface with the leading edge of dorsal epidermis throughout the dorsal closure process. pAS was subject to altered cell motility in response to Dpp emanating from the dorsal epidermis, and this response was essential for dorsal closure. alphaPS3 and betaPS integrin subunits accumulated in the interface between pAS and dorsal epidermis, and were both required for dorsal closure. Looking at alphaPS3, type I Dpp receptor, and JNK mutants, we found that pAS cell motility was altered and pAS and dorsal epidermis adhesion failed under the mechanical stress of dorsal closure, suggesting that a Dpp-mediated mechanism connects the squamous pAS to the columnar dorsal epidermis to form a single coherent epithelial layer.  相似文献   

8.
During Drosophila embryogenesis, timely and orderly asymmetric cell divisions ensure the correct number of each cell type that make up the sensory organs of the larval PNS. We report a role of scraps, Drosophila Anillin, during these divisions. Anillin, a constitutive member of the contractile ring is essential for cytokinesis in Drosophila and vertebrates. During embryogenesis we find that zygotically transcribed scraps is required specifically for the unequal cell divisions, those in which cytokinesis occurs in an “off-centred” manner, of the pIIb and pIIIb neuronal precursor cells, but not the equal cell divisions of the lineage related precursor cells. Complementation and genetic rescue studies demonstrate this effect results from zygotic scraps and leads to polyploidy, ectopic mitosis, and loss of the neuronal precursor daughter cells. The net result of which is the formation of incomplete sense organs and embryonic lethality.  相似文献   

9.
Drosophila parkin, the ortholog of the human parkin gene, responsible for a familiar form of autosomal recessive juvenile parkinsonism, has been shown previously to be involved in Drosophila male fertility. Loss-of-function mutations in the parkin gene cause failure of spermatid individualization by affecting the proper progression of the actin-based investment cones that assemble in the nuclear region, but fail to translocate in synchrony down the cyst. In parkin mutants, the investment cones are scattered along the post-elongated spermatid bundles and fail to act properly in the process of sperm individualization. Using phase-contrast and electron microscopy analysis, we demonstrate that the parkin spermatids assemble a seemingly normal onion-stage nebenkern, but when the axoneme elongates only one mitochondrial derivative unfurls from the nebenkern. This unique mitochondrial derivative undergoes abnormal shaping and condensation during spermatid elongation. Our results indicate that parkin gene function is necessary for mitochondrial morphogenesis during earlier and later phases of spermiogenesis. The failure of cyst individualization may be due to the sensitivity of investment cone movement to the perturbation of mitochondrial morphology during spermatid elongation.  相似文献   

10.
Spindle assembly is essential for the equal distribution of genetic material to the daughter cells during mitosis. The process of spindle assembly is complicated and involves multiple levels of molecular regulation. It is generally accepted that mitotic spindles are emanated from the centrosomes and are assembled in the vicinity of chromosomes. However, the molecular mechanism involved in the spindle assembly during mitosis remains unclear. In this study, we have provided several lines of evidence to show that Drosophila Mars is required for the assembly and stabilization of kinetochore microtubules. In an immunocytochemical study, we show that Mars is mainly localized on the kinetochore microtubules during mitosis. Using RNA interference to deplete the Mars expression in Drosophila S2 cells resulted in the malformation of mitotic spindle that mainly lacked the kinetochore microtubules. The spindle defect resulted in mitotic delays by increasing the percentage of uncongressed chromosomes both in vitro and in vivo. In summary, this study has extended our previous study of Mars in cell cycle regulation and provided further evidence showing that Mars is required for the assembly of kinetochore microtubules.  相似文献   

11.
Epithelial tubes of the correct size and shape are vital for the function of the lungs, kidneys, and vascular system, yet little is known about epithelial tube size regulation. Mutations in the Drosophila gene sinuous have previously been shown to cause tracheal tubes to be elongated and have diameter increases. Our genetic analysis using a sinuous null mutation suggests that sinuous functions in the same pathway as the septate junction genes neurexin and scribble, but that nervana 2, convoluted, varicose, and cystic have functions not shared by sinuous. Our molecular analyses reveal that sinuous encodes a claudin that localizes to septate junctions and is required for septate junction organization and paracellular barrier function. These results provide important evidence that the paracellular barriers formed by arthropod septate junctions and vertebrate tight junctions have a common molecular basis despite their otherwise different molecular compositions, morphologies, and subcellular localizations.  相似文献   

12.
Echinoid (Ed) is a homophilic immunoglobulin domain-containing cell adhesion molecule (CAM) that localizes to adherens junctions (AJs) and cooperates with Drosophila melanogaster epithelial (DE)-cadherin to mediate cell adhesion. Here we show that Ed takes part in many processes of dorsal closure, a morphogenetic movement driven by coordinated cell shape changes and migration of epidermal cells to cover the underlying amnioserosa. Ed is differentially expressed, appearing in epidermis but not in amnioserosa cells. Ed functions independently from the JNK signaling pathway and is required to regulate cell morphology, and for assembly of actomyosin cable, filopodial protrusion and coordinated cell migration in dorsal-most epidermal cells. The effect of Ed on cell morphology requires the presence of the intracellular domain (Edintra). Interestingly, Ed forms homodimers in vivo and Edintra monomer directly associates with unconventional myosin VI/Jaguar (Jar) motor protein. We further show that ed genetically interacts with jar to control cell morphology. It has previously been shown that myosin VI is monomeric in vitro and that its dimeric form can associate with and travel processively along actin filaments. Thus, we propose that Ed mediates the dimerization of myosin VI/Jar in vivo which in turn regulates the reorganization and/or contraction of actin filaments to control changes in cell shape. Consistent with this, we found that ectopic ed expression in the amnioserosa induces myosin VI/Jar-dependent apical constriction of this tissue.  相似文献   

13.
The Rho-kinases are widely utilized downstream targets of the activated Rho GTPase that have been directly implicated in many aspects of Rho-dependent effects on F-actin assembly, acto-myosin contractility, and microtubule stability, and consequently play an essential role in regulating cell shape, migration, polarity, and division. We have determined that the single closely related Drosophila Rho-kinase ortholog, DRok, is required for several aspects of oogenesis, including maintaining the integrity of the oocyte cortex, actin-mediated tethering of nurse cell nuclei, "dumping" of nurse cell contents into the oocyte, establishment of oocyte polarity, and the trafficking of oocyte yolk granules. These defects are associated with abnormalities in DRok-dependent actin dynamics and appear to be mediated by multiple downstream effectors of activated DRok that have previously been implicated in oogenesis. DRok regulates at least one of these targets, the membrane cytoskeletal cross-linker DMoesin, via a direct phosphorylation that is required to promote localization of DMoesin to the oocyte cortex. The collective oogenesis defects associated with DRok deficiency reveal its essential role in multiple aspects of proper oocyte formation and suggest that DRok defines a novel class of oogenesis determinants that function as key regulators of several distinct actin-dependent processes required for proper tissue morphogenesis.  相似文献   

14.
15.
Although synapses are assembled in a highly regulated fashion, synapses once formed are not static structures but continue to expand and retract throughout the life of an organism. One second messenger that has been demonstrated to play a critical role in synaptic growth and function is cAMP. Here, we have tested the idea that signaling through the heterotrimeric G protein, Gs, plays a coincident role with increases in intracellular Ca(+2) in the regulation of adenylyl cyclases (ACs) during synaptic growth and in the function of synapses. In larvae containing a hypomorphic mutation in the dgs gene encoding the Drosophila Gs alpha protein, there is a significant decrease in the number of synaptic boutons and extent of synaptic arborization, as well as defects in the facilitation of synaptic transmission. Microscopic analysis confirmed that Gs alpha is localized at synapses both pre- and postsynaptically. Restricted expression of wild-type Gs alpha either pre- or postsynaptically rescued the mutational defects in bouton formation and defects in the facilitation of synaptic transmission, indicating that pathways activated by Gs alpha are likely to be involved in the reciprocal interactions between pre- and postsynaptic cells required for the development of mature synapses. In addition, this Gs alpha mutation interacted with fasII, dnc, and hyperexcitability mutants in a manner that revealed a coincident role for Gs alpha in the regulation of cAMP and FASII levels required during growth of these synapses. Our results demonstrate that Gs alpha-dependent signaling plays a role in the dynamic cellular reorganization that underlies synaptic growth.  相似文献   

16.
The achaete-scute complex of Drosophila has been the focus of extensive genetic and developmental analysis. Of the four genes at this locus, achaete and scute appear to act redundantly to specify the peripheral nervous system. They share cis-regulatory elements and are co-expressed at the same locations. A mutation removing scute activity has been previously described; it causes a loss of some sensory bristles. Thus, when Scute is absent, the activity of achaete allows formation of the remaining bristles. However, all existing achaete mutants are rearrangements affecting regulatory sequences common to both achaete and scute. To determine the level of redundancy between the two genes, we have used a P element approach to generate a null allele of achaete, which leaves scute and all cis-regulatory elements intact. We find that the peripheral nervous system of achaete null mutant larvae and imagos lacks any detectable phenotype. However, when the levels of Scute are limiting, then some sensory organs are missing in achaete mutant flies. achaete and scute are thought to have arisen from a duplication event about 100 Myr ago. The difference between achaete and scute null flies is surprising and raises the question of the retention of both genes during the course of evolution.  相似文献   

17.
During tracheal development in Drosophila, some branches join to form a continuous luminal network. Specialized cells at the branch tip, called fusion cells, extend filopodia to make contact and become doughnut shaped to allow passage of the lumen. These morphogenetic processes accompany the highly regulated cytoskeletal reorganization of fusion cells. We identified the Drosophila formin3 (form3) gene that encodes a novel formin and plays a role in tracheal fusion. Formins are a family of proteins characterized by highly conserved formin homology (FH) domains. The formin family functions in various actin-based processes, including cytokinesis and cell polarity. During embryogenesis, form3 mRNA is expressed mainly in the tracheal system. In form3 mutant embryos, the tracheal fusion does not occur at some points. This phenotype is rescued by the forced expression of form3 in the trachea. We used live imaging of GFP-moesin during tracheal fusion to show that an F-actin structure that spans the adjoining fusion cells and mediates the luminal connection does not form at abnormal anastomosis sites in form3 mutants. These results suggested that Form3 plays a role in the F-actin assembly, which is essential for cellular rearrangement during tracheal fusion.  相似文献   

18.
We have examined wound healing during regeneration of Drosophila wing imaginal discs fragments by confocal microscopy and assessed the role of components of the JNK pathway in this process. After cutting, columnar and peripodial epithelia cells at the wound edge start to close the wound through formation and contraction of an actin cable. This is followed by a zipping process through filopodial protrusions from both epithelia knitting the wound edges from proximal to distal areas of the disc. Activation of the JNK pathway is involved in such process. puckered (puc) expression is induced in several rows of cells at the edge of the wound, whereas absence of JNK pathway activity brought about by hemipterous, basket, and Dfos mutants impair wound healing. These defects are accompanied by lowered or loss of expression of puc. In support of a role of puc in wound healing, hep mutant phenotypes are rescued by reducing puc function, whereas overexpression of puc inhibits wound healing. Altogether, these results demonstrate a role for the JNK pathway in imaginal disc wound healing, similar to that reported for other healing processes such as embryonic dorsal closure, thoracic closure, and adult epithelial wound healing in Drosophila. Differences with such processes are also highlighted.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号