首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and Aims

Decaisnea insignis, known as ‘dead man''s fingers’ (Lardizabalaceae), is widely distributed in China and the Himalayan foothill countries. This economically important plant, which is the only species in the genus, has not been the subject of any embryological studies aside from one brief, older paper that lacks micrographs. Data on Decaisnea are also important because its systematic position has been unstable since the genus was established in 1855. Therefore, the objectives of this study were: (a) to use modern microscopy to document early reproductive anatomical development in Decaisnea; and (b) to compare qualitatively these early embryological characters with allied taxa in a systematic context.

Methods

Decaisnea insignis floral buds and inflorescences were regularly collected from Shaanxi Province, China and prepared for light microscopy. The embryological characters studied were qualitatively compared with those of allied taxa via a thorough examination of the existing literature.

Key Results

Early reproductive anatomy in Decaisnea was documented and novel revelations made. It was discovered that the pollen is shed when three-celled (not two-celled, as previously reported), and that endosperm formation is nuclear (not cellular or helobial, as previously reported). These two newly revealed embryological characters are not found in any other members of Lardizabalaceae. Furthermore, neither are persistent antipodal cells, which we confirmed to be present in Decaisnea.

Conclusions

Decaisnea and other Lardizabalaceae characteristically have tetrasporangiate anthers, a secretory tapetum, simultaneous microsporocyte cytokinesis, primarily bitegmic, crassinucellate ovules, and a Polygonum type embryo sac. However, in the family, persistent antipodals, nuclear endosperm, and pollen shed at the three-celled stage are only found in Decaisnea. These embryological data prompted the suggestion that Decaisnea needs elevation above the level of genus.  相似文献   

2.
3.

Background and Aims

The gametophyte phase of ferns plays an important role in habitat selection, dispersal, adaptation and evolution. However, ecological studies on fern gametophytes have been impeded due to the difficulty of species identification of free-living gametophytes. DNA barcoding provides an alternative approach to identifying fern gametophytes but is rarely applied to field studies. In this study, an example of field vittarioid gametophyte identification using DNA barcoding, which has not been done before, is given.

Methods

A combination of distance-based and tree-based approaches was performed to evaluate the discriminating power of three candidate barcodes (matK, rbcL and trnL-F) on 16 vittarioid sporophytes. Sequences of the trnL-F region were generated from 15 fern gametophyte populations by tissue-direct PCR and were compared against the sporophyte dataset, using BLAST.

Key Results trnL-F

earns highest primer universality and discriminatory ability scores, whereas PCR success rates were very low for matK and rbcL regions (10·8 % and 41·3 %, respectively). BLAST analyses showed that all the sampled field gametophytes could be successfully identified to species level. Three gametophyte populations were also discovered to be living beyond the known occurrence of their sporophyte counterparts.

Conclusions

This study demonstrates that DNA barcoding (i.e. reference databasing, tissue-direct PCR and molecular analysis), especially the trnL-F region, is an efficient tool to identify field gametophytes, and has considerable potential in exploring the ecology of fern gametophytes.  相似文献   

4.

Background and Aims

In tropical lowland rain forest (TLRF) the leaves of most monocots differ from those of most dicots in two ways that may reduce attack by herbivores. Firstly, they are tougher. Secondly, the immature leaves are tightly folded or rolled until 50–100 % of their final length. It was hypothesized that (a) losses of leaf area to herbivorous invertebrates are generally greatest during leaf expansion and smaller for monocots than for dicots, and (b) where losses after expansion are appreciable any difference between monocots and dicots then is smaller than that found during expansion.

Methods

At six sites on four continents, estimates were made of lamina area loss from the four most recently mature leaves of focal monocots and of the nearest dicot shoot. Measurements of leaf mass per unit area, and the concentrations of water and nitrogen were made for many of the species. In Panama, the losses from monocots (palms) and dicots were also measured after placing fully expanded palm leaflets and whole dicot leaves on trails of leaf-cutter ants.

Key Results

At five of six sites monocots experienced significantly smaller leaf area loss than dicots. The results were not explicable in terms of leaf mass per unit area, or concentrations of water or nitrogen. At only one site was the increase in loss from first to fourth mature leaf significant (also large and the same in monocots and dicots), but the losses sustained during expansion were much smaller in the monocots. In the leaf-cutter ant experiment, losses were much smaller for palms than for dicots.

Conclusions

The relationship between toughness and herbivory is complex; despite the negative findings of some recent authors for dicots we hypothesize that either greater toughness or late folding can protect monocot leaves against herbivorous insects in tropical lowland rain forest, and that the relative importance varies widely with species. The difficulties of establishing unequivocally the roles of leaf toughness and leaf folding or rolling in a given case are discussed.Key words: anti-herbivore defences, dicots, herbivory, leaf folding, leaf rolling, leaf toughness, monocots, palms, tropical rain forest  相似文献   

5.
6.

Background and Aims

The gametophytes of most homosporous ferns are cordate–thalloid in shape. Some are strap- or ribbon-shaped and have been assumed to have evolved from terrestrial cordate shapes as an adaptation to epiphytic habitats. The aim of the present study was to clarify the morphological evolution of the strap-shaped gametophyte of microsoroids (Polypodiaceae) by precise analysis of their development.

Methods

Spores of Colysis decurrens collected in Kagoshima, Japan, were cultured and observed microscopically. Epi-illuminated micrographs of growing gametophytes were captured every 24 h, allowing analysis of the cell lineage of meristems. Light microscopy of resin-sections and scanning electron microscopy were also used.

Key Results

Contrary to previous assumptions that strap-shaped Colysis gametophytes have no organized meristem, three different types of meristems are formed during development: (1) apical-cell based – responsible for early growth; (2) marginal – further growth, including gametophyte branching; and (3) multicellular – formation of cushions with archegonia. The cushion is two or three layers thick and intermittent. The apical-cell and multicellular meristems are similar to those of cordate gametophytes of other ferns, but the marginal meristem is unique to the strap-shaped gametophyte of this fern.

Conclusions

The strap-shaped gametophytes of C. decurrens may have evolved from ancestors with a cordate shape by insertion of the marginal meristem phase between the first apical-cell-based meristem and subsequent multicellular meristem phases. Repeated retrieval of the marginal meristem at the multicellular meristem phase would result in indefinite prolongation of gametophyte growth, an ecological adaptation to epiphytic habitats.  相似文献   

7.

Background and Aims

The premature production of alpha-amylase without visible germination has been observed in developing grain of many cereals. The phenomenon is associated with cool temperatures in the late stages of grain growth but the mechanisms behind it are largely unknown. The aim of this study was to replicate the phenomenon under controlled conditions and investigate the possibility of a mechanistic link with grain size or endosperm cavity size.

Methods

Five wheat (Triticum aestivum) genotypes differing in their susceptibility to premature alpha-amylase were subjected to a range of temperature shocks in controlled environments. A comparison was then made with plants grown under ambient conditions but with grain size altered by using degraining to increase the assimilate supply. At maturity, alpha-amylase, grain area and endosperm cavity area were measured in individual grains.

Key Results

Both cold and heat shocks were successful in inducing premature alpha-amylase in susceptible genotypes, with cold shocks the most effective. Cold shocks also increased grain area. Degraining resulted in increased grain area overall, but the larger grain did not have higher alpha-amylase. Analysis of individual grain found that instances of high alpha-amylase were not associated with differences in grain area or endosperm cavity area.

Conclusions

Pre-maturity alpha-amylase is associated with temperature shocks during grain filling. In some cases this coincides with an increase in grain area, but there is no evidence of a mechanistic link between high alpha-amylase and grain or endosperm cavity area.Key words: Alpha-amylase, pre-maturity alpha-amylase, late maturity alpha amylase, temperature, grain size, endosperm cavity, wheat, Triticum aestivum  相似文献   

8.

Background

Spirodela polyrhiza is a species of the order Alismatales, which represent the basal lineage of monocots with more ancestral features than the Poales. Its complete sequence of the mitochondrial (mt) genome could provide clues for the understanding of the evolution of mt genomes in plant.

Methods

Spirodela polyrhiza mt genome was sequenced from total genomic DNA without physical separation of chloroplast and nuclear DNA using the SOLiD platform. Using a genome copy number sensitive assembly algorithm, the mt genome was successfully assembled. Gap closure and accuracy was determined with PCR products sequenced with the dideoxy method.

Conclusions

This is the most compact monocot mitochondrial genome with 228,493 bp. A total of 57 genes encode 35 known proteins, 3 ribosomal RNAs, and 19 tRNAs that recognize 15 amino acids. There are about 600 RNA editing sites predicted and three lineage specific protein-coding-gene losses. The mitochondrial genes, pseudogenes, and other hypothetical genes (ORFs) cover 71,783 bp (31.0%) of the genome. Imported plastid DNA accounts for an additional 9,295 bp (4.1%) of the mitochondrial DNA. Absence of transposable element sequences suggests that very few nuclear sequences have migrated into Spirodela mtDNA. Phylogenetic analysis of conserved protein-coding genes suggests that Spirodela shares the common ancestor with other monocots, but there is no obvious synteny between Spirodela and rice mtDNAs. After eliminating genes, introns, ORFs, and plastid-derived DNA, nearly four-fifths of the Spirodela mitochondrial genome is of unknown origin and function. Although it contains a similar chloroplast DNA content and range of RNA editing as other monocots, it is void of nuclear insertions, active gene loss, and comprises large regions of sequences of unknown origin in non-coding regions. Moreover, the lack of synteny with known mitochondrial genomic sequences shed new light on the early evolution of monocot mitochondrial genomes.  相似文献   

9.

Background and Aims

The competition–colonization trade-off theory postulates that the competitive and colonizing abilities of organisms are negatively related; this trade-off has been proposed as a major force in the maintenance of diversity. In plants, the competition–colonization trade-off is often considered to result from variation in resource partitioning, thus generating heavy competitive (non-dispersing) seeds and light (dispersing) non-competitive seeds. Here, the possibility is explored that early germination provides a competitive advantage, thus mediating competitive interactions.

Methods

Using eight populations of the heterocarpic species Crepis sancta (Asteraceae), the possibility was tested that dispersing and non-dispersing achenes differ in germination timing, and the impact of early germination on individual fitness components was analysed in the context of intraspecific competition. To evaluate whether seed reserve varies among achene types, endosperm size was also measured by analysing photographs of cross-sections taken under a binocular microscope.

Key Results and Conclusions

The results show that non-dispersing achenes germinated 4 d earlier (on average) than dispersing achenes. It is also shown that early germination provides a positive advantage for the survival and final biomass of individuals, a pattern that was consistent over the eight populations and independent of achene type. Dispersing and non-dispersing achenes did not differ in terms of seed reserve (endosperm size). It is proposed that germination phenology may mediate the competition–colonization trade-off in Crepis sancta and the evolutionary significance of this phenomenon is discussed.  相似文献   

10.

Background and Aims

Cytokinins are a major group of plant hormones and are associated with various developmental processes. Developing caryopses of maize have high levels of cytokinins, but little is known about their spatial and temporal distribution. The localization and quantification of cytokinins was investigated in maize (Zea mays) caryopsis from 0 to 28 d after pollination together with the expression and localization of isopentenyltransferase ZmIPT1 involved in cytokinin biosynthesis and ZmCNGT, the gene putatively involved in N9-glucosylation.

Methods

Biochemical, cellular and molecular approaches resolved the overall cytokinin profiles, and several gene expression assays were used for two critical genes to assess cytokinin cell-specific biosynthesis and conversion to the biologically inactive form. Cytokinins were immunolocalized for the first time in maize caryopses.

Key Results

During the period 0–28 d after pollination (DAP): (1) large quantities of cytokinins were detected in the maternal pedicel region relative to the filial tissues during the early stages after fertilization; (2) unpollinated ovules did not accumulate cytokinins; (3) the maternal nucellar region showed little or no cytokinin signal; (4) the highest cytokinin concentrations in filial endosperm and embryo were detected at 12 DAP, predominantly zeatin riboside and zeatin-9-glucoside, respectively; and (5) a strong cytokinin immuno-signal was detected in specific cell types in the pedicel, endosperm and embryo.

Conclusions

The cytokinins of developing maize caryopsis may originate from both local syntheses as well as by transport. High levels of fertilization-dependent cytokinins in the pedicel suggest filial control on metabolism in the maternal tissue; they may also trigger developmental programmed cell death in the pedicel.  相似文献   

11.

Background and Aims

Microsporogenesis in monocots is often characterized by successive cytokinesis with centrifugal cell plate formation. Pollen grains in monocots are predominantly monosulcate, but variation occurs, including the lack of apertures. The aperture pattern can be determined by microsporogenesis features such as the tetrad shape and the last sites of callose deposition among the microspores. Potamogeton belongs to the early divergent Potamogetonaceae and possesses inaperturate pollen, a type of pollen for which it has been suggested that there is a release of the constraint on tetrad shape. This study aimed to investigate the microsporogenesis and the ultrastructure of pollen wall in species of Potamogeton in order to better understand the relationship between microsporogenesis features and the inaperturate condition.

Methods

The microsporogenesis was investigated using both light and epifluorescence microscopy. The ultrastructure of the pollen grain was studied using transmission electron microscopy.

Key Results

The cytokinesis is successive and formation of the intersporal callose wall is achieved by centrifugal cell plates, as a one-step process. The microspore tetrads were tetragonal, decussate, T-shaped and linear, except in P. pusillus, which showed less variation. This species also showed a callose ring in the microsporocyte, and some rhomboidal tetrads. In the mature pollen, the thickening observed in a broad area of the intine was here interpreted as an artefact.

Conclusions

The data support the view that there is a correlation between the inaperturate pollen production and the release of constraint on tetrad shape. However, in P. pusillus the tetrad shape may be constrained by a callose ring. It is also suggested that the lack of apertures in the pollen of Potamogeton may be due to the lack of specific sites on which callose deposition is completed. Moreover, inaperturate pollen of Potamogeton would be better classified as omniaperturate.Key words: Alismatales, callose, microsporogenesis, pollen aperture, Potamogeton illinoensis, P. polygonus, P. pusillus, tetrad shape  相似文献   

12.
The Araceae, a basal-most family of Alismatales that basally diverged subsequent to Acorales in monocot phylogeny, are known to have diverse modes of endosperm development: nuclear, helobial, and cellular. However, the occurrence of nuclear and helobial endosperm development has long been debated. Here, we report a (re-)investigation of endosperm development in Lysichiton, Orontium, and Symplocarpus of the Orontioideae (a basal Araceae), in which nuclear endosperm development was recorded more than 100 years ago. The results show that all three genera exhibit a cellular, rather than nuclear, endosperm development and suggest that the helobial endosperm development reported as an “unmistakable record” from Ariopsis is likely cellular. Thus the Araceae are very likely characterized by cellular endosperm development alone. An extensive comparison with other monocots in light of phylogenetic relationships demonstrates that a plesiomorphic cellular endosperm development is restricted to the three basal monocot orders Acorales, Alismatales, and Petrosaviales, in which evolutionary changes from cellular to nuclear endosperm development occurred twice as major events, once within Alismatales and once as a synapomorphy of the eight remaining monocot orders, including Dioscoreales, Liliales, Asparagales, and Poales, and that helobial endosperm development, which is known for many monocot families, evolved as homoplasy throughout the monocots.  相似文献   

13.
14.
15.
Wu L  Wang H  Zhang Z  Lin R  Zhang Z  Lin W 《PloS one》2011,6(5):e20611

Background

The consecutive monoculture for most of medicinal plants, such as Rehmannia glutinosa, results in a significant reduction in the yield and quality. There is an urgent need to study for the sustainable development of Chinese herbaceous medicine.

Methodology/Principal Findings

Comparative metaproteomics of rhizosphere soil was developed and used to analyze the underlying mechanism of the consecutive monoculture problems of R. glutinosa. The 2D-gel patterns of protein spots for the soil samples showed a strong matrix dependency. Among the spots, 103 spots with high resolution and repeatability were randomly selected and successfully identified by MALDI TOF-TOF MS for a rhizosphere soil metaproteomic profile analysis. These proteins originating from plants and microorganisms play important roles in nutrient cycles and energy flow in rhizospheric soil ecosystem. They function in protein, nucleotide and secondary metabolisms, signal transduction and resistance. Comparative metaproteomics analysis revealed 33 differentially expressed protein spots in rhizosphere soil in response to increasing years of monoculture. Among them, plant proteins related to carbon and nitrogen metabolism and stress response, were mostly up-regulated except a down-regulated protein (glutathione S-transferase) involving detoxification. The phenylalanine ammonia-lyase was believed to participate in the phenylpropanoid metabolism as shown with a considerable increase in total phenolic acid content with increasing years of monoculture. Microbial proteins related to protein metabolism and cell wall biosynthesis, were up-regulated except a down-regulated protein (geranylgeranyl pyrophosphate synthase) functioning in diterpenoid synthesis. The results suggest that the consecutive monoculture of R. glutinosa changes the soil microbial ecology due to the exudates accumulation, as a result, the nutrient cycles are affected, leading to the retardation of plant growth and development.

Conclusions/Significance

Our results demonstrated the interactions among plant, soil and microflora in the proteomic level are crucial for the productivity and quality of R. glutinosa in consecutive monoculture system.  相似文献   

16.
The monosporic seven-celled/eight-nucleate Polygonum-type female gametophyte has long served as a focal point for discussion of the origin and subsequent evolution of the angiosperm female gametophyte. In Polygonum-type female gametophytes, two haploid female nuclei are incorporated into the central cell, and fusion of a sperm cell with the binucleate central cell produces a triploid endosperm with a complement of two maternal and one paternal genomes, characteristic of most angiosperms. We document the development of a four-celled/four-nucleate female gametophyte in Nuphar polysepala (Engelm.) and infer its presence in many other ancient lineages of angiosperms. The central cell of the female gametophyte in these taxa contains only one haploid nucleus; thus endosperm is diploid and has a ratio of one maternal to one paternal genome. Based on comparisons among flowering plants, we conclude that the angiosperm female gametophyte is constructed of modular developmental subunits. Each module is characterized by a common developmental pattern: (1) positioning of a single nucleus within a cytoplasmic domain (pole) of the female gametophyte; (2) two free-nuclear mitoses to yield four nuclei within that domain; and (3) partitioning of three uninucleate cells adjacent to the pole such that the fourth nucleus is confined to the central region of the female gametophyte (central cell). Within the basal angiosperm lineages Nymphaeales and Illiciales, female gametophytes are characterized by a single developmental module that produces a four-celled/four-nucleate structure with a haploid uninucleate central cell. A second pattern, typical of Amborella and the overwhelming majority of eumagnoliids, monocots, and eudicots, involves the early establishment of two developmental modules that produce a seven-celled/eight-nucleate female gametophyte with two haploid nuclei in the central cell. Comparative analysis of ontogenetic sequences suggests that the seven-celled female gametophyte (two modules) evolved by duplication and ectopic expression of an ancestral Nuphar-like developmental module within the chalazal domain of the female gametophyte. These analyses indicate that the first angiosperm female gametophytes were composed of a single developmental module, which upon double fertilization yielded a diploid endosperm. Early in angiosperm history this basic module was duplicated, and resulted in a seven-celled/eight-nucleate female gametophyte, which yielded a triploid endosperm with the characteristic 2:1 maternal to paternal genome ratio.  相似文献   

17.

Background and Aims

In mature quinoa (Chenopodium quinoa) seeds, the lasting endosperm forms a micropylar cone covering the radicle. The suspensor cells lie within the centre of the cone. During the final stage of seed development, the cells of the lasting endosperm accumulate protein and lipids while the rest are crushed and disintegrated. Both the suspensor and endosperm die progressively from the innermost layers surrounding the embryo and extending towards the nucellar tissue. Ricinosomes are endoplasmic reticulum-derived organelles that accumulate both the pro-form and the mature form of cysteine endopeptidase (Cys-EP), first identified in castor bean (Ricinus communis) endosperm during germination. This study sought to identify associations between the presence of ricinosomes and programmed cell death (PCD) hallmarks in suspensor and endosperm cells predestined to die during quinoa seed development.

Methods

A structural study using light microscopy and transmission electron microscopy was performed. To detect the presence of Cys-EP, both western blot and in situ immunolocalization assays were carried out using anti-R. communis Cys-EP antibody. A TUNEL assay was used to determine DNA fragmentation.

Results and Conclusions

Except for the one or two cell layers that constitute the lasting endosperm in the mature seed, ricinosomes were found in suspensor and endosperm cells. These cells were also the site of morphological abnormalities, including misshapen and fragmented nuclei, vesiculation of the cytosol, vacuole collapse and cell wall disorganization. It is proposed that, in suspensor and endosperm cells, the early detection of Cys-EP in ricinosomes predicts the occurrence of PCD during late seed development.  相似文献   

18.

Background and Aims

Recent studies of reproductive biology in ancient angiosperm lineages are beginning to shed light on the early evolution of flowering plants, but comparative studies are restricted by fragmented and meagre species representation in these angiosperm clades. In the present study, the progamic phase, from pollination to fertilization, is characterized in Annona cherimola, which is a member of the Annonaceae, the largest extant family among early-divergent angiosperms. Beside interest due to its phylogenetic position, this species is also an ancient crop with a clear niche for expansion in subtropical climates.

Methods

The kinetics of the reproductive process was established following controlled pollinations and sequential fixation. Gynoecium anatomy, pollen tube pathway, embryo sac and early post-fertilization events were characterized histochemically.

Key Results

A plesiomorphic gynoecium with a semi-open carpel shows a continuous secretory papillar surface along the carpel margins, which run from the stigma down to the obturator in the ovary. The pollen grains germinate in the stigma and compete in the stigma-style interface to reach the narrow secretory area that lines the margins of the semi-open stylar canal and is able to host just one to three pollen tubes. The embryo sac has eight nuclei and is well provisioned with large starch grains that are used during early cellular endosperm development.

Conclusions

A plesiomorphic simple gynoecium hosts a simple pollen–pistil interaction, based on a support–control system of pollen tube growth. Support is provided through basipetal secretory activity in the cells that line the pollen tube pathway. Spatial constraints, favouring pollen tube competition, are mediated by a dramatic reduction in the secretory surface available for pollen tube growth at the stigma–style interface. This extramural pollen tube competition contrasts with the intrastylar competition predominant in more recently derived lineages of angiosperms.Key words: Annona cherimola, Annonaceae, embryo sac, endosperm, Magnoliid, ovule, pollen–pistil interaction, pollen tube  相似文献   

19.
20.

Background and Aims

Previous studies have reported effects of pollen source on the oil concentration of maize (Zea mays) kernels through modifications to both the embryo/kernel ratio and embryo oil concentration. The present study expands upon previous analyses by addressing pollen source effects on the growth of kernel structures (i.e. pericarp, endosperm and embryo), allocation of embryo chemical constituents (i.e. oil, protein, starch and soluble sugars), and the anatomy and histology of the embryos.

Methods

Maize kernels with different oil concentration were obtained from pollinations with two parental genotypes of contrasting oil concentration. The dynamics of the growth of kernel structures and allocation of embryo chemical constituents were analysed during the post-flowering period. Mature kernels were dissected to study the anatomy (embryonic axis and scutellum) and histology [cell number and cell size of the scutellums, presence of sub-cellular structures in scutellum tissue (starch granules, oil and protein bodies)] of the embryos.

Key Results

Plants of all crosses exhibited a similar kernel number and kernel weight. Pollen source modified neither the growth period of kernel structures, nor pericarp growth rate. By contrast, pollen source determined a trade-off between embryo and endosperm growth rates, which impacted on the embryo/kernel ratio of mature kernels. Modifications to the embryo size were mediated by scutellum cell number. Pollen source also affected (P < 0·01) allocation of embryo chemical compounds. Negative correlations among embryo oil concentration and those of starch (r = 0·98, P < 0·01) and soluble sugars (r = 0·95, P < 0·05) were found. Coincidently, embryos with low oil concentration had an increased (P < 0·05–0·10) scutellum cell area occupied by starch granules and fewer oil bodies.

Conclusions

The effects of pollen source on both embryo/kernel ratio and allocation of embryo chemicals seems to be related to the early established sink strength (i.e. sink size and sink activity) of the embryos.Key words: Zea mays, maize, pollen, kernel, embryo, endosperm, oil, protein, starch, soluble sugars  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号