首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background and Aims

At present most process-based models and the majority of three-dimensional models include simplifications of plant architecture that can compromise the accuracy of light interception simulations and, accordingly, canopy photosynthesis. The aim of this paper is to analyse canopy heterogeneity of an explicitly described tomato canopy in relation to temporal dynamics of horizontal and vertical light distribution and photosynthesis under direct- and diffuse-light conditions.

Methods

Detailed measurements of canopy architecture, light interception and leaf photosynthesis were carried out on a tomato crop. These data were used for the development and calibration of a functional–structural tomato model. The model consisted of an architectural static virtual plant coupled with a nested radiosity model for light calculations and a leaf photosynthesis module. Different scenarios of horizontal and vertical distribution of light interception, incident light and photosynthesis were investigated under diffuse and direct light conditions.

Key Results

Simulated light interception showed a good correspondence to the measured values. Explicitly described leaf angles resulted in higher light interception in the middle of the plant canopy compared with fixed and ellipsoidal leaf-angle distribution models, although the total light interception remained the same. The fraction of light intercepted at a north–south orientation of rows differed from east–west orientation by 10 % on winter and 23 % on summer days. The horizontal distribution of photosynthesis differed significantly between the top, middle and lower canopy layer. Taking into account the vertical variation of leaf photosynthetic parameters in the canopy, led to approx. 8 % increase on simulated canopy photosynthesis.

Conclusions

Leaf angles of heterogeneous canopies should be explicitly described as they have a big impact both on light distribution and photosynthesis. Especially, the vertical variation of photosynthesis in canopy is such that the experimental approach of photosynthesis measurements for model parameterization should be revised.  相似文献   

2.

Background and Aims

Forest tree saplings that grow in the understorey undergo frequent changes in their light environment to which they must adapt to ensure their survival and growth. Crown architecture, which plays a critical role in light capture and mechanical stability, is a major component of sapling adaptation to canopy disturbance. Shade-adapted saplings typically have plagiotropic stems and branches. After canopy opening, they need to develop more erect shoots in order to exploit the new light conditions. The objective of this study was to test whether changes in sapling stem inclination occur after canopy opening, and to analyse the morphological changes associated with stem reorientation.

Methods

A 4-year canopy-opening field experiment with naturally regenerated Fagus sylvatica and Acer pseudoplatanus saplings was conducted. The appearance of new stem axes, stem basal diameter and inclination along the stem were recorded every year after canopy opening.

Key Results

Both species showed considerable stem reorientation resulting primarily from uprighting (more erect) shoot movements in Fagus, and from uprighting movements, shoot elongation and formation of relay shoots in Acer. In both species, the magnitude of shoot uprighting movements was primarily related to initial stem inclination. Both the basal part and the apical part of the stem contributed to uprighting movements. Stem movements did not appear to be limited by stem size or by stem growth.

Conclusions

Stem uprighting movements in shade-adapted Fagus and Acer saplings following canopy disturbance were considerable and rapid, suggesting that stem reorientation processes play a significant role in the growth strategy of the species.  相似文献   

3.

Background and Aims

Functional–structural modelling can be used to increase our understanding of how different aspects of plant structure and function interact, identify knowledge gaps and guide priorities for future experimentation. By integrating existing knowledge of the different aspects of the kiwifruit (Actinidia deliciosa) vine''s architecture and physiology, our aim is to develop conceptual and mathematical hypotheses on several of the vine''s features: (a) plasticity of the vine''s architecture; (b) effects of organ position within the canopy on its size; (c) effects of environment and horticultural management on shoot growth, light distribution and organ size; and (d) role of carbon reserves in early shoot growth.

Methods

Using the L-system modelling platform, a functional–structural plant model of a kiwifruit vine was created that integrates architectural development, mechanistic modelling of carbon transport and allocation, and environmental and management effects on vine and fruit growth. The branching pattern was captured at the individual shoot level by modelling axillary shoot development using a discrete-time Markov chain. An existing carbon transport resistance model was extended to account for several source/sink components of individual plant elements. A quasi-Monte Carlo path-tracing algorithm was used to estimate the absorbed irradiance of each leaf.

Key Results

Several simulations were performed to illustrate the model''s potential to reproduce the major features of the vine''s behaviour. The model simulated vine growth responses that were qualitatively similar to those observed in experiments, including the plastic response of shoot growth to local carbon supply, the branching patterns of two Actinidia species, the effect of carbon limitation and topological distance on fruit size and the complex behaviour of sink competition for carbon.

Conclusions

The model is able to reproduce differences in vine and fruit growth arising from various experimental treatments. This implies it will be a valuable tool for refining our understanding of kiwifruit growth and for identifying strategies to improve production.  相似文献   

4.

Background and Aims

Manipulation of plant structure can strongly affect light distribution in the canopy and photosynthesis. The aim of this paper is to find a plant ideotype for optimization of light absorption and canopy photosynthesis. Using a static functional structural plant model (FSPM), a range of different plant architectural characteristics was tested for two different seasons in order to find the optimal architecture with respect to light absorption and photosynthesis.

Methods

Simulations were performed with an FSPM of a greenhouse-grown tomato crop. Sensitivity analyses were carried out for leaf elevation angle, leaf phyllotaxis, leaflet angle, leaf shape, leaflet arrangement and internode length. From the results of this analysis two possible ideotypes were proposed. Four different vertical light distributions were also tested, while light absorption cumulated over the whole canopy was kept the same.

Key Results

Photosynthesis was augmented by 6 % in winter and reduced by 7 % in summer, when light absorption in the top part of the canopy was increased by 25 %, while not changing light absorption of the canopy as a whole. The measured plant structure was already optimal with respect to leaf elevation angle, leaflet angle and leaflet arrangement for both light absorption and photosynthesis while phyllotaxis had no effect. Increasing the length : width ratio of leaves by 1·5 or increasing internode length from 7 cm to 12 cm led to an increase of 6–10 % for light absorption and photosynthesis.

Conclusions

At high light intensities (summer) deeper penetration of light in the canopy improves crop photosynthesis, but not at low light intensities (winter). In particular, internode length and leaf shape affect the vertical distribution of light in the canopy. A new plant ideotype with more spacious canopy architecture due to long internodes and long and narrow leaves led to an increase in crop photosynthesis of up to 10 %.  相似文献   

5.

Background and Aims

The production system of cut-rose (Rosa × hybrida) involves a complex combination of plant material, management practice and environment. Plant structure is determined by bud break and shoot development while having an effect on local light climate. The aim of the present study is to cover selected aspects of the cut-rose system using functional–structural plant modelling (FSPM), in order to better understand processes contributing to produce quality and quantity.

Methods

The model describes the production system in three dimensions, including a virtual greenhouse environment with the crop, light sources (diffuse and direct sun light and lamps) and photosynthetically active radiation (PAR) sensors. The crop model is designed as a multiscaled FSPM with plant organs (axillary buds, leaves, internodes, flowers) as basic units, and local light interception and photosynthesis within each leaf. A Monte-Carlo light model was used to compute the local light climate for leaf photosynthesis, the latter described using a biochemical rate model.

Key Results

The model was able to reproduce PAR measurements taken at different canopy positions, different times of the day and different light regimes. Simulated incident and absorbed PAR as well as net assimilation rate in upright and bent shoots showed characteristic spatial and diurnal dynamics for different common cultivation scenarios.

Conclusions

The model of cut-rose presented allowed the creation of a range of initial structures thanks to interactive rules for pruning, cutting and bending. These static structures can be regarded as departure points for the dynamic simulation of production of flower canes. Furthermore, the model was able to predict local (per leaf) light absorption and photosynthesis. It can be used to investigate the physiology of ornamental plants, and provide support for the decisions of growers and consultants.  相似文献   

6.
7.

Background and Aims

Maximizing photosynthesis at the canopy level is important for enhancing crop yield, and this requires insights into the limiting factors of photosynthesis. Using greenhouse cucumber (Cucumis sativus) as an example, this study provides a novel approach to quantify different components of photosynthetic limitations at the leaf level and to upscale these limitations to different canopy layers and the whole plant.

Methods

A static virtual three-dimensional canopy structure was constructed using digitized plant data in GroIMP. Light interception of the leaves was simulated by a ray-tracer and used to compute leaf photosynthesis. Different components of photosynthetic limitations, namely stomatal (SL), mesophyll (ML), biochemical (BL) and light (LL) limitations, were calculated by a quantitative limitation analysis of photosynthesis under different light regimes.

Key Results

In the virtual cucumber canopy, BL and LL were the most prominent factors limiting whole-plant photosynthesis. Diffusional limitations (SL + ML) contributed <15 % to total limitation. Photosynthesis in the lower canopy was more limited by the biochemical capacity, and the upper canopy was more sensitive to light than other canopy parts. Although leaves in the upper canopy received more light, their photosynthesis was more light restricted than in the leaves of the lower canopy, especially when the light condition above the canopy was poor. An increase in whole-plant photosynthesis under diffuse light did not result from an improvement of light use efficiency but from an increase in light interception. Diffuse light increased the photosynthesis of leaves that were directly shaded by other leaves in the canopy by up to 55 %.

Conclusions

Based on the results, maintaining biochemical capacity of the middle–lower canopy and increasing the leaf area of the upper canopy would be promising strategies to improve canopy photosynthesis in a high-wire cucumber cropping system. Further analyses using the approach described in this study can be expected to provide insights into the influences of horticultural practices on canopy photosynthesis and the design of optimal crop canopies.  相似文献   

8.

Background and Aims

While the climbing habit allows vines to reach well-lit canopy areas with a minimum investment in support biomass, many of them have to survive under the dim understorey light during certain stages of their life cycle. But, if the growth/survival trade-off widely reported for trees hold for climbing plants, they cannot maximize both light-interception efficiency and shade avoidance (i.e. escaping from the understorey). The seven most important woody climbers occurring in a Chilean temperate evergreen rainforest were studied with the hypothesis that light-capture efficiency of climbers would be positively associated with their abundance in the understorey.

Methods

Species abundance in the understorey was quantified from their relative frequency and density in field plots, the light environment was quantified by hemispherical photography, the photosynthetic response to light was measured with portable gas-exchange analyser, and the whole shoot light-interception efficiency and carbon gain was estimated with the 3-D computer model Y-plant.

Key Results

Species differed in specific leaf area, leaf mass fraction, above ground leaf area ratio, light-interception efficiency and potential carbon gain. Abundance of species in the understorey was related to whole shoot features but not to leaf level features such as specific leaf area. Potential carbon gain was inversely related to light-interception efficiency. Mutual shading among leaves within a shoot was very low (<20 %).

Conclusions

The abundance of climbing plants in this southern rainforest understorey was directly related to their capacity to intercept light efficiently but not to their potential carbon gain. The most abundant climbers in this ecosystem match well with a shade-tolerance syndrome in contrast to the pioneer-like nature of climbers observed in tropical studies. The climbers studied seem to sacrifice high-light searching for coping with the dim understorey light.  相似文献   

9.

Background and Aims

Predicting light partitioning in crop mixtures is a critical step in improving the productivity of such complex systems, and light interception has been shown to be closely linked to plant architecture. The aim of the present work was to analyse the relationships between plant architecture and light partitioning within wheat–pea (Triticum aestivumPisum sativum) mixtures. An existing model for wheat was utilized and a new model for pea morphogenesis was developed. Both models were then used to assess the effects of architectural variations in light partitioning.

Methods

First, a deterministic model (L-Pea) was developed in order to obtain dynamic reconstructions of pea architecture. The L-Pea model is based on L-systems formalism and consists of modules for ‘vegetative development’ and ‘organ extension’. A tripartite simulator was then built up from pea and wheat models interfaced with a radiative transfer model. Architectural parameters from both plant models, selected on the basis of their contribution to leaf area index (LAI), height and leaf geometry, were then modified in order to generate contrasting architectures of wheat and pea.

Key results

By scaling down the analysis to the organ level, it could be shown that the number of branches/tillers and length of internodes significantly determined the partitioning of light within mixtures. Temporal relationships between light partitioning and the LAI and height of the different species showed that light capture was mainly related to the architectural traits involved in plant LAI during the early stages of development, and in plant height during the onset of interspecific competition.

Conclusions

In silico experiments enabled the study of the intrinsic effects of architectural parameters on the partitioning of light in crop mixtures of wheat and pea. The findings show that plant architecture is an important criterion for the identification/breeding of plant ideotypes, particularly with respect to light partitioning.  相似文献   

10.

Background and Aims

While within-species competition for light is generally found to be asymmetric – larger plants absorbing more than proportional amounts of light – between-species competition tends to be more symmetric. Here, the light capture was analysed in a 5-year-old competition experiment that started with ten genotypes of the clonal plant Potentilla reptans. The following hypotheses were tested: (a) if different genotypes would do better in different layers of the canopy, thereby promoting coexistence, and (b) if leaves and genotypes with higher total mass captured more than proportional amounts of light, possibly explaining the observed dominance of the abundant genotypes.

Methods

In eight plots, 100 leaves were harvested at various depths in the canopy and their genotype determined to test for differences in leaf biomass allocation, leaf characteristics and the resulting light capture, calculated through a canopy model using the actual vertical light and leaf area profiles. Light capture was related to biomass to determine whether light competition between genotypes was asymmetric.

Key Results

All genotypes could reach the top of the canopy. The genotypes differed in morphology, but did not differ significantly in light capture per unit mass (Φmass) for leaves with the laminae placed at the same light levels. Light capture did increase disproportionately with leaf mass for all genotypes. However, the more abundant genotypes did not capture disproportionately more light relative to their mass than less-abundant genotypes.

Conclusions

Vertical niche differentiation in light acquisition does not appear to be a factor that could promote coexistence between these genotypes. Contrary to what is generally assumed, light competition among genetic individuals of the same species was size-symmetric, even if taller individual leaves did capture disproportionately more light. The observed shifts in genotype frequency cannot therefore be explained by asymmetric competition for light.Key words: Potentilla reptans, light, competition, symmetric, clonal, genotype, investment, petiole, canopy, allocation  相似文献   

11.
12.

Background and Aims

The influence of temperature on the timing of budbreak in woody perennials is well known, but its effect on subsequent shoot growth and architecture has received little attention because it is understood that growth is determined by current temperature. Seasonal shoot development of grapevines (Vitis vinifera) was evaluated following differences in temperature near budbreak while minimizing the effects of other microclimatic variables.

Methods

Dormant buds and emerging shoots of field-grown grapevines were heated above or cooled below the temperature of ambient buds from before budbreak until individual flowers were visible on inflorescences, at which stage the shoots had four to eight unfolded leaves. Multiple treatments were imposed randomly on individual plants and replicated across plants. Shoot growth and development were monitored during two growing seasons.

Key Results

Higher bud temperatures advanced the date of budbreak and accelerated shoot growth and leaf area development. Differences were due to higher rates of shoot elongation, leaf appearance, leaf-area expansion and axillary-bud outgrowth. Although shoots arising from heated buds grew most vigorously, apical dominance in these shoots was reduced, as their axillary buds broke earlier and gave rise to more vigorous lateral shoots. In contrast, axillary-bud outgrowth was minimal on the slow-growing shoots emerging from buds cooled below ambient. Variation in shoot development persisted or increased during the growing season, well after temperature treatments were terminated and despite an imposed soil water deficit.

Conclusions

The data indicate that bud-level differences in budbreak temperature may lead to marked differences in shoot growth, shoot architecture and leaf-area development that are maintained or amplified during the growing season. Although growth rates commonly are understood to reflect current temperatures, these results demonstrate a persistent effect of early-season temperatures, which should be considered in future growth models.  相似文献   

13.

Background and Aims

The growth of crops in a mixture is more variable and difficult to predict than that in pure stands. Light partitioning and crop leaf area expansion play prominent roles in explaining this variability. However, in many crops commonly grown in mixtures, including the forage species alfalfa, the sensitivity and relative importance of the physiological responses involved in the light modulation of leaf area expansion are still to be established. This study was designed to assess the relative sensitivity of primary shoot development, branching and individual leaf expansion in alfalfa in response to light availability.

Methods

Two experiments were carried out. The first studied isolated plants to assess the potential development of different shoot types and growth periods. The second consisted of manipulating the intensity of competition for light using a range of canopies in pure and mixed stands at two densities so as to evaluate the relative effects on shoot development, leaf growth, and plant and shoot demography.

Key Results

Shoot development in the absence of light competition was deterministic (constant phyllochrons of 32·5 °Cd and 48·2 °Cd for primary axes and branches, branching probability of 1, constant delay of 1·75 phyllochron before axillary bud burst) and identical irrespective of shoot type and growth/regrowth periods. During light competition experiments, changes in plant development explained most of the plant leaf area variations, with average leaf size contributing to a lesser extent. Branch development and the number of shoots per plant were the leaf area components most affected by light availability. Primary axis development and plant demography were only affected in situations of severe light competition.

Conclusions

Plant leaf area components differed with regard to their sensitivity to light competition. The potential shoot development model presented in this study could serve as a framework to integrate light responses in alfalfa crop models.  相似文献   

14.
Jie Wu  Yan Guo 《Annals of botany》2014,114(4):841-851

Background and Aims

A number of techniques have recently been developed for studying the root system architecture (RSA) of seedlings grown in various media. In contrast, methods for sampling and analysis of the RSA of field-grown plants, particularly for details of the lateral root components, are generally inadequate.

Methods

An integrated methodology was developed that includes a custom-made root-core sampling system for extracting intact root systems of individual maize plants, a combination of proprietary software and a novel program used for collecting individual RSA information, and software for visualizing the measured individual nodal root architecture.

Key Results

Example experiments show that large root cores can be sampled, and topological and geometrical structure of field-grown maize root systems can be quantified and reconstructed using this method. Second- and higher order laterals are found to contribute substantially to total root number and length. The length of laterals of distinct orders varies significantly. Abundant higher order laterals can arise from a single first-order lateral, and they concentrate in the proximal axile branching zone.

Conclusions

The new method allows more meaningful sampling than conventional methods because of its easily opened, wide corer and sampling machinery, and effective analysis of RSA using the software. This provides a novel technique for quantifying RSA of field-grown maize and also provides a unique evaluation of the contribution of lateral roots. The method also offers valuable potential for parameterization of root architectural models.  相似文献   

15.

Background and Aims

Growth imbalances between individual fruits are common in indeterminate plants such as cucumber (Cucumis sativus). In this species, these imbalances can be related to differences in two growth characteristics, fruit growth duration until reaching a given size and fruit abortion. Both are related to distribution, and environmental factors as well as canopy architecture play a key role in their differentiation. Furthermore, events leading to a fruit reaching its harvestable size before or simultaneously with a prior fruit can be observed. Functional–structural plant models (FSPMs) allow for interactions between environmental factors, canopy architecture and physiological processes. Here, we tested hypotheses which account for these interactions by introducing dominance and abortion thresholds for the partitioning of assimilates between growing fruits.

Methods

Using the L-System formalism, an FSPM was developed which combined a model for architectural development, a biochemical model of photosynthesis and a model for assimilate partitioning, the last including a fruit growth model based on a size-related potential growth rate (RP). Starting from a distribution proportional to RP, the model was extended by including abortion and dominance. Abortion was related to source strength and dominance to sink strength. Both thresholds were varied to test their influence on fruit growth characteristics. Simulations were conducted for a dense row and a sparse isometric canopy.

Key Results

The simple partitioning models failed to simulate individual fruit growth realistically. The introduction of abortion and dominance thresholds gave the best results. Simulations of fruit growth durations and abortion rates were in line with measurements, and events in which a fruit was harvestable earlier than an older fruit were reproduced.

Conclusions

Dominance and abortion events need to be considered when simulating typical fruit growth traits. By integrating environmental factors, the FSPM can be a valuable tool to analyse and improve existing knowledge about the dynamics of assimilates partitioning.  相似文献   

16.

Background and Aims

The contemporary relegation of conifers mainly to cold or infertile sites has been ascribed to low competitive ability, as a result of the hydraulic inefficiency of tracheids and their seedlings'' initial dependence on small foliage areas. Here it is hypothesized that, in temperate rainforests, the larger leaves of angiosperms also reduce self-shading and thus enable display of larger effective foliage areas than the numerous small leaves of conifers.

Methods

This hypothesis was tested using 3-D modelling of plant architecture and structural equation modelling to compare self-shading and light interception potential of seedlings of six conifers and 12 angiosperm trees from temperate rainforests. The ratio of displayed leaf area to plant mass (LARd) was used to indicate plant light interception potential: LARd is the product of specific leaf area, leaf mass fraction, self-shading and leaf angle.

Results

Angiosperm seedlings self-shaded less than conifers, mainly because of differences in leaf number (more than leaf size), and on average their LARd was about twice that of conifers. Although specific leaf area was the most pervasive influence on LARd, differences in self-shading also significantly influenced LARd of large seedlings.

Conclusions

The ability to deploy foliage in relatively few, large leaves is advantageous in minimizing self-shading and enhancing seedling light interception potential per unit of plant biomass. This study adds significantly to evidence that vegetative traits may be at least as important as reproductive innovations in explaining the success of angiosperms in productive environments where vegetation is structured by light competition.  相似文献   

17.
Cici SZ  Adkins S  Hanan J 《Annals of botany》2008,101(9):1311-1318

Background and Aims

Improving the competitive ability of crops is a sustainable method of weed management. This paper shows how a virtual plant model of competition between chickpea (Cicer arietinum) and sowthistle (Sonchus oleraceus) can be used as a framework for discovering and/or developing more competitive chickpea cultivars.

Methods

The virtual plant models were developed using the L-systems formalism, parameterized according to measurements taken on plants at intervals during their development. A quasi-Monte Carlo light-environment model was used to model the effect of chickpea canopy on the development of sowthistle. The chickpea–light environment–sowthistle model (CLES model) captured the hypothesis that the architecture of chickpea plants modifies the light environment inside the canopy and determines sowthistle growth and development pattern. The resulting CLES model was parameterized for different chickpea cultivars (viz. ‘Macarena’, ‘Bumper’, ‘Jimbour’ and ‘99071-1001’) to compare their competitive ability with sowthistle. To validate the CLES model, an experiment was conducted using the same four chickpea cultivars as different treatments with a sowthistle growing under their canopy.

Results and Conclusions

The growth of sowthistle, both in silico and in glasshouse experiments, was reduced most by ‘99071-1001’, a cultivar with a short phyllochron. The second rank of competitive ability belonged to ‘Macarena’ and ‘Bumper’, while ‘Jimbour’ was the least competitive cultivar. The architecture of virtual chickpea plants modified the light inside the canopy, which influenced the growth and development of the sowthistle plants in response to different cultivars. This is the first time that a virtual plant model of a crop–weed interaction has been developed. This virtual plant model can serve as a platform for a broad range of applications in the study of chickpea–weed interactions and their environment.Key words: Plant architecture, virtual plant modelling, L-systems formalism, crop/weed competition, integrated weed management, chickpea, Cicer arietinum, sowthistle, Sonchus oleraceus  相似文献   

18.

Background and Aims

Qualitative and quantitative studies of the pattern of invasive plant development is considered a key aspect in understanding invasiveness. An architectural analysis was therefore performed in order to understand the relationship between shoot architecture and invasiveness in red-osier dogwood, Cornus sericea (Cornaceae).

Methods

The structural and ontogenic characteristics of individuals in invading and non-invading populations in the native range of the species were compared to test the implication of developmental plasticity on invasiveness.

Key Results and Conclusions

The results show that the shrub has a modular architecture governed by strong developmental rules. Cornus sericea is made up of two levels of organization, each with its own intrinsic sequence of differentiation. These intrinsic mechanisms were used as a framework for comparison and it was found that, in response to the light environment, developmental plasticity was elevated, resulting in two architectural strategies. This developmental plasticity concerns the growth direction and the size of the modules, the speed of their time-course changes, their branching and flowering. Under an open canopy, C. sericea rapidly develops large vertical structures and abundant flowering. This strategy leads the plant to be invasive by excluding competitors and disseminating in the landscape. In the understorey, C. sericea slowly develops long horizontal structures which creep across the soil surface, while assimilating structures are poorly developed. This strategy does not lead to invasiveness but may allow the plant to survive in the understorey and reach sunny patches.  相似文献   

19.

Background and Aims

Characterization of spatial patterns of plant disease can provide insights into important epidemiological processes such as sources of inoculum, mechanisms of dissemination, and reproductive strategies of the pathogen population. Whilst two-dimensional patterns of disease (among plants within fields) have been studied extensively, there is limited information on three-dimensional patterns within individual plant canopies. Reported here are the detailed mapping of different symptom types of brown rot (caused by Monilinia laxa) in individual sour cherry tree (Prunus cerasus) canopies, and the application of spatial statistics to the resulting data points to determine patterns of symptom aggregation and association.

Methods

A magnetic digitizer was utilized to create detailed three-dimensional maps of three symptom types (blossom blight, shoot blight and twig canker) in eight sour cherry tree canopies during the green fruit stage of development. The resulting point patterns were analysed for aggregation (within a given symptom type) and pairwise association (between symptom types) using a three-dimensional extension of nearest-neighbour analysis.

Key Results

Symptoms of M. laxa infection were generally aggregated within the canopy volume, but there was no consistent pattern for one symptom type to be more or less aggregated than the other. Analysis of spatial association among symptom types indicated that previous year''s twig cankers may play an important role in influencing the spatial pattern of current year''s symptoms. This observation provides quantitative support for the epidemiological role of twig cankers as sources of primary inoculum within the tree.

Conclusions

Presented here is a new approach to quantify spatial patterns of plant disease in complex fruit tree canopies using point pattern analysis. This work provides a framework for quantitative analysis of three-dimensional spatial patterns within the finite tree canopy, applicable to many fields of research.  相似文献   

20.

Background and Aims

Fruit temperature results from a complex system involving the climate, the tree architecture, the fruit location within the tree crown and the fruit thermal properties. Despite much theoretical and experimental evidence for large differences (up to 10 °C in sunny conditions) between fruit temperature and air temperature, fruit temperature is never used in horticultural studies. A way of modelling fruit-temperature dynamics from climate data is addressed in this work.

Methods

The model is based upon three-dimensional virtual representation of apple trees and links three-dimensional virtual trees with a physical-based fruit-temperature dynamical model. The overall model was assessed by comparing model outputs to field measures of fruit-temperature dynamics.

Key Results

The model was able to simulate both the temperature dynamics at fruit scale, i.e. fruit-temperature gradients and departure from air temperature, and at the tree scale, i.e. the within-tree-crown variability in fruit temperature (average root mean square error value over fruits was 1·43 °C).

Conclusions

This study shows that linking virtual plants with the modelling of the physical plant environment offers a relevant framework to address the modelling of fruit-temperature dynamics within a tree canopy. The proposed model offers opportunities for modelling effects of the within-crown architecture on fruit thermal responses in horticultural studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号