首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In plants the post-translational modification of proteins by polyamines catalysed by transglutaminases has been studied since 1987; it was identified by the production of glutamyl-polyamine derivatives, biochemical features, recognition by animal antibodies and modification of typical animal substrates. Transglutaminases are widespread in all plant organs and cell compartments studied until now, chloroplast being the most studied. Substrates are: photosynthetic complexes and Rubisco in chloroplasts, cytoskeleton and cell wall proteins. Roles either specific of plants or in common with animals are related to photosynthesis, fertilisation, stresses, senescence and programmed cell death, showing that the catalytic function is conserved across the kingdoms. AtPng1p, the first plant transglutaminase sequenced shows undetectable sequence homology to the animal enzymes, except for the catalytic triad. It is, however, endowed with a calcium-dependent activity that allowed us to build a three-dimensional model adopting as a template the animal tranglutaminase 2.  相似文献   

2.
Transglutaminases are calcium-dependent enzymes that catalyze a post-translational modification of proteins through the formation of epsilon -(gamma-glutamyl)lysine bonds. Although specific roles for transglutaminases have been described, recent findings have provided evidence that dysregulation of transglutaminases may contribute to many pathological processes including celiac disease and neurodegenerative diseases. A crucial step in the elucidation of biological and pathological roles of transglutaminases requires the identification of protein substrates. A strategy based on a functional proteomic analysis was set up using two well-characterized biotinylated transglutaminase substrates as affinity probes: 5-(biotinamido)pentylamine and the synthetic biotinylated peptide TVQQEL, the amino- and acyl-donor probes, respectively. A pool of known tissue type transglutaminase protein substrates was selected in order to test the procedure. Results obtained in this paper indicate that the whole strategy can be successfully applied in order to identify transglutaminases protein substrates as well as the amino acid site sensitive toward enzyme activity.  相似文献   

3.
Transglutaminases have a range of catalytic activities, most of which concern the post-translational modification of proteins. The most important of these activities is the cross-linking of proteins into large supramolecular networks. The widespread use of transglutaminases has increased the demand for an inexpensive, efficient and safe source of recombinant enzyme. We explored the use of plant-based systems for the production of this important industrial enzyme. Transgenic rice plants engineered with a rat prostate transglutaminase (rTGp), driven by the strong constitutive maize-1 ubiquitin promoter and its first intron, were shown to express the recombinant enzyme at the mRNA and protein levels. The Ca2+ dependence of the recombinant enzyme was confirmed by the biotin-labelled cadaverine-incorporation assay. In this communication we report the molecular and biochemical characterisation of transgenic plants expressing rTGp and this sets the stage for establishing a bioreactor system for the production of transglutaminases in plants.  相似文献   

4.
Summary. Transglutaminases have a range of catalytic activities, most of which concern the post-translational modification of proteins. The most important of these activities, both in terms of biology and biotechnology, is the cross-linking of proteins into large supramolecular networks. The widespread use of transglutaminases in research, medicine and industry has increased the demand for an inexpensive, efficient and safe source of recombinant enzymes. We describe initial results concerning the production of a mammalian transglutaminase in transgenic rice plants as a first step towards the large-scale molecular farming of this enzyme.  相似文献   

5.
In the light of our previous work, we know that there is a relationship between bound polyamines and the chloroplast differentiation process. This relationship may represent an important component of the process and be part of the mechanism of kinetin action, which stimulates chloroplast differentiation. To clarify the nature of the binding of polyamines to chloroplast structures, the possible involvement of transglutaminases in kinetin-stimulated chloroplast photodevelopment was investigated. Immunodetection of transglutaminases revealed bands at 77, 50 and 30 kDa both in etioplasts and chloroplasts. The data indicated a positive correlation between enzyme level and activity. It also demonstrated the regulation of transglutaminase protein expression by kinetin. The suborganellar location of transglutaminases by electron microscopy showed that the enzyme is peculiarly localised, mainly in pro-thylakoids and appressed grana thylakoids. The data corroborated that spermidine post-translational modification of certain plastid proteins of 58, 29, 26 and 12 kDa occurred. The results we obtained suggest that transglutaminases take part in the formation of the chloroplast structure via a mechanism whereby polyamines bind to their protein substrates. These findings about the effect of kinetin on conjugation provide a new contribution to the understanding of the mechanism of kinetin action on etioplast-to chloroplast transformation.  相似文献   

6.
Transglutaminases form a large family of intracellular and extracellular enzymes that catalyse the Ca2+-dependent post-translational modification of proteins. Despite significant advances in our understanding of the biological role of most mammalian transglutaminase isoforms, recent findings suggest new scenarios, most notably for the ubiquitous tissue transglutaminase. It is becoming apparent that some transglutaminases, normally expressed at low levels in many tissue types, are activated and/or overexpressed in a variety of diseases, thereby resulting in enhanced concentrations of cross-linked proteins. As applies to all enzymes that exert their metabolic function by modifying the properties of target proteins, the identification and characterization of the modified proteins will cast light on the functions of transglutaminases and their involvement in human diseases. In this paper we review data on the properties of mammalian transglutaminases, particularly as regards their protein substrates and the relevance of transglutaminase-catalysed reactions in physiological and disease conditions.  相似文献   

7.
Transglutaminases are confounding enzymes which are known to play key roles in various cellular processes. In this paper, we aim to bring together several pieces of evidence from published research and literature that suggest a potentially vital role for transglutaminases in receptor tyrosine kinases (RTK) signalling. We cite literature that confirms and suggests the formation of integrin:RTK:transglutaminase complexes and explores the occurrence and functionality of these complexes in a large fraction of the RTK family.  相似文献   

8.
Transglutaminases catalyze the cross-linking and amine incorporation of proteins, and are implicated in various biological phenomena. Previously, we found a high molecular mass transglutaminase-inhibitory substance produced by Streptomyces lavendulae Y-200 that appeared to be a melanin substance. Here, we report that synthetic tyrosine melanin inhibited various types of transglutaminases. Tyrosine melanin inhibited tissue-type transglutaminase in a competitive manner with a glutamine substrate, and also inhibited the cross-linking of casein catalyzed by a tissue-type transglutaminase. The melanized hemolymph of the silkworm and melanin solutions prepared from melanin precursors inhibited tissue-type transglutaminase. These results suggested that the melanin substances generally inhibit transglutaminases.  相似文献   

9.
Transglutaminases are a family of enzymes (EC 2.3.2.13), widely distributed in various organs, tissues, and body fluids, that catalyze the formation of a covalent bond between a free amine group and the γ-carboxamide group of protein or peptide-bound glutamine. Besides forming these bonds, that exhibit high resistance to proteolytic degradation, transglutaminases also form extensively cross-linked, generally insoluble, protein biopolymers that are indispensable for the organism to create barriers and stable structures. The extremely high cost of transglutaminase of animal origin has hampered its wider application and has initiated efforts to find an enzyme of microbial origin. Since the early 1990s, many microbial transglutaminase-producing strains have been found, and production processes have been optimized. This has resulted in a rapidly increasing number of applications of transglutaminase in the food sector. However, applications of microbial transglutaminase in other sectors have also been explored, but in a much lesser extent. Our group has identified a transglutaminase in the oomycete Phytophthora cinnamomi, which is able to induct defense responses and disease-like symptoms. In this mini-review, we report the achievements in this area in order to illustrate the importance and the versatility of transglutaminases.  相似文献   

10.
Transglutaminases are ubiquitous enzymes, which catalyze post-translational modifications of proteins. Recently, transglutaminases and tranglutaminase-catalyzed post-translational modification of proteins have been shown to be involved in the molecular mechanisms responsible for several human diseases. Transglutaminase activity has been hypothesized to be involved also in the pathogenetic mechanisms responsible for human neurodegenerative diseases. Neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, supranuclear palsy, Huntington’s disease and other polyglutamine diseases, are characterized in part by aberrant cerebral transglutaminase activity and by increased cross-linked proteins in affected brains. In this review, we focus on the possible molecular mechanisms by which transglutaminase activity could be involved in the pathogenesis of neurodegenerative diseases, and on the possible therapeutic effects of selective transglutaminase inhibitors for the cure of patients with diseases characterized by aberrant transglutaminase activity.  相似文献   

11.
Transglutaminases function as biological glues in animal cells, plant cells and microbes. In energy producing organelles such as chloroplasts the presence of transglutaminases was recently confirmed. Furthermore, a plastidial transglutaminase has been cloned from maize and the first plants overexpressing tgz are available (Nicotiana tabacum TGZ OE). Our hypothesis is that the overexpression of plastidal transglutaminase will alter photosynthesis via increased polyamination of the antenna of photosystem II. We have used standard analytical tools to separate the antenna from photosystem II in wild type and modified plants, 6 specific antibodies against LHCbs to confirm their presence and sensitive HPLC method to quantify the polyamination level of these proteins. We report that bound spermidine and spermine were significantly increased (~80%) in overexpressors. Moreover, we used recent advances in in vivo probing to study simultaneously the proton and electron circuit of thylakoids. Under physiological conditions overexpressors show a 3-fold higher sensitivity of the antenna down regulation loop (qE) to the elicitor (luminal protons) which is estimated as the ΔpH component of thylakoidal proton motive force. In addition, photosystem (hyper-PSIIα) with an exceptionally high antenna (large absorption cross section), accumulate in transglutaminase over expressers doubling the rate constant of light energy utilization (Kα) and promoting thylakoid membrane stacking. Polyamination of antenna proteins is a previously unrecognized mechanism for the modulation of the size (antenna absorption cross section) and sensitivity of photosystem II to down regulation. Future research will reveal which peptides and which residues of the antenna are responsible for such effects.  相似文献   

12.
Mammalian transglutaminases catalyze post‐translational modifications of glutamine residues on proteins and peptides through transamidation or deamidation reactions. Their catalytic mechanism resembles that of cysteine proteases. In virtually every case, their enzymatic activity is modulated by elaborate strategies including controlled gene expression, allostery, covalent modification, and proteolysis. In this review, we focus on our current knowledge of post‐translational regulation of transglutaminase activity by physiological as well as synthetic allosteric agents. Our discussion will primarily focus on transglutaminase 2, but will also compare and contrast its regulation with Factor XIIIa as well as transglutaminases 1 and 3. Potential structure–function relationships of known mutations in human transglutaminases are analyzed.  相似文献   

13.
Several studies demonstrated that transglutaminases play a key role in extracellular matrix stabilization needed for cell differentiation. We evaluated transglutaminase expression and activity in the pre-secretory stage of differentiation of the continuously erupting rat incisor. We observed that transglutaminase-mediated incorporation of monodansylcadaverine into protein substrates was specifically located in the apical loop, and along the basement membrane joining mesenchyme and inner dental epithelium in the odontogenic organ. Enzyme activity was associated with mRNAs for transglutaminase 1 and 2. Notably, labelling cells for these isoenzymes were observed in both mesenchymal and epithelial compartments, but not in the basement membrane, in the ameloblast facing pulp anterior region, where ameloblast and odontoblast differentiation begins. These findings demonstrate that transglutaminase 1 and transglutaminase 2 are expressed at a major extent in the pre-secretory stage of regenerating rat incisor, where they probably play complementary roles in cell signalling between mesenchyme and epithelium and extracellular matrix.  相似文献   

14.
The deduced amino acid sequences for tissue transglutaminases from human endothelial cells and mouse macrophages have been derived from cloned cDNAs. Northern blot analysis of both tissue transglutaminases shows a message size of approximately 3.6-3.7 kilobases. The molecular weights calculated from the deduced amino acid sequences were 77,253 for human endothelial tissue transglutaminase and 76,699 for mouse macrophage tissue transglutaminase. The deduced amino acid sequence for the human endothelial transglutaminase was confirmed by comparison with the amino acid sequence obtained by cyanogen bromide digestion of the human erythrocyte transglutaminase. The amino acid sequences of both human endothelial and mouse macrophage tissue transglutaminases were compared to other transglutaminases. A very high degree of homology was found between human endothelial, mouse macrophage, and guinea pig liver tissue transglutaminase (greater than 80%). Moreover, human endothelial tissue transglutaminase was compared with human Factor XIIIa and a very high degree of homology (75% identity) was found in the active site region.  相似文献   

15.
Transglutaminases catalyze the cross-linking and amine incorporation of proteins, and are implicated in various biological phenomena. To elucidate the physiological roles of transglutaminase at the molecular level, we need to identify its physiological protein substrates and clarify the relationship between transglutaminase modification of protein substrates and biological responses. Here we examined whether betaine-homocysteine S-methyltransferase (BHMT: EC 2.1.1.5) can be a substrate of tissue-type transglutaminase by in vitro experiments using porcine liver BHMT and guinea pig liver transglutarninase. Guinea pig liver transglutaminase incorporated 5-(biotinamido) pentylamine and [3H] histamine into BHMT in a time-dependent manner. Putrescine and spermidine also seemed to be incorporated into BHMT by transglutaminase. In the absence of the primary amines, BHMT subunits were cross-linked intra- and intermolecularly. BHMT activity was decreased significantly through the cross-linking by transglutaminase. Histamine incorporation slightly reduced the BHMT activity. Peptide fragments of BHMT containing the glutamine residues reactive for transglutaminase reaction were isolated through biotin labelling, proteinase digestion, biotin-avidin a affinity separation, and reverse phase HPLC. The results of amino acid sequence analyses of these peptides and sequence homology alignment with other mammalian liver BHMT subunits showed that these reactive glutamine residues were located in the region near the carboxyl terminal of porcine BHMT subunit. These results suggested that the liver BHMT can be modified by tissue-type transglutaminase and its activity is regulated repressively by the modification, especially by the cross-linking. This regulatory reaction might be involved in the regulation of homocysteine metabolism in the liver.  相似文献   

16.
17.
Transglutaminases catalyze the cross-linking and amine incorporation of proteins, and are implicated in various biological phenomena such as blood clotting, wound healing, apoptosis, and cell differentiation. Streptomyces lavendulae Y-200, isolated from soil, produced a substance that inhibited transglutaminases. The inhibitory substance was purified from the cultured medium by procedures of acid precipitation, deoxyribonuclease treatment, and gel filtration chromatography. The partially purified sample was dark brown. The inhibitory activity was stable under acidic, alkaline, and high temperature conditions, and resistant to the treatment with proteinases such as trypsin and Pronase. The molecular weight of the inhibitory substance was estimated to be between 10(4) and 10(5) from its permeability through ultrafilter membranes. The acid hydrolysate of the inhibitory substance contained amino acids and sugars. The inhibitory substance inhibited both calcium-dependent and calcium-independent transglutaminases in a competitive manner with a glutamine substrate. The extent of inhibition caused by the calcium-dependent transglutaminase increased with increasing calcium concentration. The results obtained here may help identify a novel regulatory substance of transglutaminase in biological systems.  相似文献   

18.
In Chrysanthemum leaf explants cultivated in vitro the capacity to covalently link polyamines to protein substances exists. This plant enzyme activity shows some similarities with mammalian transglutaminases. In foliar explants cultured on a medium promoting bud or root formation increasing levels of transglutaminase-like activity occurred during the first days of culture when cell multiplication was rapid then the levels declined as the rate of cell division decreased and differentiation occurred. Undifferentiated callus exhibited low transglutaminase-like activity. Transglutaminase-like activity also increased in rapidly proliferating and growing organs (roots and buds initiated from the foliar explants) and decreased during maturity. The relationship among transglutaminases-like activity, cell division, bud and root formation is discussed.Abbreviations TGase transglutaminase - BA benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - Put putrescine - Spd spermidine  相似文献   

19.
Transglutaminases catalyze the cross-linking and amine incorporation of proteins, and are implicated in various biological phenomena such as blood clotting, wound healing, apoptosis, and cell differentiation. Streptomyces lavendulae Y-200, isolated from soil, produced a substance that inhibited transglutaminases. The inhibitory substance was purified from the cultured medium by procedures of acid precipitation, deoxyribonuclease treatment, and gel filtration chromatography. The partially purified sample was dark brown. The inhibitory activity was stable under acidic, alkaline, and high temperature conditions, and resistant to the treatment with proteinases such as trypsin and Pronase. The molecular weight of the inhibitory substance was estimated to be between 104 and 105 from its permeability through ultrafilter membranes. The acid hydrolysate of the inhibitory substance contained amino acids and sugars. The inhibitory substance inhibited both calcium-dependent and calcium-independent transglutaminases in a competitive manner with a glutamine substrate. The extent of inhibition caused by the calcium-dependent transglutaminase increased with increasing calcium concentration. The results obtained here may help identify a novel regulatory substance of transglutaminase in biological systems.  相似文献   

20.
Transglutaminases (EC 2.3.2.13) catalyze the formation of epsilon-(gamma-glutamyl)lysine cross-links and the substitution of a variety of primary amines for the gamma-carboxamide groups of protein-bound glutamine residues. These enzymes are involved in many biological phenomena. Transglutaminase reactions also have been shown to be suitable for applied enzymology. In this study, as a first step of studies to elucidate the structure/function relationship of transglutaminase, we constructed an expression plasmid, pKTG1, containing a cDNA of guinea-pig liver transglutaminase between the NcoI and PstI sites of an expression vector, pKK233-2, and produced the liver transglutaminase as an unfused protein in Escherichia coli. The purified recombinant enzyme was indistinguishable from natural liver transglutaminase in some structural properties such as molecular mass, amino acid composition, and amino- and carboxyl-terminal sequences. However, the alpha-amino group of the amino-terminal alanine residue of the recombinant transglutaminase was not acetylated as was that of the natural enzyme. Comparison of the recombinant enzyme with the natural one did not indicate significant differences in specific activity and apparent Km values for substrates in the histamine incorporation into acetyl alpha s1-casein. The sensitivity to activation by Ca2+ and the rate of catalyzed protein cross-linking were also similar between recombinant and natural transglutaminases. These results indicated that the N alpha-acetyl group in natural liver transglutaminase has not a particular role in the catalytic function of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号