首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 20S proteasome is made up of four stacked heptameric rings, which in eucaryotes assemble from 14 different but related subunits. The rules governing subunit assembly and placement are not understood. We show that a different kind of proteasome forms in yeast when the Pre9/alpha3 subunit is deleted. Purified pre9Delta proteasomes show a two-fold enrichment for the Pre6/alpha4 subunit, consistent with the presence of an extra copy of Pre6 in each outer ring. Based on disulfide engineering and structure-guided suppressor analyses, Pre6 takes the position normally occupied by Pre9, a substitution that depends on a network of intersubunit salt bridges. When Arabidopsis PAD1/alpha4 is expressed in yeast, it complements not only pre6Delta but also pre6Delta pre9Delta mutants; therefore, the plant alpha4 subunit also can occupy multiple positions in a functional yeast proteasome. Importantly, biogenesis of proteasomes is delayed at an early stage in pre9Delta cells, suggesting an advantage for Pre9 over Pre6 incorporation at the alpha3 position that facilitates correct assembly.  相似文献   

2.
This article describes the synthesis, using combinatorial chemistry, of internally quenched substrates of the trypsin-like subunit of human 20S proteasome. Such substrates were optimized in both the nonprime and prime regions of the peptide chain. Two were selected as the most susceptible for proteasomal proteolysis with excellent kinetic parameters: (i) ABZ-Val-Val-Ser-Arg-Ser-Leu-Gly-Tyr(3-NO2)-NH2 (kcat/KM = 934,000 M−1 s−1) and (ii) ABZ-Val-Val-Ser-GNF-Ala-Met-Gly-Tyr(3-NO2)-NH2 (kcat/KM = 1,980,000 M−1 s−1). Both compounds were efficiently hydrolyzed by the 20S proteasome at picomolar concentrations, demonstrating significant selectivity over other proteasome entities.  相似文献   

3.
Proteasomes are large, multisubunit particles that act as the proteolytic machinery for most of the regulated intracellular protein breakdown in eukaryotic cells. Proteasomes are present in both the nucleus and cytoplasm. When we analyzed the molecular composition of protein constituents of the nuclear matrix preparation of goldfish oocytes by two-dimensional polyacrylamide gel electrophoresis followed by sequence analysis, we found a 26 kDa spot identical in amino acid sequence to the beta6 subunits of the 20S proteasome. No spot of other subunits of 20S proteasome was detected. Here we describe the cloning, sequencing and expression analysis of Carassius auratus, beta6_ca, which encodes one of the proteasome beta subunits from goldfish ovary. From the screening of an ovarian cDNA library, two types of cDNA were obtained, one 941 bp and the other 884 bp long. The deduced amino acid sequences comprise 239 and 238 residues, respectively. These deduced amino acid sequences are highly homologous to those of beta6 subunits of other vertebrates. Immunoblot analysis of nuclear matrix using anti-proteasome antibodies showed only a spot of beta6_ca. These results suggest that the beta6 subunit of the goldfish 20S proteasome, beta6_ca, is responsible for anchoring proteasomes in the nucleus.  相似文献   

4.
Altered proteasome function and subunit composition in aged muscle   总被引:5,自引:0,他引:5  
Myofibrillar protein degradation is mediated through the ubiquitin-proteasome pathway. To investigate if altered proteasome activity plays a role in age-related muscle atrophy, we examined muscle size and proteasome function in young and aged F344BN rats. Significant age-related muscle atrophy was confirmed by the 38% decrease in cross-sectional area of type 1 fibers in soleus muscle. Determination of proteasome function showed hydrolysis of fluorogenic peptides was equivalent between ages. However, when accounting for the 3-fold increase in content of the 20S catalytic core in aged muscle, the lower specific activity suggests a functional loss in individual proteins with aging. Comparing the composition of the catalytic beta-subunits showed an age-related 4-fold increase in the cytokine-inducible subunits, LMP2 and LMP7. Additionally, the content of the activating complexes, PA28 and PA700, relative to the 20S proteasome was reduced 50%. These results suggest significant alterations in the intrinsic activity, the percentage of immunoproteasome, and the regulation of the 20S proteasome by PA28 and PA700 in aged muscle.  相似文献   

5.
6.
7.
Dissecting beta-ring assembly pathway of the mammalian 20S proteasome   总被引:2,自引:0,他引:2  
The 20S proteasome is the catalytic core of the 26S proteasome. It comprises four stacked rings of seven subunits each, alpha(1-7)beta(1-7)beta(1-7)alpha(1-7). Recent studies indicated that proteasome-specific chaperones and beta-subunit appendages assist in the formation of alpha-rings and dimerization of half-proteasomes, but the process involved in the assembly of beta-rings is poorly understood. Here, we clarify the mechanism of beta-ring formation on alpha-rings by characterizing assembly intermediates accumulated in cells depleted of each beta-subunit. Starting from beta2, incorporation of beta-subunits occurs in an orderly manner dependent on the propeptides of beta2 and beta5, and the C-terminal tail of beta2. Unexpectedly, hUmp1, a chaperone functioning at the final assembly step, is incorporated as early as beta2 and is required for the structural integrity of early assembly intermediates. We propose a model in which beta-ring formation is assisted by both intramolecular and extrinsic chaperones, whose roles are partially different between yeast and mammals.  相似文献   

8.
Proteins targeted for degradation by the ubiquitin-proteasome system are degraded by the 26S proteasome. The core of this large protease is the 20S proteasome, a barrel-shaped structure made of a stack of four heptameric rings. Of the 14 different subunits that make up the yeast 20S proteasome, three have proteolytic active sites: Doa3/beta5, Pup1/beta2 and Pre3/beta1. Each of these subunits is synthesized with an N-terminal propeptide that is autocatalytically cleaved during particle assembly. We show here that the propeptides have both common and distinct functions in proteasome biogenesis. Unlike the Doa3 propeptide, which is crucial for proteasome assembly, the Pre3 and Pup1 propeptides are dispensable for cell viability and proteasome formation. However, mutants lacking these propeptide-encoding elements are defective for specific peptidase activities, are more sensitive to environmental stresses and have subtle defects in proteasome assembly. Unexpectedly, a critical function of the propeptide is the protection of the N-terminal catalytic threonine residue against Nalpha-acetylation. For all three propeptide-deleted subunits, activity of the affected catalytic center is fully restored when the Nat1-Ard1 Nalpha-acetyltransferase is mutated. In addition to delineating a novel function for proteasome propeptides, these data provide the first biochemical evidence for the postulated participation of the alpha-amino group in the proteasome catalytic mechanism.  相似文献   

9.
A novel series of non-peptide proteasome inhibitors (PIs) that act on chymotrypsin-like (ChT-L) of the proteasome were developed. These PIs bearing 4-aromatic sulfonyl naphthalene-based scaffold and Leu-boronic moiety as covalent bonding group displayed far better activity than PI-8182 for inhibiting ChT-L in preliminary biological activity test. The results showed that 2a (IC50?=?6.942?μM, MCF-7) and 2c (IC50?=?6.905?μM, MCF-7) displayed higher anti-proliferative activities than Bortezomib (IC50?=?18.37?μM, MCF-7) under our experimental conditions. Furthermore, in the microsomal stability assay, 2a demonstrated excellent metabolic stability profiles with 56% remaining after 40?min, as compared to Bortezomib of which approximately 30% was remaining. The compounds 2a, 2c emerged as promising lead compounds for the development of novel non-peptide boronate PIs.  相似文献   

10.
[目的]探究宿主20S蛋白酶体β5亚基(proteasome 20S subunit beta 5,PSMB5)对革兰氏阴性专性胞内寄生菌立氏立克次体胞内生长繁殖的影响.[方法]利用小干扰RNA转染Vero和THP-1宿主细胞,设置未转染细胞为空白对照组、无义小干扰RNA转染组为阴性对照组、PSMB5特异性小干扰RNA...  相似文献   

11.
20S proteasome biogenesis   总被引:2,自引:0,他引:2  
Krüger E  Kloetzel PM  Enenkel C 《Biochimie》2001,83(3-4):289-293
26S proteasomes are multi-subunit protease complexes responsible for the turnover of short-lived proteins. Proteasomal degradation starts with the autocatalytic maturation of the 20S core particle. Here, we summarize different models of proteasome assembly. 20S proteasomes are assembled as precursor complexes containing alpha and unprocessed beta subunits. The propeptides of the beta subunits are thought to prevent premature conversion of the precursor complexes into matured particles and are needed for efficient beta subunit incorporation. The complex biogenesis is tightly regulated which requires additional components such as the maturation factor Ump1/POMP, an ubiquitous protein in eukaryotic cells. Ump1/POMP is associated with precursor intermediates and degraded upon final maturation. Mammalian proteasomes are localized all over the cell, while yeast proteasomes mainly localize to the nuclear envelope/endoplasmic reticulum (ER) membrane network. The major localization of yeast proteasomes may point to the subcellular place of proteasome biogenesis.  相似文献   

12.
We have succeeded in purifying the 20S core proteasome particle from less than 1 g of skeletal muscle in a rapid process involving two chromatographic steps. The individual subunits were readily resolved by two-dimensional PAGE, and the identities of each of the 14 subunits were assigned by a combination of peptide mass fingerprinting and MS/MS/de novo sequencing. To assess the dynamics of proteasome biogenesis, chicks were fed a diet containing stable isotope-labeled valine, and the rate of incorporation of label into valine-containing peptides derived from each subunit was assessed by mass spectrometric analysis after two-dimensional separation. Peptides containing multiple valine residues from the 20S proteasome and other soluble muscle proteins were analyzed to yield the relative isotope abundance of the precursor pool, a piece of information that is essential for calculation of turnover parameters. The rates of synthesis of each subunit are rather similar, although there is evidence for high turnover subunits in both the alpha (nonproteolytic) and beta (proteolytic) rings. The variability in synthesis rate for the different subunits is consistent with a model in which some subunits are produced in excess, whereas others may be the rate-limiting factor in the concentration of 20S subunits in the cell. The ability to measure turnover rates of proteins on a proteome-wide scale in protein assemblies and in a complex organism provides a new dimension to the understanding of the dynamic proteome.  相似文献   

13.
Beta 2 subunit propeptides influence cooperative proteasome assembly   总被引:1,自引:0,他引:1  
Vertebrate proteasomes are structurally heterogeneous, consisting of both "constitutive" (or "standard") proteasomes and "immunoproteasomes." Constitutive proteasomes contain three ubiquitously expressed catalytic subunits, Delta (beta 1), Z (beta 2), and X (beta 5), whereas immunoproteasomes contain three interferon-gamma-inducible catalytic subunits, LMP2 (beta 1i), MECL (beta 2i), and LMP7 (beta 5i). We recently have demonstrated that proteasome assembly is biased to promote immunoproteasome homogeneity when both types of catalytic subunits are expressed in the same cell. This cooperative assembly is due in part to differences between the LMP7 (beta 5i) and X (beta 5) propeptides. In the current study we demonstrate that differences between the MECL (beta 2i) and Z (beta2) propeptides also influence cooperative assembly. Specifically, replacing the MECL propeptide with that of Z enables MECL incorporation into otherwise constitutive (Delta(+)/X(+)) proteasomes and facilitates X incorporation into otherwise immunoproteasomes (MECL(+)/LMP2(+)). We also show, using MECL(-/-) mice, that LMP2 incorporation does not require MECL, in contrast with previous suggestions that their incorporation is mutually codependent. These results enable us to refine our model for cooperative proteasome assembly by determining which combinations of inducible and constitutive subunits are favored over others, and we propose a mechanism for how propeptides mediate cooperative assembly.  相似文献   

14.
J Oberdorf  E J Carlson  W R Skach 《Biochemistry》2001,40(44):13397-13405
Misfolded proteins in the endoplasmic reticulum (ER) are degraded by N-terminal threonine proteases within the 26S proteasome. Each protease is formed by an activated beta subunit, beta5/X, beta1/Y, or beta2/Z, that exhibits chymotrypsin-like, peptidylglutamyl-peptide hydrolyzing, or trypsin-like activity, respectively. Little is known about the relative contribution of specific beta subunits in the degradation of endogenous protein substrates. Using active site proteasome inhibitors and a reconstituted degradation system, we now show that all three active beta subunits can independently contribute to ER-associated degradation of the cystic fibrosis transmembrane conductance regulator (CFTR). Complete inactivation (>99.5%) of the beta5/X subunit decreased the rate of ATP-dependent conversion of CFTR to trichloroacetic acid soluble fragments by only 40%. Similarly, proteasomes containing only active beta1/Y or beta2/Z subunits degraded CFTR at approximately 50% of the rate observed for fully functional proteasomes. Simultaneous inhibition (>93%) of all three beta subunits blocked CFTR degradation by approximately 90%, and inhibition of both protease and ATPase activities was required to completely prevent generation of small peptide fragments. Our results demonstrate both a conserved hierarchy (ChT-L > PGPH > or = T-L) as well as a redundancy of beta subunit function and provide insight into the mechanism by which active site proteasome inhibitors influence degradation of endogenous protein substrates at the ER membrane.  相似文献   

15.
16.
The small subunit (SSU) of the ribosome of E. coli consists of a core of ribosomal RNA (rRNA) surrounded peripherally by ribosomal proteins (r-proteins). Ten of the 15 universally conserved SSU r-proteins possess nonglobular regions called extensions. The N-terminal noncanonically structured extension of S12 traverses from the solvent to intersubunit surface of the SSU and is followed by a more C-terminal globular region that is adjacent to the decoding center of the SSU. The role of the globular region in maintaining translational fidelity is well characterized, but a role for the S12 extension in SSU structure and function is unknown. We examined the effect of stepwise truncation of the extension of S12 in SSU assembly and function in vitro and in vivo. Examination of in vitro assembly in the presence of sequential N-terminal truncated variants of S12 reveals that N-terminal deletions of greater than nine amino acids exhibit decreased tRNA-binding activity and altered 16S rRNA architecture particularly in the platform of the SSU. While wild-type S12 expressed from a plasmid can rescue a genomic deletion of the essential gene for S12, rpsl; N-terminal deletions of S12 exhibit deleterious phenotypic consequences. Partial N-terminal deletions of S12 are slow growing and cold sensitive. Strains bearing these truncations as the sole copy of S12 have increased levels of free SSUs and immature 16S rRNA as compared with the wild-type S12. These differences are hallmarks of SSU biogenesis defects, indicating that the extension of S12 plays an important role in SSU assembly.  相似文献   

17.
Early development of the urodele amphibian Pleurodeles waltl is accompanied by a process of progressive fibronectin (FN) fibrillogenesis. FN begins to assemble into fibrils on the inner surface of the blastocoele roof at the early blastula stage and progressively forms a complex extracellular matrix. We have analyzed the mechanisms of FN-fibril formation under normal and experimental conditions in vivo with the following probes: iodinated FN, fluorescein-labeled FN, synthetic peptides containing the Arg-Gly-Asp (RGD) cell surface recognition sequence of FN, and polyclonal antibodies against both beta 1 subunit of the amphibian FN receptor and the cytoplasmic domain of beta 1 subunit. We report that in living embryos, exogenous labeled mammalian FN injected into the amphibian blastocoele undergoes FN-fibril formation in spatiotemporal patterns similar to those of endogenous FN. This indicates regulation of fibrillogenesis by the cell surface rather than by changes in the type of FN. Fibrillogenesis is inhibited in a dose-dependent manner both by the GRGDS peptide and monospecific antibodies to amphibian integrin beta 1 subunit. Furthermore, when injected intracellularly into uncleaved embryos or into selected blastomeres, antibodies to the cytoplasmic domain of integrin beta 1 subunit produce a reversible inhibition of FN-fibril formation that follows early cell lineages and cause delays in development. Together, these data indicate that in vivo, the integrin beta 1 subunit and the RGD recognition signal are essential for the proper assembly of FN fibrils in early amphibian development.  相似文献   

18.
The presence of a high-Km hexokinase activity was tested in both dog and boar spermatozoa. Hexokinase kinetics from dog extracts showed the presence of a specific activity (dog-sperm glucokinase-like protein, DSGLP), in the range of glucose concentrations of 4–10 mM, whereas boar sperm did not show any DSGLP activity. Furthermore, dog-sperm cells, but not those of boar, showed the presence of a protein which specifically reacted against a rat-liver anti-glucokinase antibody. This protein also had a molecular weight equal to that observed in rat-liver extracts, suggesting a close similarity between both the proteins. This glucokinase-like protein was distributed in the peri- and post-acrosomal zones of the head, and the midpiece and principal piece of tail of dog spermatozoa. These results indicate that dog spermatozoa have functional high-Km hexokinase activity, which could contribute to a very fine regulation of their hexose metabolism. This strict regulation could ultimately be very important in optimizing dog-sperm function along its life-time.  相似文献   

19.
Proteasomes are responsible for most intracellular protein degradation in eukaryotes. The 20S proteasome comprises a dyad-symmetric stack of four heptameric rings made from 14 distinct subunits. How it assembles is not understood. Most subunits in the central pair of beta-subunit rings are synthesized in precursor form. Normally, the beta5 (Doa3) propeptide is essential for yeast proteasome biogenesis, but overproduction of beta7 (Pre4) bypasses this requirement. Bypass depends on a unique beta7 extension, which contacts the opposing beta ring. The resulting proteasomes appear normal but assemble inefficiently, facilitating identification of assembly intermediates. Assembly occurs stepwise into precursor dimers, and intermediates contain the Ump1 assembly factor and a novel complex, Pba1-Pba2. beta7 incorporation occurs late and is closely linked to the association of two half-proteasomes. We propose that dimerization is normally driven by the beta5 propeptide, an intramolecular chaperone, but beta7 addition overcomes an Ump1-dependent assembly checkpoint and stabilizes the precursor dimer.  相似文献   

20.
The proteasome is a cellular protease responsible for the selective degradation of the majority of the intracellular proteome. It recognizes, unfolds, and cleaves proteins that are destined for removal, usually by prior attachment to polymers of ubiquitin. This macromolecular machine is composed of two subcomplexes, the 19S regulatory particle (RP) and the 20S core particle (CP), which together contain at least 33 different and precisely positioned subunits. How these subunits assemble into functional complexes is an area of active exploration. Here we describe the current status of studies on the assembly of the 20S proteasome (CP). The 28-subunit CP is found in all three domains of life and its cylindrical stack of four heptameric rings is well conserved. Though several CP subunits possess self-assembly properties, a consistent theme in recent years has been the need for dedicated assembly chaperones that promote on-pathway assembly. To date, a minimum of three accessory factors have been implicated in aiding the construction of the 20S proteasome. These chaperones interact with different assembling proteasomal precursors and usher subunits into specific slots in the growing structure. This review will focus largely on chaperone-dependent CP assembly and its regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号