首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The ref(2)P gene of Drosophila melanogaster interferes with sigma rhabdovirus multiplication. This gene is highly variable, and the different alleles are considered permissive or restrictive according to their effects on virus replication. In all cases, the mechanisms involve intracellular interactions between the sigma virus and Ref(2)P proteins. We showed that the N-terminal domain of the Ref(2)P protein was required for its activity in vivo. The protein was inactive in the null p(od)2 mutant when its first 82 amino acids were deleted. The p delta n gene was constructed so that the first 91 amino acids coded for by the restrictive alleles could be expressed in vivo. It was active in a transformed line. This sequence was sufficient to impart a restrictive phenotype to an adult D. melanogaster fly after it was injected with the virus. However, the truncated protein expressed by p delta n did not have an effect on the hereditary transmission of the sigma virus to the offspring of the infected flies, even though it contained the restriction site. The native Ref(2)P protein has been previously shown to have conformation-dependent epitopes common with some of those of the viral N protein. We demonstrated the following. (i) These epitopes were found in a domain of the Ref(2)P protein distinct from the site involved in restriction. (ii) They were modified in the N protein of the haP7 sigma virus mutant selected as being adapted to the restrictive alleles of the ref(2)P gene; only one mutation in the N gene, leading to an amino acid substitution, distinguished the haP7 mutant from the original virus. (iii) The virus strains partially or totally adapted to the effects of the full restrictive protein expressed by pp were always found to multiply to a lesser extent in the presence of the protein expressed by p delta n. These data suggest that two distinct domains of the Ref(2)P protein are involved in the control of sigma virus multiplication.  相似文献   

2.
Different characteristics of flies relating to sigma virus allow us to class the following drosophila genotypes according to their permissivity for the virus strains which are sensitive to the Pp allele: (formula: see text). It is concluded 1) that the two alleles Po and Pp of ref(2)P gene are active and 2) that the viral protein which interact with the product of ref(2)P is effective, or effectively transformed, without interaction with the product of ref(2)P. The delayed appearance of CO2 sensitivity symptom in flies which are issued from stabilized maternal lines, while they are immune to a superinfection non Pp sensitive virus, leads us to believe that ref(2)P is active not only on a function necessary to viral genome replication, as assumed by preceding workers, but also on a function necessary to maturation for the viral strain which was used.  相似文献   

3.
What selective processes underlie the evolution of parasites and their hosts? Arms-race models propose that new host-resistance mutations or parasite counter-adaptations arise and sweep to fixation. Frequency-dependent models propose that selection favours pathogens adapted to the most common host genotypes, conferring an advantage to rare host genotypes. Distinguishing between these models is empirically difficult. The maintenance of disease-resistance polymorphisms has been studied in detail in plants, but less so in animals, and rarely in natural populations. We have made a detailed study of genetic variation in host resistance in a natural animal population, Drosophila melanogaster, and its natural pathogen, the sigma virus. We confirm previous findings that a single (albeit complex) mutation in the gene ref(2)P confers resistance against sigma and show that this mutation has increased in frequency under positive selection. Previous studies suggested that ref(2)P polymorphism reflects the progress of a very recent selective sweep, and that in Europe during the 1980s, this was followed by a sweep of a sigma virus strain able to infect flies carrying this mutation. We find that the ref(2)P resistance mutation is considerably older than the recent spread of this viral strain and suggest that—possibly because it is recessive—the initial spread of the resistance mutation was very slow.  相似文献   

4.
Summary Distinction between Drosophila strains, differing their capacity for supporting multiplication of sigma virus, arises essentially from comparison of the incubation time after inoculation of a viral suspension. This is the most general and the most useful characteristic. By this mean five allelic differences with the reference Drosophila strain Oregon have been found. Corresponding genes, ref(1)H, ref(2)M, ref(2)P, ref(3)O and ref(3)D are located all over Drosophila chromosomes. The specific spectra of viral strains sensitive to the one or the other allele was determined for each gene.Some characteristic properties of flies in which the virus has been brought by injection or heredity were compared between heterozygotes and homozygotes for the permissive and for the non permissive allele:time of incubation as a function of the size of the inoculum,probability of initiating infection,kinetics of the virus multiplication in inoculated fly,efficiency of a viral genome brought by a spermatozoa in infecting an egg,perpetuation of the carrier state of sigma virus in germ line cells of stabilized females or males and in somatic cells.The properties concerning the perpetuation of sigma virus carrier state allow to distinguish two classes of viral functions in which the considered ref gene product can intervene: 1) functions necessary for viral genome replication and, of course, for perpetuation of carrier state, 2) other functions, (late functions — necessary for maturation - and functions necessary for cell penetration of inoculated virus).Homozygotes for each of the two alleles of a gene which acts on incubation time can show no difference in one property which is specific of a differenciated cell type only because the considered gene is not expressed in the cell type involved. Conversely genes can exist which act on such a property and which have no action on incubation time. Probably such a gene has been discovered; it intervenes in the transmission of sigma virus by stabilized males; this gene is named ref(3)V.Discussion of all the properties of flies homozygotes for each allele permits us to conclude that ref(1)H, ref(2)M, ref(2)P, ref(3)D and possibly ref(3)V genes (if this last gene intervenes directly in sigma's physiology) are involved in a function necessary for replication. No conclusive evidence has been found for ref(3)O, still it seems to intervene in a late function. Problems of functional interactions between products of the first five ref genes have been mentioned.  相似文献   

5.
Bangham J  Kim KW  Webster CL  Jiggins FM 《Genetics》2008,178(4):2191-2199
In natural populations, genetic variation affects resistance to disease. Knowing how much variation exists, and understanding the genetic architecture of this variation, is important for medicine, for agriculture, and for understanding evolutionary processes. To investigate the extent and nature of genetic variation affecting resistance to pathogens, we are studying a tractable model system: Drosophila melanogaster and its natural pathogen the vertically transmitted sigma virus. We show that considerable genetic variation affects transmission of the virus from parent to offspring. However, maternal and paternal transmission of the virus is affected by different genes. Maternal transmission is a simple Mendelian trait: most of the genetic variation is explained by a polymorphism in ref(2)P, a gene already well known to affect resistance to sigma. In contrast, there is considerable genetic variation in paternal transmission that cannot be explained by ref(2)P and is caused by other loci on chromosome 2. Furthermore, we found no genetic correlation between paternal transmission of the virus and resistance to infection by the sigma virus following injection. This suggests that different loci affect viral replication and paternal transmission.  相似文献   

6.
The paramyxovirus simian virus 5 (SV5) establishes highly productive persistent infections of epithelial cells without inducing a global inhibition of translation. Here we show that an SV5 mutant (the P/V-CPI mutant) with substitutions in the P subunit of the viral polymerase and the accessory V protein also establishes highly productive infections like wild-type (WT) SV5 but that cells infected with the P/V-CPI mutant show an overall shutdown of both host and viral translation at late times postinfection. Reduced host and viral protein synthesis with the P/V-CPI virus was not due to lower levels of mRNA or caspase-dependent apoptosis and correlated with phosphorylation of the translation initiation factor eIF-2α. WT SV5 was a poor activator of the eIF-2α kinase protein kinase R (PKR). By contrast, the P/V-CPI mutant induced PKR phosphorylation, which correlated with the time course of translation inhibition but was independent of interferon signaling. In HeLa cells that expressed the PKR inhibitor influenza A virus NS1 or reovirus sigma3, the rate of host protein synthesis at late times after infection with the P/V-CPI mutant was restored to ~50% that of control HeLa cells. By contrast, the rates of P/V-CPI viral protein synthesis in HeLa cells expressing NS1 or sigma3 were dramatically enhanced, between 5- and 20-fold, while levels of viral mRNA were increased only slightly (NS1-expressing cells) or remained constant (sigma3-expressing cells). Similar results were found using HeLa cells where PKR levels were reduced due to knockdown by small interfering RNA. Expression of either the WT P or the WT V protein from the genome of the P/V-CPI mutant resulted in lower levels of PKR activation and rates of host and viral protein synthesis that closely matched those seen with WT SV5. Despite higher rates of translation, cells infected with the V- or P-complemented virus accumulated viral mRNAs to lower levels than that seen with the parental P/V-CPI mutant. We present a model in which the paramyxovirus P/V gene products limit induction of PKR by limiting the synthesis of aberrant viral mRNAs and double-stranded RNA and thus prevent the shutdown of translation by a mechanism that differs from that of other PKR inhibitors such as NS1 and sigma3.  相似文献   

7.
J S Maa  M Esteban 《Journal of virology》1987,61(12):3910-3919
Little is known about the nature of poxvirus proteins involved in the host immune response. Screening a lambda gt11 expression library of genomic rabbit poxvirus DNA with hyperimmune rabbit anti-vaccinia virus serum and selection of monospecific antibodies identified a highly antigenic viral protein of about 39,000 molecular weight (39K protein). The same-size protein of vaccinia virus was also identified with a monoclonal antibody (MAb B6) obtained from hybridomas generated after fusion of hyperimmunized mouse spleen cells with mouse myeloma cells. Structural analysis revealed that the 39K protein is an acidic polypeptide, that it can exist in two molecular forms because of intramolecular disulfide linkages, and that it is part of the virus core. This protein shares antigenic determinants with a cytoplasmic component(s) from uninfected cells. Functional studies revealed that the 39K protein is synthesized at late times postinfection and appears to be required for virus assembly. This protein is highly conserved in members of the Orthopoxvirus group, but in cowpox virus, a 41K virion protein was specifically recognized by antibodies that reacted against the vaccinia virus 39K protein. Significantly, during long-term passages of Friend erythroleukemia cells persistently infected with vaccinia virus, some virus mutants were found to increase or decrease by about 2 kilodaltons the size of the 39K protein. Mapping analysis localized sequences encoding the 39K protein in a rifampin-sensitive gene cluster between the two major core-associated viral polypeptides, 4a and 4b. The fact that the 39K core protein of vaccinia virus elicits strong humoral immune response, induces antibodies that react against a host component(s), and is subjected to genetic variability suggests that this protein has important biological functions.  相似文献   

8.
The mammalian reoviruses have provided a valuable model for studying the pathogenesis of viral infections of the central nervous system (CNS). We have used this model to study the effect of antibody on disease produced by the neurally spreading reovirus type 3 (Dearing) (T3). Polyclonal and monoclonal antibodies protect mice from fatal infection with T3 after either footpad or intracerebral virus challenge. Protection occurs with monoclonal antibodies directed against the viral cell attachment protein sigma 1, and with polyclonal antisera without T3 sigma 1 binding activity. In vivo protection occurs with both neutralizing and nonneutralizing monoclonal antibodies. Antibody-mediated protection does not require serum complement and, under specific circumstances, can occur via Fc-independent mechanisms. Antibody can protect mice when transferred up to 5 days after intracerebral challenge and up to 7 days after footpad challenge, times when high titers of virus are present in the CNS. Thus, antibody mediated protection against this neurally spreading virus does not require neutralizing antibody or serum complement and occurs even in the face of established CNS infection.  相似文献   

9.
Reoviruses isolated from persistently infected cultures (PI viruses) can grow in the presence of ammonium chloride, a weak base that blocks acid-dependent proteolysis of viral outer-capsid proteins during viral entry into cells. We used reassortant viruses isolated from crosses of wild-type (wt) reovirus strain, type 1 Lang, and three independent PI viruses, L/C, PI 2A1, and PI 3-1, to identify viral genes that segregate with the capacity of PI viruses to grow in cells treated with ammonium chloride. Growth of reassortant viruses in ammonium chloride-treated cells segregated with the S1 gene of L/C and the S4 gene of PI 2A1 and PI 3-1. The S1 gene encodes viral attachment protein sigma1, and the S4 gene encodes outer-capsid protein sigma3. To identify mutations in sigma3 selected during persistent reovirus infection, we determined the S4 gene nucleotide sequences of L/C, PI 2A1, PI 3-1, and four additional PI viruses. The deduced amino acid sequences of sigma3 protein of six of these PI viruses contained a tyrosine-to-histidine substitution at residue 354. To determine whether mutations selected during persistent infection alter cleavage of the viral outer capsid, the fate of viral structural proteins was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after treatment of virions of wt and PI viruses with chymotrypsin in vitro. Proteolysis of PI virus outer-capsid proteins sigma3 and mu1C occurred with faster kinetics than proteolysis of wt virus outer-capsid proteins. These results demonstrate that mutations in either the S1 or S4 gene alter acid-dependent disassembly of the reovirus outer capsid and suggest that increased efficiency of proteolysis of viral outer-capsid proteins is important for maintenance of persistent reovirus infections of cultured cells.  相似文献   

10.
From ribosomal washes of neuroblastoma cells infected with Semliki Forest virus (SFV) a protein of Mr 33000 was purified, which comigrated with the viral capsid protein on sodium dodecyl sulfate/polyacrylamide gels and was recognized by antibodies against the capsid protein of SFV. This protein selectively inhibits the translation of host and early viral 42S mRNA in vitro, but has no effect on late viral 26S and encephalomyocarditis virus mRNA translation. Eukaryotic initiation factor 4B and cap-binding protein restore the translation of host and 42S mRNA to control levels. The capsid protein specifically prevents the binding of host mRNA into 80S initiation complexes, but has no effect on that of late viral mRNA. We propose that the capsid protein is the component responsible for the shut-off of host protein synthesis in SFV-infected cells and for the decreased translational activity of the crude ribosomal washes from these cells.  相似文献   

11.
The mechanisms by which viruses kill susceptible cells in target organs and ultimately produce disease in the infected host remain poorly understood. Dependent upon the site of inoculation and strain of virus, experimental infection of neonatal mice with reoviruses can induce fatal encephalitis or myocarditis. Reovirus-induced apoptosis is a major mechanism of tissue injury, leading to disease development in both the brain and heart. In cultured cells, differences in the capacity of reovirus strains to induce apoptosis are determined by the S1 gene segment, which also plays a major role as a determinant of viral pathogenesis in both the heart and the central nervous system (CNS) in vivo. The S1 gene is bicistronic, encoding both the viral attachment protein sigma-1 and the nonstructural protein sigma-1-small (sigma1s). Although sigma1s is dispensable for viral replication in vitro, we wished to investigate the expression of sigma1s in the infected heart and brain and its potential role in reovirus pathogenesis in vivo. Two-day-old mice were inoculated intramuscularly or intracerebrally with either sigma1s(-) or sigma1s(+) reovirus strains. While viral replication in target organs did not differ between sigma1s(-) and sigma1s(+) viral strains, virus-induced caspase-3 activation and resultant histological tissue injury in both the heart and brain were significantly reduced in sigma1s(-) reovirus-infected animals. These results demonstrate that sigma1s is a determinant of the magnitude and extent of reovirus-induced apoptosis in both the heart and CNS and thereby contributes to reovirus pathogenesis and virulence.  相似文献   

12.
Replication of Cauliflower mosaic virus (CaMV), a plant double-stranded DNA virus, requires the viral translational transactivator protein P6. Although P6 is known to form cytoplasmic inclusion bodies (viroplasms) so far considered essential for virus biology, a fraction of the protein is also present in the nucleus. Here, we report that monomeric P6 is imported into the nucleus through two importin-alpha-dependent nuclear localization signals, and show that this process is mandatory for CaMV infectivity and is independent of translational transactivation and viroplasm formation. One nuclear function of P6 is to suppress RNA silencing, a gene regulation mechanism with antiviral roles, commonly counteracted by dedicated viral suppressor proteins (viral silencing suppressors; VSRs). Transgenic P6 expression in Arabidopsis is genetically equivalent to inactivating the nuclear protein DRB4 that facilitates the activity of the major plant antiviral silencing factor DCL4. We further show that a fraction of P6 immunoprecipitates with DRB4 in CaMV-infected cells. This study identifies both genetic and physical interactions between a VSR to a host RNA silencing component, and highlights the importance of subcellular compartmentalization in VSR function.  相似文献   

13.
During maintenance of L-cell cultures persistently infected with reovirus, mutations are selected in viruses and cells. Cells cured of persistent infection support growth of viruses isolated from persistently infected cultures (PI viruses) significantly better than that of wild-type (wt) viruses. In a previous study, the capacity of PI virus strain L/C to grow better than wt strain type 1 Lang (T1L) in cured cells was mapped genetically to the S1 gene (R. S. Kauffman, R. Ahmed, and B. N. Fields, Virology 131:79-87, 1983), which encodes viral attachment protein sigma1. To investigate mechanisms by which mutations in S1 confer growth of PI viruses in cured cells, we determined the S1 gene nucleotide sequences of L/C virus and six additional PI viruses isolated from independent persistently infected L-cell cultures. The S1 sequences of these viruses contained from one to three mutations, and with the exception of PI 2A1 mutations in each S1 gene resulted in changes in the deduced amino acid sequence of sigma1 protein. Using electrophoresis conditions that favor migration of sigma1 oligomers, we found that sigma1 proteins of L/C, PI 1A1, PI 3-1, and PI 5-1 migrated as monomers, whereas sigma1 proteins of wt reovirus and PI 2A1 migrated as oligomers. These findings suggest that mutations in sigma1 protein affecting stability of sigma1 oligomers are important for the capacity of PI viruses to infect mutant cells selected during persistent infection. Since no mutation was found in the deduced amino acid sequence of PI 2A1 sigma1 protein, we used T1L X PI 2A1 reassortant viruses to identify viral genes associated with the capacity of this PI virus to grow better than wt in cured cells. The capacity of PI 2A1 to grow better than T1L in cured cells was mapped to the S4 gene, which encodes outer-capsid protein sigma3. This finding suggests that in some cases, mutations in sigma3 protein in the absence of sigma1 mutations confer growth of PI viruses in mutant cells. To confirm the importance of the S1 gene in PI virus growth in cured cells, we used T1L X PI 3-1 reassortant viruses to genetically map the capacity of this PI virus to grow better than wt in cured cells. In contrast to our results using PI 2A1, we found that growth of PI 3-1 in cured cells was determined by the sigma1-encoding S1 gene. Given that the sigma1 and sigma3 proteins play important roles in reovirus disassembly, findings made in this study suggest that stability of the viral outer capsid is an important determinant of the capacity of reoviruses to adapt to host cells during persistent infection.  相似文献   

14.
Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection   总被引:15,自引:0,他引:15  
Innate immune responses provide the host with an early protection barrier against infectious agents, including viruses, and help shape the nature and quality of the subsequent adaptive immune responses of the host. Expression of ISG15 (UCRP), a ubiquitin-like protein, and protein ISGylation are highly increased upon viral infection. We have identified UBP43 (USP18) as an ISG15 deconjugating protease. Protein ISGylation is enhanced in cells deficient in UBP43 (ref. 6). Here we have examined the role of UBP43, encoded by the gene Usp18, in innate immunity to virus infection. Usp18(-/-) mice were resistant to the fatal lymphocytic choriomeningitis and myeloencephalitis that developed in wild-type mice after intracerebral inoculation with lymphocytic choriomeningitis virus (LCMV) or vesicular stomatitis virus (VSV), respectively. Survival of Usp18(-/-) mice after intracerebral LCMV infection correlated with a severe inhibition of LCMV RNA replication and antigen expression in the brain and increased levels of protein ISGylation. Consistent with these findings, mouse embryonic fibroblasts (MEF) and bone marrow-derived macrophages from Usp18(-/-) mice showed restricted LCMV replication. Moreover, MEF from Usp18(-/-) mice showed enhanced interferon-mediated resistance to the cytopathic effect caused by VSV and Sindbis virus (SNV). This report provides the first direct evidence that the ISG15 protease UBP43 and possibly protein ISGylation have a role in innate immunity against viral infection.  相似文献   

15.
The rabies virus (RV) phosphoprotein P is a multifunctional protein involved in viral RNA synthesis and in counteracting host innate immune responses. We have previously shown that RV P gene expression levels can be regulated by using picornavirus internal ribosome entry site (IRES) elements. Here we exploited a particular feature of the foot-and-mouth disease virus (FMDV) IRES, namely, preferential initiation at a downstream initiation codon, to address the role of N-terminally truncated RV phosphoproteins usually generated in RV-infected cells through ribosomal leaky scanning. Recombinant RVs in which P synthesis was directed by the poliovirus or FMDV IRES produced full-length P (P1) or a truncated form (P2), as the dominant product, respectively. While the P2 overexpressing virus showed attenuated growth in interferon-incompetent cells, it was superior to the P1 overexpressing virus in preventing expression of host interferon-stimulated genes. This indicates that in RV infected cells the availability of the truncated P2 protein is critical for viral resistance to interferon.  相似文献   

16.
Sun D  Xu P  He B 《Journal of virology》2011,85(19):10261-10268
The P protein of parainfluenza virus 5 (PIV5) is an essential cofactor of the viral RNA-dependent RNA polymerase. Phosphorylation of the P protein can positively or negatively regulate viral gene expression, depending on the precise phosphorylation sites. Sumoylation, a process of adding small ubiquitin-like modifier (SUMO) to proteins posttranslationally, plays an important role in regulating protein function. In this study, we have found that the P protein of PIV5 was sumoylated with SUMO1 in both transfected and infected cells. The K254 residue of the P protein is within a consensus sumoylation motif. Mutation of the P protein at K254 to arginine (P-K254R) reduced PIV5 minigenome activity, as well as the sumoylation level of the P protein. Incorporation of K254R into a recombinant PIV5 (rPIV5-P-K254R) resulted in a virus that grew to a lower titer and had lower levels of viral RNA synthesis and protein expression than wild-type PIV5, suggesting that sumoylation of the P protein at K254 is important for PIV5 growth. Biochemical studies did not reveal any defect of P-K254R in its interactions with viral proteins NP and L or formation of homotetramers. We propose that sumoylation of the P protein at K254 regulates PIV5 gene expression through a host protein.  相似文献   

17.
The sigma virus is a vertically transmitted pathogen that commonly infects natural populations of Drosophila melanogaster. This virus is the only known host-specific pathogen of D. melanogaster, and so offers a unique opportunity to study the genetics of Drosophila-viral interactions in a natural system. To elucidate the population genetic processes that operate in sigma virus populations, we collected D. melanogaster from 10 populations across three continents. We found that the sigma virus had a prevalence of 0-15% in these populations. Compared to other RNA viruses, we found that levels of viral genetic diversity are very low across Europe and North America. Based on laboratory measurements of the viral substitution rate, we estimate that most European and North American viral isolates shared a common ancestor approximately 200 years ago. We suggest two explanations for this: the first is that D. melanogaster has recently acquired the sigma virus; the second is that a single viral type has recently swept through D. melanogaster populations. Furthermore, in contrast to Drosophila populations, we find that the sigma viral populations are highly structured. This is surprising for a vertically transmitted pathogen that has a similar migration rate to its host. We suggest that the low structure in the viral populations can be explained by the smaller effective population size of the virus.  相似文献   

18.
K L Tyler  M A Mann  B N Fields    H W Virgin  th 《Journal of virology》1993,67(6):3446-3453
We used a recently isolated and characterized panel of monoclonal antibodies (MAbs) specific for cross-reactive determinants on reovirus outer capsid proteins to define mechanisms of antibody-mediated protection in vivo. We studied the capacities of MAbs to protect against lethal infection with reoviruses which differ in site of primary replication, route of spread, and central nervous system tropism. We found the following. (i) MAbs specific for each of the viral outer capsid proteins (sigma 1, sigma 3, and mu 1) and the core spike protein (lambda 2) were protective under certain circumstances. (ii) In vitro properties of MAbs, including isotype, neutralization of viral infectivity, inhibition of virus-induced hemagglutination, and avidity of binding, were poorly predictive of the capacities of MAbs to protect in vivo. (iii) MAbs did not act at a single stage during pathogenesis to mediate protection; instead, protective MAbs were capable of altering a variety of stages in reovirus pathogenesis. (iv) MAbs protective against one reovirus also protected against other reoviruses that utilized different pathogenetic strategies, suggesting that the viral epitope bound by an antibody rather than the pathogenetic strategy employed by the virus is a critical determinant of antibody-mediated protection in vivo. (v) A prominent mechanism of protective MAb action is inhibition of viral spread through nerves from a site of primary replication (e.g., the intestine or muscle tissue) to the central nervous system.  相似文献   

19.
The complete nucleotide sequence was determined for the putative RNA polymerase (183K protein) gene of tobacco mosaic virus (TMV) OM strain, which differed from the related strain, vulgare, by 51 positions in its nucleotide sequence and 6 residues in its amino acid sequence. Three segments of this 183K protein, each containing the sequence motif of methyltransferase (M), helicase (H), or RNA-dependent RNA polymerase (P), were expressed in Escherichia coli as fusion proteins with hexahistidine tags, and domain-specific antibodies were raised against purified His-tagged M and P polypeptides. By immunoaffinity purification, a template-specific RNA-dependent RNA polymerase containing a heterodimer of the full-length 183K and 126K (an amino-terminal-proximal portion of the 183K protein) viral proteins was isolated. We propose that the TMV RNA polymerase for minus-strand RNA synthesis is composed of one molecule each of the 183- and 126-kDa proteins, possibly together with two or more host proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号