首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carboxypeptidase Y (CPY) has been used as a maker enzyme for investigations on intracellular transport of vacuolar proteins and on vacuolar biogenesis in Saccharomyces cerevisiae. We describe the cloning and characterization of the CPY homologue encoding gene (cpyA) from the filamentous fungus Aspergillus nidulans. The cpyA gene has one intron and encodes a protein with 552 amino acids containing a putative signal sequence and pro-sequence. The predicted CpyA protein is highly similar in sequence with carboxypeptidases from several yeast species and contains a catalytic triad (Asp-His-Ser) like that of serine carboxypeptidase. The cpyA disruptant cells showed reduced levels of intracellular carboxypeptidase. These results suggest that the cpyA gene encodes a vacuolar carboxypeptidase in A. nidulans.  相似文献   

2.
Cloning and characterization of the aldA gene of Aspergillus nidulans   总被引:13,自引:0,他引:13  
We have cloned and sequenced the aldA (encoding aldehyde dehydrogenase) gene of Aspergillus nidulans. The gene contains two introns which are similar in size and structure to other fungal introns. The amino acid sequence of aldehyde dehydrogenase (497 residues) shows a significant level of homology with analogous sequences in other organisms. Comparison of the primary structure of the active sites of the mammalian cytosolic and mitochondrial enzymes shows that the Aspergillus enzyme closely resembles the mammalian mitochondrial enzyme. Analysis of the 5' non-coding region of the aldA gene shows a TATA-like sequence located 90 bp upstream from the initiation codon. Two messenger-RNA start points are located 36 and 42 bp upstream from the start codon.  相似文献   

3.
4.
Cloning an Aspergillus nidulans developmental gene by transformation.   总被引:22,自引:4,他引:18       下载免费PDF全文
We have developed a transformation system for Aspergillus nidulans giving a frequency of transformation high enough to screen a gene bank from which we were able to isolate and clone the A. nidulans developmental gene brlA by visual selection. The vector contains the selective marker argB+, and with it a frequency of transformation of 500 stable transformants/micrograms plasmid DNA can regularly be achieved. The evidence suggests that transformation is by integration but spontaneous excision of integrated plasmids is apparently frequent enough to allow the recovery of transforming plasmids in Escherichia coli.  相似文献   

5.
6.
7.
We synthesized a DNA probe specific for the gene encoding eucaryotic DNA topoisomerase I by the polymerase chain reaction. The sequences of the primers for this reaction were deduced from the regions with extensive homology among the enzymes from the fission and budding yeasts, and the human. From the clones isolated by screening a Drosophila cDNA library with this DNA probe, two cDNA clones of 3.8 and 5.2 kb were characterized and completely sequenced. Both cDNA sequences contain an identical open reading frame for 972 amino acid residues. The 3.8 kb messenger RNA is likely generated by using a polyadenylation site 5' upstream to that used in generating the 5.2 kb mRNA. The predicted amino acid sequence shows that a segment of 420 amino acid residues at the amino terminus is hydrophilic, similar to the amino terminal 200 residues in the yeast and human enzymes. Furthermore, the Drosophila enzyme is unique in that the amino terminal 200 residues are enriched in serine and histidine residues; most of them are present in clusters. The rest of the Drosophila sequence is highly homologous to those from yeast and human enzymes. The evolutionarily conserved residues are identified and are likely the critical elements for the structure and function of this enzyme. A plasmid vector containing the cloned cDNA was constructed for the expression of Drosophila protein in Escherichia coli. The enzymatic and immunochemical analysis of the polypeptide produced in this heterologous expression system demonstrated that the expressed protein shares similar enzymatic properties and antigenic epitopes with DNA topoisomerase I purified from Drosophila embryos or tissue culture cells, thus establishing the bacterial expression system being useful for the future structure/function analysis of the Drosophila enzyme.  相似文献   

8.
9.
Tarutani Y  Ohsumi K  Arioka M  Nakajima H  Kitamoto K 《Gene》2001,268(1-2):23-30
In Saccharomyces cerevisiae, vacuoles play very important roles in pH and osmotic regulation, protein degradation and storage of amino acids, small ions as well as polyphosphates. In filamentous fungi, however, little is known about vacuolar functions at a molecular level. In this paper, we report the isolation of the vpsA gene from the filamentous fungus Aspergillus nidulans as a homologue of the VPS1 gene of S. cerevisiae which encodes a dynamin-related protein. The vpsA gene encodes a polypeptide consisting of 696 amino acids that is nearly 60% homologous to the S. cerevisiae Vps1. Similar to Vps1, VpsA contains a highly conserved tripartite GTPase domain but lacks the pleckstrin homology domain and proline-rich region. The vpsA disruptant shows poor growth and contains highly fragmented vacuoles. These results suggest that A. nidulans VpsA functions in the vacuolar biogenesis.  相似文献   

10.
11.
We isolated a beta-N-acetylglucosaminidase encoding gene and its cDNA from the filamentous fungus Aspergillus nidulans, and designated it nagA. The nagA gene contained no intron and encoded a polypeptide of 603 amino acids with a putative 19-amino acid signal sequence. The deduced amino acid sequence was very similar to the sequence of Candida albicans Hex1 and Trichoderma harzianum Nag1. Yeast cells containing the nagA cDNA under the control of the GAL1 promoter expressed beta-N-acetylglucosaminidase activity. The chromosomal nagA gene of A. nidulans was disrupted by replacement with the argB marker gene. The disruptant strains expressed low levels of beta-N-acetylglucosaminidase activity and showed poor growth on a medium containing chitobiose as a carbon source. Aspergillus oryzae strain carrying the nagA gene under the control of the improved glaA promoter produced large amounts of beta-N-acetylglucosaminidase in a wheat bran solid culture.  相似文献   

12.
13.
The cytochrome c gene (cycA) of the filamentous fungus Aspergillus nidulans has been isolated and sequenced. The gene is present in a single copy per haploid genome and encodes a polypeptide of 112 amino acid residues. The nucleotide sequence of the A. nidulans cycA gene shows 87% identity to the DNA sequence of the Neurospora crassa cytochrome c gene, and approximately 72% identity to the sequence of the Saccharomyces cerevisiae iso-1-cytochrome c gene (CYC1). The S. cerevisiae CYC1 gene was used as a heterologous probe to isolate the homologous gene in A. nidulans. The A. nidulans cytochrome c sequence contains two small introns. One of these is highly conserved in terms of position, but the other has not been reported in any of the cytochrome c genes so far sequenced. Expression of the cycA gene is not affected by glucose repression, but has been shown to be induced approximatly tenfold in the presence of oxygen and three- to fourfold under heatshock conditions.  相似文献   

14.
Sexual development in Aspergillus nidulans is a morphogenetic differentiation process triggered by internal and environmental signals. As a first step in analyzing the developmental pathway at the molecular level, laccase II (EC 1.10.3.2), which is specifically expressed in early stages of fruitbodies, was isolated. The enzyme was purified to apparent homogeneity from a mutant strain (SMS1) in which the sexual cycle dominates and the number of cleistothecia is increased tenfold. Laccase II was enriched 560-fold to a specific activity of 892 U (mg protein)–1. The apparent molecular mass was determined to be 80 kDa under denaturing conditions and to be 100–120 kDa under native conditions. The internal peptide sequences gained from the protein will allow the isolation of the corresponding gene as a first step in determining the key regulators of sexual development. Received: 8 January 1998 / Accepted: 14 April 1998  相似文献   

15.
The enzyme oxaloacetate hydrolase (EC 3.7.1.1), which is involved in oxalate formation, was purified from Aspergillus niger. The native enzyme has a molecular mass of 360–440 kDa, and the denatured enzyme has a molecular mass of 39 kDa, as determined by gel electrophoresis. Enzyme activity is maximal at pH 7.0 and 45 °C. The fraction containing the enzyme activity contained at least five proteins. The N-terminal amino acid sequences of four of these proteins were determined. The amino acid sequences were aligned with EST sequences from A. niger, and an EST sequence that showed 100% identity to all four sequences was identified. Using this EST sequence the gene encoding oxaloacetate hydrolase (oah) was cloned by inverse PCR. It consists of an ORF of 1227 bp with two introns of 92 and 112 bp, respectively. The gene encodes a protein of 341 amino acids with a molecular mass of 37 kDa. Under the growth conditions tested, the highest oah expression was found for growth on acetate as carbon source. The gene was expressed only at pH values higher than 4.0. Received: 9 May 1999 / Accepted: 30 November 1999  相似文献   

16.
17.
A partial cDNA encoding Aspergillus nidulans calmodulin-dependent multifunctional protein kinase (ACMPK) was isolated from a lambda ZAP expression library by immunoselection using monospecific polyclonal antibodies to the enzyme. The sequence of both strands of the cDNA (CMKa) was determined. The deduced amino acid (aa) sequence contained all eleven consensus domains found in serine/threonine protein kinases [Hanks et al., Science 241 (1988) 42-52], as well as a putative calmodulin-binding domain. The cDNA contained an intron, lacked an in-frame start codon, and was not polyadenylated. A full-length copy of CMKa was subsequently isolated from a lambda gt10 library of A. nidulans cDNA using a restriction fragment of the first clone as a probe. It contained an in-frame start codon, an open reading frame (ORF) of 1242 bp and was polyadenylated. The ORF encoded a protein of 414 aa residues with an M(r) of 46,895 and an isoelectric point pI = 6.4. These values are in good agreement with that observed for the native enzyme [Bartelt et al., Proc. Natl. Acad. Sci. USA 85 (1988) 3279-3283]. When aligned to optimize homology, 29% of the predicted aa sequence of ACMPK is identical to that of the alpha-subunit of rat brain calmodulin-dependent protein kinase II. ACMPK shares 40 and 44% identity in aa sequence with YCMK1 and YCMK2, respectively, two Ca2+/calmodulin-dependent protein kinases recently cloned from Saccharomyces cerevisiae [Pausch et al., EMBO J. 10 (1991) 1511-1522]. Results of Southern analysis of restriction digests of genomic DNA indicate that ACMPK is encoded by a single-copy gene.  相似文献   

18.
19.
Aspergillus nidulans conidiospores contain high levels of the non-reducing disaccharide trehalose. We show that upon induction of conidiospore germination, the trehalose pool is rapidly degraded and a glycerol pool is transiently accumulated. A trehalase with an acidic pH optimum was purified from conidiospores. Characterization of the treA gene encoding this trehalase shows that it is homologous to Saccharomyces cerevisiae vacuolar acid trehalase, the product of the ATH1 gene, and to two related proteins of unknown function identified in Mycobacterium tuberculosis and Mycobacterium leprae . A. nidulans mutants that lack acid trehalase activity were constructed by gene replacement at the treA locus. Analysis of these mutants suggests that the treA gene product is localized in the conidiospore wall, is required for growth on trehalose as a carbon source, and is not involved in the mobilization of the intracellular pool of trehalose. Therefore, it is proposed that a cytoplasmic regulatory trehalase is controlling this latter process.  相似文献   

20.
The sequencing of Aspergillus genomes has revealed that the products of a large number of secondary metabolism pathways have not yet been identified. This is probably because many secondary metabolite gene clusters are not expressed under normal laboratory culture conditions. It is, therefore, important to discover conditions or regulatory factors that can induce the expression of these genes. We report that the deletion of sumO, the gene that encodes the small ubiquitin-like protein SUMO in A. nidulans, caused a dramatic increase in the production of the secondary metabolite asperthecin and a decrease in the synthesis of austinol/dehydroaustinol and sterigmatocystin. The overproduction of asperthecin in the sumO deletion mutant has allowed us, through a series of targeted deletions, to identify the genes required for asperthecin synthesis. The asperthecin biosynthesis genes are clustered and include genes encoding an iterative type I polyketide synthase, a hydrolase, and a monooxygenase. The identification of these genes allows us to propose a biosynthetic pathway for asperthecin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号