首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 5.5-y-old intact male cynomolgus macaque (Macaca fasicularis) presented with inappetence and weight loss 57 d after heterotopic heart and thymus transplantation while receiving an immunosuppressant regimen consisting of tacrolimus, mycophenolate mofetil, and methylprednisolone to prevent graft rejection. A serum chemistry panel, a glycated hemoglobin test, and urinalysis performed at presentation revealed elevated blood glucose and glycated hemoglobin (HbA1c) levels (727 mg/dL and 10.1%, respectively), glucosuria, and ketonuria. Diabetes mellitus was diagnosed, and insulin therapy was initiated immediately. The macaque was weaned off the immunosuppressive therapy as his clinical condition improved and stabilized. Approximately 74 d after discontinuation of the immunosuppressants, the blood glucose normalized, and the insulin therapy was stopped. The animal''s blood glucose and HbA1c values have remained within normal limits since this time. We suspect that our macaque experienced new-onset diabetes mellitus after transplantation, a condition that is commonly observed in human transplant patients but not well described in NHP. To our knowledge, this report represents the first documented case of new-onset diabetes mellitus after transplantation in a cynomolgus macaque.Abbreviations: NODAT, new-onset diabetes mellitus after transplantationNew-onset diabetes mellitus after transplantation (NODAT, formerly known as posttransplantation diabetes mellitus) is an important consequence of solid-organ transplantation in humans.7-10,15,17,19,21,25-28,31,33,34,37,38,42 A variety of risk factors have been identified including increased age, sex (male prevalence), elevated pretransplant fasting plasma glucose levels, and immunosuppressive therapy.7-10,15,17,19,21,25-28,31,33,34,37,38,42 The relationship between calcineurin inhibitors, such as tacrolimus and cyclosporin, and the development of NODAT is widely recognized in human medicine.7-10,15,17,19,21,25-28,31,33,34,37,38,42 Cynomolgus macaques (Macaca fasicularis) are a commonly used NHP model in organ transplantation research. Cases of natural and induced diabetes of cynomolgus monkeys have been described in the literature;14,43,45 however, NODAT in a macaque model of solid-organ transplantation has not been reported previously to our knowledge.  相似文献   

2.
Secondary hepatic amyloidosis in nonhuman primates carries a grave prognosis once animals become clinically ill. The purpose of this study was to establish serologic parameters that potentially could be used to identify rhesus macaques undergoing subclinical development of secondary hepatic amyloidosis. A retrospective analysis was completed by using serum biochemical profiles from 26 histologically diagnosed amyloidotic macaques evaluated at 2 stages of disease, clinical and subclinical (3 to 32 mo prior to clinical signs of disease). Standard serum biochemistry values for cases were compared with institutional age- and gender-specific references ranges by construction of 95% confidence intervals for the difference between means. In addition, 19 histologically diagnosed amyloidotic macaques and 19 age-matched controls were assayed for changes in various parameters by using routinely banked, frozen (–80 °C) sera available from clinical and subclinical time points. Clinically amyloidotic animals displayed increased levels of alkaline phosphatase, aspartate aminotransferase, lactate dehydrogenase, gamma glutamyltranspeptidase, and macrophage colony-stimulating factor and significantly decreased quantities of albumin and total cholesterol. Subclinical amyloidotic animals displayed increased levels of alkaline phosphatase, aspartate aminotransferase, lactate dehydrogenase, and serum amyloid A and decreased concentrations of albumin and total cholesterol. The serologic parameters studied indicate a temporal relationship of these factors not previously described, show a clear pattern of disease progression, and could be useful in subclinical disease detection.Abbreviations: mCSF, macrophage colony stimulating factor; SAA, serum amyloid AAmyloid is an eosinophilic substance made of insoluble fibrillar protein.32 When deposited extracellularly, amyloid causes displacement of tissue form and disruption of organ function.32 Persistent accretion of amyloid can result in organ failure and ultimately animal death.22 Clinical signs of disease depend on the tissues affected and the degree of involvement.32 Amyloidosis has been well documented in humans, other mammals, birds, and reptiles.38 In humans, amyloidosis plays a key role in many diseases, including Alzheimer disease, type II diabetes, rheumatoid arthritis, and Down syndrome.15,20,35,38Amyloidosis generally is classified into 3 categories: primary, secondary, and hereditary. Primary amyloidosis consists of the immunoglobulin- and myeloma-associated types. Secondary (reactive) amyloidosis is associated with chronic inflammation.24 Common causes of secondary amyloidosis in humans include rheumatoid arthritis, idiopathic colitis, infectious diseases, such as tuberculosis and leprosy, and malignant tumors, such as mesothelioma and Hodgkins disease.28 Hereditary amyloid syndromes are rare and include Mediterranean fever, Muckle–Wells syndrome, and familial amyloid cardiomyopathy.32,38Secondary amyloidosis is the most common form of amyloidosis in animals.38 Amyloidosis occurs in many species of nonhuman primates including the common marmoset (Callithrix jacchus),23 squirrel monkey (Saimiri sciureus),34 rhesus macaque (Macaca mulatta),9,10 pigtailed macaque (Macaca nemestrina),18,27 crab-eating macaque (Macaca fascicularis),27 barbary ape (Macaca sylvanus),6 baboon (Papio spp.),17 mandrill (Papio sphinx), and chimpanzee (Pan troglodytes).16,39 Although a definitive cause of secondary amyloidosis has not been identified in nonhuman primates, this condition has been associated with chronic inflammation due to rheumatoid arthritis,6 viral infection,18 parasitism,1 respiratory disease,27,30 trauma,30 and bacterial enterocolitis.27,30,31 Shigella spp. have received particular attention as a common etiology linking enterocolitis with amyloidosis.4,7,38Previous research on amyloidosis in nonhuman primates has yielded clinical and serologic profiles in end-stage amyloidotic animals, but little is known about the serologic status in the subclinical stages of disease. Amyloid can accumulate for as long as 3 y before severe organ disruption occurs14 and clinical signs of amyloidosis become evident.16 With appropriate analysis, detection of amyloidosis could occur much earlier than typically now achieved, thus allowing for targeted preventative therapy to potentially halt the progression of this insidious disease.  相似文献   

3.
4.
Spontaneous neoplasms in Mongolian gerbils have an incidence of 20% to 26.8%, but osteosarcomas occur at a much lower rate. Here we report a 1-y-old Mongolian gerbil with a spontaneous osteosarcoma at the level of the proximal tibia, with metastases to the pectoral muscles and lungs. Grossly, the tibial mass obliterated the tibia and adjacent muscles, and an axillary mass with a bloody, cavitary center expanded the pectoral muscles. Microscopically, the tibial mass was an infiltrative, osteoblastic mesenchymal neoplasm, and the axillary mass was an anaplastic mesenchymal neoplasm with hemorrhage. The lung contained multiple metastatic foci. Immunohistochemistry for osteonectin was strongly positive in the tibial, axillary, and pulmonary metastases. Although osteosarcoma is the most common primary malignant bone neoplasm that occurs spontaneously in all laboratory and domestic animal species and humans, it arises less frequently than does other neoplasms. The current case of spontaneous osteoblastic osteosarcoma of the proximal tibia and metastases to the pectoral muscles and lung in a Mongolian gerbil is similar in presentation, histology, and predilection site of both osteoblastic and telangiectatic osteosarcomas in humans. In addition, this case is an unusual manifestation of osteosarcoma in the appendicular skeleton of a Mongolian gerbil.Mongolian gerbils are used frequently in biologic research,1,2,4,9,10,12-14 particularly in oncogenic studies and filariasis research studying Brugia malayi.2 There have been several reports1,6,10,11,13-15 of spontaneous neoplasms, particularly in gerbils 2 y of age and older, typically occurring with the highest incidences in the skin, reproductive tract, and adrenal glands; however, neoplasms have also been reported in the thyroid, thymus, liver, kidney, pancreas, and bone.1,6,10,11,13-15 The incidence of spontaneous neoplasms occurring in the subfamily Gerbillinae ranges from 20% to 26.8%,1,6,10,11,13-15 depending on the study, age, and sex of the animals.With a lower incidence than those reported for other neoplasms, osteosarcomas in gerbils have been described in the ramus of the mandible and as an extraskeletal mass throughout the peritoneum.10,11 The usual age of onset for osteosarcomas in Mongolian gerbils is approximately 3 y (36 to 39 mo); however, no tumor type has been reported at less than 2 y of age in this species.10,11 Here we report a spontaneous osteosarcoma that occurred at the level of the proximal tibia, with metastases to the pectoral muscles and lung, in a 1-y-old Mongolian gerbil.  相似文献   

5.
In 2008, clinical observations in our colony of sooty mangabeys (Cercocebus atys) suggested a high frequency of type 2 diabetes. Postmortem studies of diabetic animals revealed dense amyloid deposits in pancreatic islets. To investigate these findings, we screened our colony (97 male mangabeys; 99 female mangabeys) for the disease from 2008 to 2012. The overall prevalence of diabetes was 11% and of prediabetes was 7%, which is nearly double that reported for other primate species (less than 6%). Fructosamine and triglyceride levels were the best indicators of diabetes; total cholesterol and glycated hemoglobin were not associated with disease. Increasing age was a significant risk factor: prevalence increased from 0% in infants, juveniles, and young adults to 11% in adults and 19% in geriatric mangabeys. Sex, medroxyprogesterone acetate exposure, and SIV status were unrelated to disease. Weight was marginally higher in prediabetics, but body condition did not indicate obesity. Of the 49 mangabeys that were necropsied after clinical euthanasia or death from natural causes, 22 were diabetic; all 22 animals demonstrated pancreatic amyloid, and most had more than 75% of islets replaced with amyloid. We conclude that type 2 diabetes is more common in mangabeys than in other primate species. Diabetes in mangabeys has some unusual pathologic characteristics, including the absence of altered cholesterol levels and glycated hemoglobin but a robust association of pancreatic insular amyloidosis with clinical diabetes. Future research will examine the genetic basis of mangabey diabetes and evaluate additional diagnostic tools using imaging and serum markers.Abbreviations: HbA1c, glycated hemoglobin; MPA, medroxyprogesterone acetate; YNPRC, Yerkes National Primate Research CenterSooty mangabeys (Cercocebus atys) are Old World NHP that are native to West Africa. Historically their use in research has been limited to infectious disease studies, leprosy studies, and behavioral research.14,25 Over the past 20 to 30 y, they have been used in HIV–AIDS research. Mangabeys are natural hosts of SIVsmm, which is recognized as the origin of HIV2 infection in humans.7,8,30,36,42 SIV typically is nonpathogenic in mangabeys despite high levels of virus replication, which makes this species a unique and invaluable model in AIDS research.7,30,36,42 Our facility maintains a colony of approximately 200 sooty mangabeys. In 2008 clinical observations of relative hyperglycemia, glucosuria, and weight loss in our colony suggested that type 2 diabetes mellitus occurred at a relatively high frequency in this population. Spontaneous diabetes was found in 10% of the colony, and 5% of animals were prediabetic; this incidence is higher than that typically reported for other NHP species, such as cynomolgus macaques (less than 1% to 2%)22 and chimpanzees (less than 1%).37 The prevalence of spontaneous diabetes in humans is typically 8.3%.2,6,22,37 In addition, necropsies revealed that many affected animals had dense amyloid deposits in pancreatic islet cells. Insular amyloidosis was seen on histology, with a total replacement of islets by amyloid deposition in advanced diabetes. Advanced diabetes was determined by increased weight loss and severity of relative hyperglycemia. The increased clinical prevalence of diabetes in our mangabey colony prompted additional characterization of the clinicopathologic profile, risk factors, and prevalence of diabetes in our mangabey colony.The form of diabetes in this mangabey colony is characterized as type 2 diabetes mellitus, as they have hyperglycemia, hypertriglyceridemia, and islet amyloidosis. Type 2 diabetes mellitus is the most common of the 3 forms of diabetes, and has been documented in humans and NHP,22,31,37,55 including rhesus macaques (Macaca mulatta), cynomolgus macaques (Macaca fascicularis), Celebes crested macaques (Macaca nigra), bonnet macaques (Macaca radiate), pigtailed macaques (Macaca nemestrina), vervet monkeys (Chlorocebus pygerythrus), squirrel monkeys (Saimiri sciureus), chimpanzees (Pan troglodytes), and woolly monkeys (Lagothrix spp.).1,24,31,52,55 Type 2 diabetes is a chronic metabolic disorder in which insulin resistance occurs in liver, muscle, and adipose tissue. As type 2 diabetes progresses, it also can be characterized as a relative insulin deficiency.1,6,15,22,29,31,37,55 The initial clinical presentation of diabetes in humans and NHP includes polydipsia, polyuria, polyphagia, weight loss, and lethargy.1,6,22,27,31,37,55 Similar presentation was observed in our colony of diabetic mangabeys.Diagnostic criteria of diabetes in NHP species is similar to that for humans and is based on clinical symptoms and routine lab tests, including serum chemistry panel to evaluate persistent fasting hyperglycemia, hypertriglyceridemia, and hypercholesterolemia.2,6,11,16-18,21,22,29,31,37,48-50,52,55 Hypertriglyceridemia and hypercholesterolemia frequently are elevated due to diabetes and therefore are used as supportive diagnostic markers. In addition, the disease is characterized by transient hyperinsulinemia followed by insulin deficiency subsequent to glucose challenge. Urinalysis is used to evaluate glucosuria and ketonuria. These tests are not exclusive for diagnosing diabetes and can be inconsistent between species, thus making conclusive diagnosis challenging. For example, hyperglycemia can be a transient finding associated with recent food intake or stress associated with restraint for blood sample collection or anesthetic access, whereas hypertriglyceridemia can be seen in obese animals and those with other metabolic diseases such as pancreatitis and hypothyroidism.1,22,37,55The typical clinical approach to the diagnosis of diabetes in NHP and other veterinary patients includes evaluation of fructosamine and glycated hemoglobin (HbA1c) levels and glucose tolerance testing. These tests are indices of glycemic control and are used in clinical settings primarily to assess prognosis and response to treatment; they are also useful for the initial diagnosis of diabetes when used in parallel with serum chemistry markers. Fructosamine and HbA1c can both provide information on long-term glycemic control, because fructosamine reflects average blood glucose levels over 2 to 3 wk whereas HbA1c reflects average blood glucose over 2 to 3 mo preceding blood collection. HbA1c is the primary test for diabetes in human medicine,6,31,35,37 whereas fructosamine is commonly used in veterinary medicine. Glucose tolerance testing provides an indirect measure of insulin sensitivity, but it is not frequently used clinically in NHP because of the requirement for prolonged physical restraint or sedation.1,21,22,26,27,34,37,55Prevention and management of diabetes in NHP and humans can be achieved by identifying potential risk factors, including age, weight, sex, genetics, hormone drug exposure, and viral status.1,6,15,22,29,31,37,42,55 Advanced age, obesity, sex, and genetics are associated with diabetes in some species of NHP and humans.1,6,15,22,29,31,37,55 In addition, exposure to drugs such as medroxyprogesterone acetate (MPA) is suspected to be linked to diabetes due to the hormonal effects of progesterone impacting glucoregulatory function.1,6,10,22,23,31,34,55 MPA exposure is of interest, because it is used regularly in our mangabey colony as both a contraceptive and as therapy for endometriosis. In addition, SIV status is being evaluated as a risk factor, because a portion of our colony is SIV positive. Although HIV is not thought to be associated with diabetes in people, SIV pathogenesis in mangabeys differs; therefore it was of interest to explore the possible association of SIV and diabetes in mangabeys.7,30,36,42 Pancreatic insular amyloidosis has been documented to be associated with type 2 diabetes in several species. Amyloidosis is a group of disorders that are caused by extracellular deposition of misfolded proteins that can result in impaired function of any organ.15,20,23,28,32,43,45,48,49 Because a high incidence of pancreatic insular amyloid was noted at necropsy, we sought to document the relationship with clinical diabetes in mangabeys.Spontaneous type 2 diabetes mellitus has been well documented in several species of NHP. Because the literature contains little information regarding the clinicopathologic features (the ‘profile’), risk factors, and prevalence of spontaneous diabetes mellitus in sooty mangabeys, the primary aims of the current study were 1) to determine whether elevated levels of fasting blood glucose, fructosamine, HbA1c, triglycerides, and total cholesterol levels are reliable diagnostic markers of type 2 diabetes mellitus in this NHP species; 2) to determine whether age, sex, MPA exposure, and SIV status influence the risk of diabetes; 3) to determine whether body weight influences diabetic status; 4) to evaluate the relationship between pancreatic amyloidosis and diabetes mellitus; and 5) to characterize the prevalence of diabetes mellitus in the mangabey population at our institution. To our knowledge, this report is the first to describe the natural occurrence of type 2 diabetes mellitus within a captive colony of sooty mangabeys. We hypothesized that blood glucose, fructosamine, HbA1c, triglyceride, and total cholesterol would be reliable diagnostic markers and that age, sex, and MPA exposure would influence the risk of diabetes in this species.  相似文献   

6.
Giardia intestinalis is a common protozoan parasite that can infect many laboratory animal primates, although its role as a contributor to the induction of gastrointestinal disease remains unclear. This study sought to investigate the prevalence of Giardia in a colony of common marmosets by using a Giardia antigen-capture assay and to address the possible eradication of this infection by using tinidazole, an antiprotozoal similar to metronidazole but requiring fewer doses. Among 31 colony marmosets, 13 (42%) were positive for Giardia. Two doses of oral tinidazole eliminated the infection in all animals. Repeat testing of the 13 Giardia-positive monkeys 1 y later showed that 11 remained negative and that treated animals had a significant increase in weight at 1 y. Giardia antigen is common in common marmoset feces, and treatment using oral tinidazole is possible and highly effective.Giardia intestinalis is a common zoonotic protozoan parasite causing diarrhea in humans and animals worldwide. Infection usually results from contact with the feces of an infected host or drinking water contaminated with Giardia cysts. As few as 10 cysts are necessary for infection in human subjects.36 Giardia causes both an acute disease and a chronic asymptomatic state. The most common clinical signs of acute disease are diarrhea, flatulence, foul stool, and abdominal cramps. In addition, Giardia has been implicated as a cause of cognitive impairment and stunted growth in infected children in developing countries.1,2,29Giardiasis has previously been reported to occur in a variety of laboratory primates, including several species of neotropical monkeys such as marmosets and squirrel monkeys.13,20,28 Such infections may pose a zoonotic risk to animal handlers and potentially affect colony health. Common marmosets (Callithrix jacchus) frequently manifest chronic wasting and inflammatory bowel disease known as ‘wasting marmoset syndrome.’ The etiology of the intestinal disease is unknown, but marmosets often present clinically with skeletal muscle atrophy, marked weight loss, alopecia, and a history of intermittent diarrhea.5,11,16,21,35 Likely no single infectious agent or nutritional deficiency causes the clinical spectrum, but rather a combination of factors result in antigenic stimulation of the intestinal tract resulting in the chronic disease. The presence of Giardia cannot be ruled out as a cofactor.Several studies have compared various diagnostic tools for detection of Giardia in fecal specimens. Multiple fecal tests for Giardial colonization are available, including antigen-detection enzyme immunoassays, immunochromatographic strips, and microscopy of wet-mounted stool after fecal flotation.9,24,37,38 Enzyme immunoassays are a rapid and precise tool for detecting Giardia in fecal specimens; test sensitivities and specificities have approached 100% in several studies.9,22,24,37 In addition, these studies have indicated that repeat stool sampling on different days may increase the yield of testing, because organisms are variably shed.9,14,36 The specific recommendation is to test 3 samples on alternate days or 3 samples within a 10-d span.38Treatment options for Giardia infection are varied and include metronidazole, albendazole, quinacrine, furazolidone, and several other nitroimidazoles including tinidazole, secnidazole, ornidazole, and nimorazole.15 The most common treatment choice in veterinary medicine is metronidazole; however, this drug requires 5 to 8 d of treatment and ensuring animal compliance is difficult.27 Several of metronidazole''s structural analogues, including tinidazole, are used as a single dose in the treatment of Giardiasis in humans with high cure rates (approximately 90%) and low complications.3,8,10,26,39In this study we examined the use of a commercially available antigen-capture assay to diagnose Giardiasis in a large breeding colony of common marmosets. To address possible eradication of the infection, we describe the safe use and efficacy of tinidazole as a new treatment option in this species.  相似文献   

7.
Retinoic acid is a widely used factor in both mouse and human embryonic stem cells. It suppresses differentiation to mesoderm and enhances differentiation to ectoderm. Fibroblast growth factor 2 (FGF2) is widely used to induce differentiation to neurons in mice, yet in primates, including humans, it maintains embryonic stem cells in the undifferentiated state. In this study, we established an FGF2 low-dose-dependent embryonic stem cell line from cynomolgus monkeys and then analyzed neural differentiation in cultures supplemented with retinoic acid and FGF2. When only retinoic acid was added to culture, neurons differentiated from FGF2 low-dose-dependent embryonic stem cells. When both retinoic acid and FGF2 were added, neurons and astrocytes differentiated from the same embryonic stem cell line. Thus, retinoic acid promotes the differentiation from embryonic stem cells to neuroectoderm. Although FGF2 seems to promote self-renewal in stem cells, its effects on the differentiation of stem cells are influenced by the presence or absence of supplemental retinoic acid.Abbreviations: EB, embryoid body; ES, embryonic stem; ESM, embryonic stem cell medium; FGF, fibroblast growth factor; GFAP, glial fibrillary acidic protein; LIF, leukemia inhibitory factor; MBP, myelin basic protein; RA, retinoic acid; SSEA, stage-specific embryonic antigen; TRA, tumor-related antigenPluripotent stem cells are potential sources of material for cell replacement therapy and are useful experimental tools for in vitro models of human disease and drug screening. Embryonic stem (ES) cells are capable of extensive proliferation and multilineage differentiation, and thus ES-derived cells are suitable for use in cell-replacement therapies.18,23 Reported ES cell characteristics including tumorigenic potential, DNA methylation status, expression of imprinted genes, and chromatin structure were elucidated by using induced pluripotent stem cells.2,11,17 Because the social expectations of regeneration medicine are growing, we must perform basic research with ES cells, which differ from induced pluripotent stem cells in terms of origin, differentiation ability, and epigenetic status.2,8Several advances in research have been made by using mouse ES cells. Furthermore, primate ES cell lines have been established from rhesus monkeys (Macaca mulatta),24 common marmosets (Callithrix jacchus),25 cynomolgus monkeys (M. fascicularis),20 and African green monkeys (Chlorocebus aethiops).19 Mouse and other mammalian ES cells differ markedly in their responses to the signaling pathways that support self-renewal.8,28 Mouse ES cells require leukemia inhibitory factor (LIF)–STAT3 signaling.14 In contrast, primate ES cells do not respond to LIF. Fibroblast growth factor 2 (FGF2) appears to be the most upstream self-renewal factor in primate ES cells. FGF2 also exerts its effects through indirect mechanisms, such as the TGFβ–Activin–Nodal signaling pathway, in primate ES cells.21 In addition to the biologic similarities between monkeys and humans, ES cells derived from cynomolgus monkeys or human blastocysts have extensive similarities that are not apparent in mouse ES cells.8,14,21,28 Numerous monkey ES cell lines are now available, and cynomolgus monkeys are an efficient model for developing strategies to investigate the efficacy of ES-cell–based medical treatments in humans.Several growth factors and chemical compounds, including retinoic acid (RA),4,9,13,22,26 FGF2,9,10,16,22 epidermal growth factor,9,22 SB431542,1,4,10 dorsomorphin,10,27 sonic hedgehog,12,13,16,27,29 and noggin,1,4,9,27 are essential for the differentiation and proliferation or maintenance of neural stem cells derived from primate ES cells. Of these factors, active RA signaling suppresses a mesodermal fate by inhibiting Wnt and Nodal signaling pathways during in vitro culture and leads to neuroectoderm differentiation in ES cells.4,13,26 RA is an indispensable factor for the specialization to neural cells. FGF2 is important during nervous system development,12 and FGF2 and RA both are believed to influence the differentiation to neural cells. The current study was done to clarify the mechanism of RA and FGF2 in the induction of differentiation along the neural lineage.We recently established a monkey ES cell line that does not need FGF2 supplementation for maintenance of the undifferentiated state. This ES cell line allowed us to study the role of differentiation to neural cells with RA and enabled us to compare ES cell differentiation in the context of supplementation with RA or FGF2 in culture. To this end, we established a novel cynomolgus monkey cell line derived from ES cells and maintained it in an undifferentiated state in the absence of FGF2 supplementation.  相似文献   

8.
Cotton rats (Sigmodon hispidus) have been used to study a variety of infectious agents, particularly human respiratory viral pathogens. During the course of comprehensive pathologic evaluations of aging breeders from our breeding colony, 6 of 22 (27%) female cotton rats had histologic evidence, limited to the lungs, of embolized cells that were confirmed to be trophoblastic in origin by HSD3B1 immunoreactivity. When pulmonary trophoblast emboli were numerous, they usually were associated with additional histologic findings in the lungs, including pulmonary edema and hemorrhage, endothelial hypertrophy, fibrinoid vascular necrosis, and abundant alveolar macrophages containing fresh fibrin and hemolyzing erythrocytes. Of the 6 cotton rats with pulmonary trophoblast emboli, 5 (83%) were at 8 to 18 d of the 27-d gestation period, with the greatest number of emboli per lung present between days 10 through 14. The remaining cotton rat had a focal pulmonary trophoblast embolus and was not pregnant but had delivered a litter 3 mo previously. Three other cotton rats in either the early or late stages of gestation showed no histologic evidence of pulmonary trophoblast deportation. This report is the first to document pulmonary trophoblast emboli in cotton rats. This finding suggests that cotton rats may be an alternative animal model for the study of normal and aberrant trophoblast deportation in routine pregnancies and gestational pathologic conditions in women.Abbreviations: HSD3B1, hydroxyl-C-5-steroid dehydrogenaseCotton rats (Sigmodon hispidus) are a relevant animal model for the study of human respiratory23 viral pathogens, with increasing usage by academic and industrial institutions. The hemochorial placentation in Sigmodontinae22 is similar to that of humans and several laboratory animal species including mice, rats, hamsters, rabbits, guinea pigs, chinchillas, and nonhuman primates.10,20,40,42,44,49 In these species, one or more layers of analogous trophoblast types comprise the interhemal barrier between maternal and fetal blood supplies. Placental trophoblasts perform a number of critical functions during gestation, including mediation of uterine implantation and invasion, nutrient exchange, regulation of maternal blood flow, and hormone production.1,19,26-28,35,38,46,47As a consequence of their inherent invasiveness, placental trophoblasts migrate into maternal uterine blood vessels, after which syncytiotrophoblasts (syncytial knots) are normally deported daily to the lungs in humans.2,3,17 Deportation increases with frequency as gestation progresses,3,4 with gestational pathologic conditions such as preeclampsia and eclampsia,2,3,18,36 and after cesarean sections50 and abortions.48 The current thinking is that these syncytial knots undergo programmed cell death and apoptotic shedding during routine pregnancy, in contrast to conditions like preeclampsia and eclampsia, during which aberrant intervillous hemodynamics resulting in hypoxia favor necrosis and associated inflammation.18,25,29,30 In addition, spontaneous trophoblast emboli have been documented in the lungs and a few other tissues, including uterus, adrenal gland, spleen, and liver of chinchillas,6,11,52 hamsters,7,41 and porcupines.24 Experimentally, trophoblast invasion has been further studied in mice8,9 and hamsters.5 To our knowledge, pulmonary trophoblast emboli in cotton rats have not previously been reported.Pairs of cotton rat breeders were maintained for the production of animals to be used in various studies investigating human respiratory viruses, including measles, respiratory syncytial, and parainfluenza viruses. During the course of comprehensive pathologic evaluations of aging breeders, 6 female cotton rats were incidentally found to have pulmonary trophoblast emboli. The purposes of the present case series were to characterize the embolized trophoblasts and associated pulmonary histopathology in these cotton rats and to correlate the incidence with gestational stage.  相似文献   

9.
In the oxidative stress hypothesis of aging, the aging process is the result of cumulative damage by reactive oxygen species. Humans and chimpanzees are remarkably similar; but humans live twice as long as chimpanzees and therefore are believed to age at a slower rate. The purpose of this study was to compare biomarkers for cardiovascular disease, oxidative stress, and aging between male chimpanzees and humans. Compared with men, male chimpanzees were at increased risk for cardiovascular disease because of their significantly higher levels of fibrinogen, IGF1, insulin, lipoprotein a, and large high-density lipoproteins. Chimpanzees showed increased oxidative stress, measured as significantly higher levels of 5-hydroxymethyl-2-deoxyuridine and 8-iso-prostaglandin F, a higher peroxidizability index, and higher levels of the prooxidants ceruloplasmin and copper. In addition, chimpanzees had decreased levels of antioxidants, including α- and β-carotene, β-cryptoxanthin, lycopene, and tocopherols, as well as decreased levels of the cardiovascular protection factors albumin and bilirubin. As predicted by the oxidative stress hypothesis of aging, male chimpanzees exhibit higher levels of oxidative stress and a much higher risk for cardiovascular disease, particularly cardiomyopathy, compared with men of equivalent age. Given these results, we hypothesize that the longer lifespan of humans is at least in part the result of greater antioxidant capacity and lower risk of cardiovascular disease associated with lower oxidative stress.Abbreviations: 5OHmU, 5-hydroxymethyl-2-deoxyuridine; 8isoPGF, 8-iso-prostaglandin F; HDL, high-density lipoprotein; IGF1, insulin-like growth factor 1; LDL, low-density lipoprotein; ROS, reactive oxygen speciesAging is characterized as a progressive reduction in the capacity to withstand the stresses of everyday life and a corresponding increase in risk of mortality. According to the oxidative stress hypothesis of aging, much of the aging process can be accounted for as the result of cumulative damage produced by reactive oxygen species (ROS).6,21,28,41,97 Endogenous oxygen radicals (that is, ROS) are generated as a byproduct of normal metabolic reactions in the body and subsequently can cause extensive damage to proteins, lipids, and DNA.6,41 Various prooxidant elements, in particular free transition metals, can catalyze these destructive reactions.6 The damage caused by ROS can be counteracted by antioxidant defense systems, but the imbalance between production of ROS and antioxidant defenses, over time, leads to oxidative stress and may contribute to the rate of aging.28,97Oxidative stress has been linked to several age-related diseases including neurodegenerative diseases, ophthalmologic diseases, cancer, and cardiovascular disease.21,28,97 Of these, cardiovascular disease remains the leading cause of adult death in the United States and Europe.71 In terms of cardiovascular disease, oxidative stress has been linked to atherosclerosis, hypertension, cardiomyopathy, and chronic heart failure in humans.55,78,84 Increases in oxidant catalysts (prooxidants)—such as copper, iron, and cadmium—have been associated with hypertension, coronary artery disease, atherosclerosis, and sudden cardiac death.98,102,106 Finally, both endogenous and exogenous antioxidants have been linked to decreased risk of cardiovascular disease, although the mechanisms behind this relationship are unclear.11,52,53 However, the oxidative stress hypothesis of aging aims to explain not only the mechanism of aging and age-related diseases (such as cardiovascular disease) in humans but also the differences between aging rates and the manifestations of age-related diseases across species.The differences in antioxidant and ROS levels between animals and humans offer promise for increasing our understanding of human aging. Additional evidence supporting the oxidative stress hypothesis of aging has come from comparative studies linking differences in aging rates across taxa with both antioxidant and ROS levels.4,17-21,58,71,86,105 In mammals, maximum lifespan potential is positively correlated with both serum and tissue antioxidant levels.17,18,21,71,105 Research has consistently demonstrated that the rate of oxidative damage varies across species and is negatively correlated with maximum lifespan potential.4,19,20,58,71,86 However, few studies involved detailed comparisons of hypothesized biochemical indicators of aging and oxidative stress between humans and animals.6 This type of interspecies comparison has great potential for directly testing the oxidative stress hypothesis of aging.Much evolutionary and genetic evidence supports remarkable similarity between humans and chimpanzees.95,100 Despite this similarity, humans have a lifespan of almost twice that of chimpanzees.3,16,47 Most comparative primate aging research has focused on the use of a macaque model,62,81,88 and several biochemical markers of age-related diseases have been identified in both humans and macaque monkeys.9,22,28,81,93,97 Several other species of monkeys have also been used in research addressing oxidative stress, antioxidant defenses, and maximum lifespan potential.18,21,58,105 However, no study to date has examined biochemical indicators of oxidative stress and aging in chimpanzees and humans as a test of the oxidative stress hypothesis for aging. The purpose of this study is to compare biochemical markers for cardiovascular disease, oxidative stress, and aging directly between male chimpanzees and humans. Given the oxidative stress hypothesis for aging and the known role of oxidative stress in cardiovascular disease, we predict that chimpanzees will show higher levels of cardiovascular risk and oxidative stress than humans.  相似文献   

10.
Tissue-type plasminogen activator (tPA) is a pleiotropic serine protease of the central nervous system (CNS) with reported neurotrophic and neurotoxic functions. Produced and released under its single chain form (sc), the sc-tPA can be cleaved by plasmin or kallikrein in a two chain form, tc-tPA. Although both sc-tPA and tc-tPA display a similar fibrinolytic activity, we postulated here that these two conformations of tPA (sc-tPA and tc-tPA) could differentially control the effects of tPA on neuronal survival. Using primary cultures of mouse cortical neurons, our present study reveals that sc-tPA is the only one capable to promote N-methyl-D-aspartate receptor (NMDAR)-induced calcium influx and subsequent excitotoxicity. In contrast, both sc-tPA and tc-tPA are capable to activate epidermal growth factor receptors (EGFRs), a mechanism mediating the antiapoptotic effects of tPA. Interestingly, we revealed a tPA dependent crosstalk between EGFR and NMDAR in which a tPA-dependent activation of EGFRs leads to downregulation of NMDAR signaling and to subsequent neurotrophic effects.Tissue-type plasminogen activator (tPA) is secreted by endothelial cells and promotes fibrinolysis via the conversion of fibrin-bound plasminogen into plasmin.1 Neurons and some glial cells also secrete tPA.2, 3, 4, 5 tPA is secreted as a single-chain form (sc-tPA), which can be processed into a two-chain form (tc-tPA) by plasmin or kallikreins.6, 7 Interestingly, sc-tPA is proteolytically active even without proteolytic processing. In addition to its vascular functions, tPA displays critical roles in the brain parenchyma with roles in cell migration, neuronal plasticity and survival,8, 9, 10, 11, 12, 13, 14 acting either as an enzyme or as a cytokine-like molecule. Among its actions, tPA is well described to promote neurotoxicity, likely through promotion of N-methyl-D-aspartate receptor (NMDAR) activity.15, 16, 17 Recently, we reported that only sc-tPA can promote NMDAR signaling and neurotoxicity.18 Interestingly, data from wild-type mice,19 transgenic mice overexpressing tPA in neurons20 or in vitro21 also report neuroprotective effects of tPA.9, 10 The proposed mechanisms involved a tPA-dependent and non-proteolytic activation of either epidermal growth factor receptors (EGFRs)22 on oligodendrocytes or NMDARs.20Here we explored a link between tPA conformations (sc-tPA and tc-tPA), EGFR- and NMDAR-dependent signaling pathways. Our findings identify sc-tPA as a selective positive modulator of NMDAR signaling in neurons when present at high concentrations and both sc-tPA and tc-tPA as positive modulators of EGFR signaling, this even at low concentrations. We also reveal a crosstalk between these two families of receptors, with the tPA-dependent activation of EGFRs reducing NMDAR signaling. By these mechanisms, sc-tPA and tc-tPA control neuronal death and survival.  相似文献   

11.
Q Xia  Q Hu  H Wang  H Yang  F Gao  H Ren  D Chen  C Fu  L Zheng  X Zhen  Z Ying  G Wang 《Cell death & disease》2015,6(3):e1702
Neuroinflammation is a striking hallmark of amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Previous studies have shown the contribution of glial cells such as astrocytes in TDP-43-linked ALS. However, the role of microglia in TDP-43-mediated motor neuron degeneration remains poorly understood. In this study, we show that depletion of TDP-43 in microglia, but not in astrocytes, strikingly upregulates cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production through the activation of MAPK/ERK signaling and initiates neurotoxicity. Moreover, we find that administration of celecoxib, a specific COX-2 inhibitor, greatly diminishes the neurotoxicity triggered by TDP-43-depleted microglia. Taken together, our results reveal a previously unrecognized non-cell-autonomous mechanism in TDP-43-mediated neurodegeneration, identifying COX-2-PGE2 as the molecular events of microglia- but not astrocyte-initiated neurotoxicity and identifying celecoxib as a novel potential therapy for TDP-43-linked ALS and possibly other types of ALS.Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by the degeneration of motor neurons in the brain and spinal cord.1 Most cases of ALS are sporadic, but 10% are familial. Familial ALS cases are associated with mutations in genes such as Cu/Zn superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TARDBP) and, most recently discovered, C9orf72. Currently, most available information obtained from ALS research is based on the study of SOD1, but new studies focusing on TARDBP and C9orf72 have come to the forefront of ALS research.1, 2 The discovery of the central role of the protein TDP-43, encoded by TARDBP, in ALS was a breakthrough in ALS research.3, 4, 5 Although pathogenic mutations of TDP-43 are genetically rare, abnormal TDP-43 function is thought to be associated with the majority of ALS cases.1 TDP-43 was identified as a key component of the ubiquitin-positive inclusions in most ALS patients and also in other neurodegenerative diseases such as frontotemporal lobar degeneration,6, 7 Alzheimer''s disease (AD)8, 9 and Parkinson''s disease (PD).10, 11 TDP-43 is a multifunctional RNA binding protein, and loss-of-function of TDP-43 has been increasingly recognized as a key contributor in TDP-43-mediated pathogenesis.5, 12, 13, 14Neuroinflammation, a striking and common hallmark involved in many neurodegenerative diseases, including ALS, is characterized by extensive activation of glial cells including microglia, astrocytes and oligodendrocytes.15, 16 Although numerous studies have focused on the intrinsic properties of motor neurons in ALS, a large amount of evidence showed that glial cells, such as astrocytes and microglia, could have critical roles in SOD1-mediated motor neuron degeneration and ALS progression,17, 18, 19, 20, 21, 22 indicating the importance of non-cell-autonomous toxicity in SOD1-mediated ALS pathogenesis.Very interestingly, a vital insight of neuroinflammation research in ALS was generated by the evidence that both the mRNA and protein levels of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2) are upregulated in both transgenic mouse models and in human postmortem brain and spinal cord.23, 24, 25, 26, 27, 28, 29 The role of COX-2 neurotoxicity in ALS and other neurodegenerative disorders has been well explored.30, 31, 32 One of the key downstream products of COX-2, prostaglandin E2 (PGE2), can directly mediate COX-2 neurotoxicity both in vitro and in vivo.33, 34, 35, 36, 37 The levels of COX-2 expression and PGE2 production are controlled by multiple cell signaling pathways, including the mitogen-activated protein kinase (MAPK)/ERK pathway,38, 39, 40 and they have been found to be increased in neurodegenerative diseases including AD, PD and ALS.25, 28, 32, 41, 42, 43, 44, 45, 46 Importantly, COX-2 inhibitors such as celecoxib exhibited significant neuroprotective effects and prolonged survival or delayed disease onset in a SOD1-ALS transgenic mouse model through the downregulation of PGE2 release.28Most recent studies have tried to elucidate the role of glial cells in neurotoxicity using TDP-43-ALS models, which are considered to be helpful for better understanding the disease mechanisms.47, 48, 49, 50, 51 Although the contribution of glial cells to TDP-43-mediated motor neuron degeneration is now well supported, this model does not fully suggest an astrocyte-based non-cell autonomous mechanism. For example, recent studies have shown that TDP-43-mutant astrocytes do not affect the survival of motor neurons,50, 51 indicating a previously unrecognized non-cell autonomous TDP-43 proteinopathy that associates with cell types other than astrocytes.Given that the role of glial cell types other than astrocytes in TDP-43-mediated neuroinflammation is still not fully understood, we aim to compare the contribution of microglia and astrocytes to neurotoxicity in a TDP-43 loss-of-function model. Here, we show that TDP-43 has a dominant role in promoting COX-2-PGE2 production through the MAPK/ERK pathway in primary cultured microglia, but not in primary cultured astrocytes. Our study suggests that overproduction of PGE2 in microglia is a novel molecular mechanism underlying neurotoxicity in TDP-43-linked ALS. Moreover, our data identify celecoxib as a new potential effective treatment of TDP-43-linked ALS and possibly other types of ALS.  相似文献   

12.
An aged male rhesus macaque in our colony had decreased appetite and a loss of interest in behavioral testing. CBC analysis revealed a regenerative, microcytic, hypochromic anemia with thrombocytosis, consistent with iron deficiency. A fecal occult blood test was positive. Ultrasound imaging revealed numerous, vascularized focal liver lesions that suggested metastases. The macaque''s appetite continued to decrease, and he became more lethargic. At this point, the investigator elected to euthanize the macaque. At necropsy, the ileocolic junction was white and abnormally thickened, and the liver was pale tan with approximately 18 discrete white masses randomly scattered throughout the hepatic parenchyma. Histologically, the mass at the ileocolic junction was identified as an intestinal adenocarcinoma, whereas the liver masses were confirmed to be undifferentiated hepatic sarcomas. This case report describes a rhesus macaque that had 2 unrelated primary neoplasms. A review of the literature indicates that this rhesus macaque is the first reported to have an adenocarcinoma of the ileocolic junction and multiple hepatic sarcomas simultaneously.Rhesus macaques (Macaca mulatta) are genetically similar to humans, have a similar aging phenotype at approximately 3 times the rate of those in humans, and develop spontaneous cancers similar to those in humans.36 In humans, gastrointestinal carcinomas are relatively common, but most of these lesions arise in the colon and rectum with only a small percentage in the small intestine and ileum.4,12,15,18 Although the ileocolic junction is considered a common site for intestinal adenocarcinomas in aged rhesus macaques, this tumor has also been found in the duodenum, jejunum, distal ileum, cecum, and colon.6,13,21-23,25,39 Intestinal adenocarcinomas also occur in aged cynomologus macaques (Macaca fasicularis),39 cotton-top marmosets (Saguinus oedipus),6,10 common marmosets (Callithrix jacchus),6,27 and a squirrel monkey (Saimiri sciureus).24 Cotton-top marmosets often develop adenocarcinomas of the colon, including the cecum–colon, and rectum.6,10 Common marmosets have been reported to develop adenocarcinomas of the small intestine.6,27 Adenocarcinoma of the cecum in a squirrel monkey has been reported.24Spontaneous hepatic tumors unrelated to carcinogenic factors, such as aflatoxin B1,33 occur only rarely in nonhuman primates. In the United States, primary malignant hepatic tumors in humans are rare, and fewer than 1% are reported to be hepatic sarcomas.1,16,40 Review of the nonhuman primate literature revealed reports of hepatic cholangiocarcinoma in a 25-y-old male capuchin monkey (Cebus albifrons),7 hepatocellular carcinoma in a 24-y-old male squirrel monkey (Saimiri boliviensis)5 and in a female squirrel monkey (Saimiri sciureus) older than 13 y,28 and hepatocellular carcinoma and cholangiocarcinoma in an African green monkey (Cercopithecus aethiops).34 Spontaneous hepatocellular carcinomas were reported to occur in 2 adolescent male cynomologus macaques younger than 5 y.31 Hepatic hemangiosarcoma was diagnosed in 3-y-old female rhesus macaque,26 and hepatic cholangiocarcinoma was found in a rhesus macaque that also had an intestinal adenocarcinoma.39The aged male rhesus macaque (Macaca mulatta) in the current case study was found to have adenocarcinoma of the ileocolic junction and multiple, random, discrete neoplasms in the liver, which were identified as undifferentiated sarcomas. No metastases from the intestinal adenocarcinoma were detected, but neoplastic cells similar to those of the undifferentiated hepatic cells were identified in an intestinal artery. The frequency of multiple tumor types in aged nonhuman primates is relevant to the use of older animals in research.  相似文献   

13.
Neuropeptides induce signal transduction across the plasma membrane by acting through cell-surface receptors. The dynorphins, endogenous ligands for opioid receptors, are an exception; they also produce non-receptor-mediated effects causing pain and neurodegeneration. To understand non-receptor mechanism(s), we examined interactions of dynorphins with plasma membrane. Using fluorescence correlation spectroscopy and patch-clamp electrophysiology, we demonstrate that dynorphins accumulate in the membrane and induce a continuum of transient increases in ionic conductance. This phenomenon is consistent with stochastic formation of giant (~2.7 nm estimated diameter) unstructured non-ion-selective membrane pores. The potency of dynorphins to porate the plasma membrane correlates with their pathogenic effects in cellular and animal models. Membrane poration by dynorphins may represent a mechanism of pathological signal transduction. Persistent neuronal excitation by this mechanism may lead to profound neuropathological alterations, including neurodegeneration and cell death.Neuropeptides are the largest and most diverse family of neurotransmitters. They are released from axon terminals and dendrites, diffuse to pre- or postsynaptic neuronal structures and activate membrane G-protein-coupled receptors. Prodynorphin (PDYN)-derived opioid peptides including dynorphin A (Dyn A), dynorphin B (Dyn B) and big dynorphin (Big Dyn) consisting of Dyn A and Dyn B are endogenous ligands for the κ-opioid receptor. Acting through this receptor, dynorphins regulate processing of pain and emotions, memory acquisition and modulate reward induced by addictive substances.1, 2, 3, 4 Furthermore, dynorphins may produce robust cellular and behavioral effects that are not mediated through opioid receptors.5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 As evident from pharmacological, morphological, genetic and human neuropathological studies, these effects are generally pathological, including cell death, neurodegeneration, neurological dysfunctions and chronic pain. Big Dyn is the most active pathogenic peptide, which is about 10- to 100-fold more potent than Dyn A, whereas Dyn B does not produce non-opioid effects.16, 17, 22, 25 Big Dyn enhances activity of acid-sensing ion channel-1a (ASIC1a) and potentiates ASIC1a-mediated cell death in nanomolar concentrations30, 31 and, when administered intrathecally, induces characteristic nociceptive behavior at femtomolar doses.17, 22 Inhibition of endogenous Big Dyn degradation results in pathological pain, whereas prodynorphin (Pdyn) knockout mice do not maintain neuropathic pain.22, 32 Big Dyn differs from its constituents Dyn A and Dyn B in its unique pattern of non-opioid memory-enhancing, locomotor- and anxiolytic-like effects.25Pathological role of dynorphins is emphasized by the identification of PDYN missense mutations that cause profound neurodegeneration in the human brain underlying the SCA23 (spinocerebellar ataxia type 23), a very rare dominantly inherited neurodegenerative disorder.27, 33 Most PDYN mutations are located in the Big Dyn domain, demonstrating its critical role in neurodegeneration. PDYN mutations result in marked elevation in dynorphin levels and increase in its pathogenic non-opioid activity.27, 34 Dominant-negative pathogenic effects of dynorphins are not produced through opioid receptors.ASIC1a, glutamate NMDA (N-methyl-d-aspartate) and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)/kainate ion channels, and melanocortin and bradykinin B2 receptors have all been implicated as non-opioid dynorphin targets.5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 30, 31, 35, 36 Multiplicity of these targets and their association with the cellular membrane suggest that their activation is a secondary event triggered by a primary interaction of dynorphins with the membrane. Dynorphins are among the most basic neuropeptides.37, 38 The basic nature is also a general property of anti-microbial peptides (AMPs) and amyloid peptides that act by inducing membrane perturbations, altering membrane curvature and causing pore formation that disrupts membrane-associated processes including ion fluxes across the membrane.39 The similarity between dynorphins and these two peptide groups in overall charge and size suggests a similar mode of their interactions with membranes.In this study, we dissect the interactions of dynorphins with the cell membrane, the primary event in their non-receptor actions. Using fluorescence imaging, correlation spectroscopy and patch-clamp techniques, we demonstrate that dynorphin peptides accumulate in the plasma membrane in live cells and cause a profound transient increase in cell membrane conductance. Membrane poration by endogenous neuropeptides may represent a novel mechanism of signal transduction in the brain. This mechanism may underlie effects of dynorphins under pathological conditions including chronic pain and tissue injury.  相似文献   

14.
Q fever, caused by the pathogen Coxiella burnetii, is an acute disease that can progress to become a serious chronic illness. The organism leads an obligate, intracellular lifecycle, during which it multiplies in the phagolytic compartments of the phagocytic cells of the immune system of its hosts. This characteristic makes study of the organism particularly difficult and is perhaps one of the reasons why, more than 70 y after its discovery, much remains unknown about the organism and its pathogenesis. A variety of animal species have been used to study both the acute and chronic forms of the disease. Although none of the models perfectly mimics the disease process in humans, each opens a window onto an important aspect of the pathology of the disease. We have learned that immunosuppression, overexpression of IL10, or physical damage to the heart muscle in mice and guinea pigs can induce disease that is similar to the chronic disease seen in humans, suggesting that this aspect of disease may eventually be fully understood. Models using species from mice to nonhuman primates have been used to evaluate and characterize vaccines to protect against the disease and may ultimately yield safer, less expensive vaccines.Coxiella burnetii is the causative agent of human Q fever. Infection can take several forms and has been described as clinically polymorphic.6 In humans, presentation ranges from asymptomatic, through acute disease, to chronic illness. In the majority of cases, acute disease presents as a self-limiting febrile illness, with half of cases also having severe headaches.88 In severe cases of acute disease, atypical pneumonia is often found.88 A small proportion (2% to 4%) of subjects with symptomatic acute Q fever are admitted to hospital.70,88 Chronic disease may develop in approximately 5% of those infected;16 the vast majority of these cases will present as a bacterial culture-negative endocarditis16,22 often in those with predisposing heart-damage19 or immunosuppression.16 Without effective treatment, Q fever endocarditis is generally fatal, but early diagnosis coupled with novel treatment strategies has brought the death rate down to less than 5%.69 The 2009 outbreak in the Netherlands involved 2357 human cases, of which more than 400 required hospitalization.90 The animal cost in the Netherlands was far higher, with more than 50,000 pregnant goats culled in an attempt to control the epidemic.82Two other clinical manifestations of Q fever are worthy of mention owing to their less-than-satisfactory outcomes with current treatment strategies. These are Q fever during pregnancy and Q fever fatigue syndrome. C. burnetii infection during pregnancy results in premature delivery in almost half of those affected and spontaneous abortion in more than a quarter.14 There have been few studies in this area, but there are indications that among those infected during the first trimester and treated suboptimally, the abortion rate is 100%.68 This effect is compounded by the fact that the frontline bactericidal drugs for treatment (doxycycline and hydroxychloroquine) are contraindicated for use during pregnancy.68 A bacteriostatic regimen (cotrimoxazole) has therefore been proposed for use68 until delivery. Without satisfactory treatment during and after pregnancy, there is also a high probability for infection to lead to chronic Q fever: an incidence of 70% was reported in a group of pregnant women in France.68Post-Q fever fatigue syndrome was first reported in 1996,52 but an association between Q fever and chronic fatigue had been observed as early as 1982.52 Between 10% and 15% of those who have had acute Q fever develop a chronic fatigue syndrome that can last between 5 and 10 y—and even longer in some cases.53 Some of these patients have been found to have long-term persistence of C. burnetii cell components and LPS associated with traces of genomic DNA,53 suggesting that Q fever fatigue syndrome may be immunologically mediated rather than caused by the organism directly.Q fever is a zoonosis that has been described worldwide,56 and human outbreaks are often associated with contact with the birth products of farm animals.56 However, outbreaks associated with the birth products of domestic cats have also been reported.54 Human infection primarily occurs via the inhalation of infectious aerosols.56 Over the past 10 y, outbreaks have been reported in the Netherlands,71 Slovenia,26 the United Kingdom,91,97,99 Israel,2 Iraq,18 the United States,11 Germany,24 Bulgaria,63 Croatia,58 Spain,23 Italy,83 and France.88A very small number of C. burnetii organisms can cause infection by inhalation. Infection has been predicted to be possible after exposure to only a single organism.33 This low dosage, coupled with the organism''s ability to cause debilitating disease and high levels of resistance to various means of inactivation67,77,78 have resulted in it being listed as a category B biologic warfare and bioterrorism agent by the Centers for Disease Control.49Prevention of Q fever in man can be achieved by vaccination; the only vaccine available for general use is Q-Vax, which was licensed in Australia in 1989.51 This vaccine consists of formalin-inactivated C. burnetii whole cells, produced in chick embryos. Its use has been associated with severe local reactions in those with preexisting immunity. As a precaution, prevaccination screening (history, skin test, and serology) must therefore be performed prior to administration.35 Despite this safeguard, severe local reactions to vaccination are reported.44 The vaccine is also hazardous to produce, with the organism requiring culture in chick-embryos at biosafety level 3 prior to inactivation.51 There is, therefore, a need for a vaccine that is safer to produce and safer to use and that does not require prevaccination screening.The organism displays antigenic phase variation often paralleled with the rough-smooth variation seen in Enterobacteriaceae. In C. burnetii, phase variation has been demonstrated to be due to differences in LPS. Phase I has been shown to contain a unique disaccharide galactosaminuronyl glucosamine and 9 unidentified components in addition to the components of phase II LPS.1 Organisms with the phase I phenotype are the infectious and virulent form found in the environment. Organisms with the phase II phenotype are observed only during repeated subculture in laboratory chick embryo or cell culture systems;27 they have a chemically simpler LPS1 and several deletions in the genome.32,92 Phagocytosis of phase I, but not phase II, organisms by macrophages involves an interaction between the bacterial LPS and Toll-like receptor 4. This mechanism also stimulates F-actin reorganization of the host cells and stimulates the release of type 1 cytokines including IFNγ and TNF.30 This interaction appears important in the initial priming of the immune response and could provide an explanation for the limited protection of vaccines based on potential virulence genes (omp1, HspB, Pmm, Fbp, Orf 410, Crc, CbMip, MucZ, P28) singly and in combinations but containing no LPS.47,89,102In addition to its antigenic phase variation, C. burnetii occurs in 2 morphologic forms, a large-cell variant and a small-cell variant. These forms differ antigenically due to differences in the proteins expressed on their surface. It has been suggested that the resistance of C. burnetii to host defense mechanisms may be enhanced by antigenic differences between the different developmental forms.57,94 The small-cell morphologic form is highly resistant to destruction by chemical and environmental factors and is likely the transmissible form of the pathogen.15,67 After infection, which generally occurs by inhalation of the small-cell form, the organisms are taken up by host alveolar macrophages.81 Morphogenesis from the small-cell to large-cell form then occurs, the large-cell variant being the replicative form of the organism.15 These organisms then replicate within parasitophorous vacuoles.50 As the organisms enter the stationary phase of their growth within the cell, they condense back into the small-cell form.15 During replication within the host cell, the organism subverts cellular processes though active mechanisms to avoid and modify the host immune response.50 C. burnetii possesses a type IV secretion system, and the proteins that cause this subversion are likely delivered to the host cell by this machinery.50,93Because C. burnetii is an obligate intracellular organism, it has only been possible to study the organism within living animal hosts. Host-cell–free growth of the organism has been reported recently,62 but the technique has yet to be exploited fully. Cell-culture–based in vitro systems remain limited in the study of C. burnetii, given that the organism soon reverts to the avirulent (at least in immunocompetent hosts) phase II form (characterized by the loss of the phase I LPS phenotype) in these systems.10 A key problem in comparing models of C. burnetii infection is related to the organism''s intracellular nature, which complicates attempts to count the organisms used for infection. The literature reflects this difficulty in the fact that there are many different methods used (including plaque assay in primary cell cultures, median infectious doses in chick eggs or mice, and median lethal dose in SCID mice) and no way to directly compare them.  相似文献   

15.
Superficial decidualization of the endometrial stroma is an essential feature of the implantation stage of pregnancy in rhesus macaques and other primates. Decidualization involves proliferation of the endometrial stromal cells, with differentiation into morphologically distinct decidual cells. Previous reports involving nonpregnant rhesus monkeys have described localized and widespread endometrial decidualization in response to administration of progesterone and synthetic progestogens. Ectopic decidua or ‘deciduosis’ describes the condition in which groups of decidual cells are located outside of the endometrium, most often in the ovaries, uterus and cervix but also in various other organs. In humans, most cases of deciduosis are associated with normal pregnancy, and ectopic decidua can be found in the ovary in nearly all term pregnancies. Here we describe pronounced endometrial decidualization in 2 rhesus macaques. Both macaques had been treated long-term with medroxyprogesterone acetate for presumed endometriosis, which was confirmed in one of the macaques at postmortem examination. In one animal, florid extrauterine and peritoneal serosal decidualization was admixed multifocally with carcinomatosis from a primary colonic adenocarcinoma. Cells constituting endometrial and serosal decidualization reactions were immunopositive for the stromal markers CD10, collagen IV, smooth muscle actin, and vimentin and immunonegative for cytokeratin. In contrast, carcinomatous foci were cytokeratin-positive. To our knowledge, this report describes the first cases of serosal peritoneal decidualization in rhesus macaques. The concurrent presentation of serosal peritoneal decidualization with carcinomatosis is unique.Abbreviations: GnRH, gonadotropin-releasing hormone; PAS, periodic acid–Schiff; SMA, smooth-muscle actinSuperficial decidualization of the endometrial stroma is an essential feature of the implantation stage of pregnancy in rhesus macaques and other primates.13,27,29,37 This process typically begins, and is most prominent, adjacent to the spiral arteries, eventually expanding to affect the endometrium uniformly.35 The endometrial stroma surrounds and supports the endometrial glands and is composed mainly of endometrial stromal cells and blood vessels.35 Decidualization involves proliferation of the endometrial stromal cells, with differentiation into morphologically distinct decidual cells.7,27,38 Endometrial stromal cells transform into large, polyhedral, cytoplasm-rich cells with large amounts of stored glycogen and are often binucleated or polyploid in character.6,13,27,30,35 Ultrastructurally, decidualized cells have numerous ribosomes, prominent rough endoplasmic reticulum and Golgi complexes, and cytoplasmic accumulation of glycogen and lipid droplets.13,35 Consistent with their stromal origin, decidualized cells express mesenchymal immunohistochemical markers, such as vimentin, desmin, and muscle-specific actin.6,7,14,16,20,22Initiation of decidualization by attachment of the blastocyst to the uterine epithelium depends on previous sensitization by progesterone secretion, after a brief priming by estrogen.12,13,27 Estrogen and progesterone regulate a series of complex interactions at the interface between the developing embryo and the cells in the stromal compartment, leading to the formation of a differentiated maternal tissue (decidua) that supports embryo growth and maintains early pregnancy.27 Postovulatory levels of circulating progesterone increase and help maintain the differentiation of decidual cells.7,13,33,37,38Ectopic decidua or ‘deciduosis’ describes the condition in which groups of decidual cells reside outside of the endometrium, most often in the ovaries, uterus, and cervix; the fallopian tubes, peritoneum, omentum, diaphragm, liver, skin, spleen, appendix, abdominal–pelvic lymph nodes, renal pelvis, and lungs of women have also been reported as affected.6,14,18,20,22,28,29,38 In humans, most cases of deciduosis are associated with normal pregnancy, and ectopic decidua have been reported in the ovary in 90.5% to 100% of term pregnancies.6-8,14,20,22,28-30,38 Occasional cases in nonpregnant or postmenopausal women have been attributed to progesterone-secreting active corpora lutea, progesterone secretion by the adrenal cortex, trophoblastic disease, exogenous progestational agents, and pelvic irradiation.6-8,14,18,20,22,28,38 Deciduosis is usually an incidental finding that regresses postpartum within 4 to 6 wk; rarely, florid reactions have been reported to cause peritonitis, adhesions, hydronephrosis and hematuria, acute bowel obstruction or perforation (or both), abdominal pain mimicking appendicitis, massive and occasionally fatal hemoperitoneum, vaginal bleeding, and pneumothorax.6,7,14,18,20,22,28,29,31Previous reports involving nonpregnant rhesus macaques have described localized and widespread endometrial decidualization in response to the administration of progesterone, synthetic progestogens, or progesterone-releasing bioactive intrauterine devices and intravaginal rings and have referred to these changes as ‘pseudodecidualization’ to indicate the absence of pregnancy in these animals.12,33,35,37 In macaques given low (but superphysiologic) levels of progestogens, decidual changes have been noted in localized regions (around spiral arteries and underneath superficial epithelium), whereas high doses of progesterone or synthetic progestagens can cause a more pronounced and extensive reaction.35In cynomolgus macaques, extrauterine decidual cell plaques are rare histologic findings in the subcoelomic mesenchyme of the ovarian cortex.8,30 Despite the frequency of the condition in women, deciduosis is postulated to be a rarely documented lesion in primates because it is most often observed in conjunction with pregnancy, and pregnant cynomolgus macaques are seldom used in toxicity studies.8 Here we describe the pronounced endometrial decidualization of 2 rhesus macaques, one of which also had florid extrauterine and peritoneal decidualization that was admixed multifocally with carcinomatosis. Both macaques had been treated long-term with medroxyprogesterone acetate for presumed endometriosis, which was confirmed in one of the macaques at postmortem examination. To our knowledge, this report describes the first cases of peritoneal decidualization in rhesus macaques as well as the concurrent occurrence of carcinomatosis, endometriosis and peritoneal decidualization in a macaque. The extensive intermixing of the cell populations presented a diagnostic challenge at pathologic examination, and accurate diagnosis was achieved only through the use of multiple immunohistochemical markers.  相似文献   

16.
17.
18.
A retrospective study using maternal and birth statistics from an open, captive rhesus macaque colony was done to determine the effects of parity, exposure to simian retrovirus (SRV), housing, maternal parity, and maternal birth weight on infant birth weight, viability and gestation length. Retrospective colony statistics for a 23-y period indicated that birth weight, but not gestation length, differed between genders. Adjusted mean birth weights were higher in nonviable infants. Mothers positive for SRV had shorter gestations, but SRV exposure did not affect neonatal birth weights or viability. Infants born in cages had longer gestations than did those born in pens, but neither birth weight nor viability differed between these groups. Maternal birth weight did not correlate with infant birth weight but positively correlated with gestation length. Parity was correlated with birth weight and decreased viability. Increased parity of the mother was associated with higher birth weight of the infant. A transgenerational trend toward increasing birth weight was noted. The birth statistics of this colony were consistent with those of other macaque colonies. Unlike findings for humans, maternal birth weight had little predictive value for infant outcomes in rhesus macaques. Nonviable rhesus infants had higher birth weights, unlike their human counterparts, perhaps due to gestational diabetes occurring in a sedentary caged population. Similar to the situation for humans, multiparity had a protective effect on infant viability in rhesus macaques.Abbreviations: ANCOVA, analysis of covariance; PRL, Primate Research Laboratory; SRV, simian retrovirusThe rhesus macaque (Macaca mulatta) is a useful animal model for human female reproduction studies because the comparative physiology between the 2 species is nearly identical.1.5,49 Some factors that affect birth weight and neonatal viability in both humans and macaques include maternal birth weight, maternal age, maternal parity, and the presence of underlying maternal disease. Even experimentally induced simulated human lifestyle factors can affect neonatal outcome.10,16,17,25,44In humans, maternal birth weight correlates with infant birth weight such that low birth weight mothers themselves have low birth weight infants.8,19,28,30 A similar association has been shown in the macaque.38,39 Because low birth weight is associated with increased neonatal mortality in humans and in macaques, this correlation, if present, may have important predictive value.11,20,21,32,45,47,53 One objective of this study was to establish whether maternal birth weight correlated with neonatal birth weight and viability in this colony of rhesus macaques.The relationship between parity, age, and birth outcomes in humans is controversial because multiparous and grand multiparous women tend to be of lower socioeconomic status, older, and have many confounding lifestyle factors.2,24,27,56 In macaques, low parity and young age are associated with reproductive failure.50 In pigtailed macaques (Macaca nemestrina), increased parity was associated with decreased neonatal viability but increased birth weight. Despite their lower parity, younger mothers in the colony of pigtailed macaques produced lower birth-weight infants, but more viable infants, compared with those of older mothers.17 The positive correlation between birth weight and viability merits further investigation in rhesus macaques. One objective of the current study was to determine whether maternal parity and age affected birth weight and neonatal viability in our rhesus macaque colony.The lifestyle factors of alcohol consumption, cigarettes, caffeine, drug use, diabetes and exercise have all been shown to influence birth weight and gestation length in humans and macaques.4,7,15,22,26,35,40,42,44,51,55 Captive animals can become obese and develop insulin-resistant diabetes, which prolongs gestation and produces oversized infants that are less healthy.21,46,51 Because exercise is a preventative lifestyle factor for obesity and diabetes, it would be useful to compare active animals with sedentary ones.30 Previous retrospective colony studies in pigtail macaques show that cage type, location, and social housing have significant effects on birth weight and birth outcome.18,19 Another objective of the current study was to determine whether housing in cages (sedentary animals) or group pens (active animals) influenced gestation length, birth weight, and viability in our rhesus macaques.Another factor in birth outcome is the disease status of the mother. Viral infections, particularly of adenoviruses and immunosuppressive retroviruses, are associated with low birth weight and infant mortality in humans and nonhuman primates.13,21,25,33, 34,52,53 A previous report describes maternal transmission of simian retrovirus in a colony of pigtailed macaques with concurrent immunosuppression, low birth weight, and increased infant mortality in viremic mothers.33 However, some evidence suggests that lentiviral antibodies in amniotic fluid may protect against in utero infection.23 Further confounding the effects of retroviruses on reproductive outcome, animals infected horizontally can be viremic but serologically negative, and animals with sufficient, detectable immune responses may have provirus latent in their tissues.33 Because simian retrovirus (SRV) was endemic in the subject rhesus colony and most data were retrospective thus preventing confirmation of viremia, another objective was to determine whether seropositivity of the dam was associated with neonatal viability, gestation length, and infant birth weight.  相似文献   

19.
Tumor necrosis factor α (TNFα) triggers necroptotic cell death through an intracellular signaling complex containing receptor-interacting protein kinase (RIPK) 1 and RIPK3, called the necrosome. RIPK1 phosphorylates RIPK3, which phosphorylates the pseudokinase mixed lineage kinase-domain-like (MLKL)—driving its oligomerization and membrane-disrupting necroptotic activity. Here, we show that TNF receptor-associated factor 2 (TRAF2)—previously implicated in apoptosis suppression—also inhibits necroptotic signaling by TNFα. TRAF2 disruption in mouse fibroblasts augmented TNFα–driven necrosome formation and RIPK3-MLKL association, promoting necroptosis. TRAF2 constitutively associated with MLKL, whereas TNFα reversed this via cylindromatosis-dependent TRAF2 deubiquitination. Ectopic interaction of TRAF2 and MLKL required the C-terminal portion but not the N-terminal, RING, or CIM region of TRAF2. Induced TRAF2 knockout (KO) in adult mice caused rapid lethality, in conjunction with increased hepatic necrosome assembly. By contrast, TRAF2 KO on a RIPK3 KO background caused delayed mortality, in concert with elevated intestinal caspase-8 protein and activity. Combined injection of TNFR1-Fc, Fas-Fc and DR5-Fc decoys prevented death upon TRAF2 KO. However, Fas-Fc and DR5-Fc were ineffective, whereas TNFR1-Fc and interferon α receptor (IFNAR1)-Fc were partially protective against lethality upon combined TRAF2 and RIPK3 KO. These results identify TRAF2 as an important biological suppressor of necroptosis in vitro and in vivo.Apoptotic cell death is mediated by caspases and has distinct morphological features, including membrane blebbing, cell shrinkage and nuclear fragmentation.1, 2, 3, 4 In contrast, necroptotic cell death is caspase-independent and is characterized by loss of membrane integrity, cell swelling and implosion.1, 2, 5 Nevertheless, necroptosis is a highly regulated process, requiring activation of RIPK1 and RIPK3, which form the core necrosome complex.1, 2, 5 Necrosome assembly can be induced via specific death receptors or toll-like receptors, among other modules.6, 7, 8, 9 The activated necrosome engages MLKL by RIPK3-mediated phosphorylation.6, 10, 11 MLKL then oligomerizes and binds to membrane phospholipids, forming pores that cause necroptotic cell death.10, 12, 13, 14, 15 Unchecked necroptosis disrupts embryonic development in mice and contributes to several human diseases.7, 8, 16, 17, 18, 19, 20, 21, 22The apoptotic mediators FADD, caspase-8 and cFLIP suppress necroptosis.19, 20, 21, 23, 24 Elimination of any of these genes in mice causes embryonic lethality, subverted by additional deletion of RIPK3 or MLKL.19, 20, 21, 25 Necroptosis is also regulated at the level of RIPK1. Whereas TNFα engagement of TNFR1 leads to K63-linked ubiquitination of RIPK1 by cellular inhibitor of apoptosis proteins (cIAPs) to promote nuclear factor (NF)-κB activation,26 necroptosis requires suppression or reversal of this modification to allow RIPK1 autophosphorylation and consequent RIPK3 activation.2, 23, 27, 28 CYLD promotes necroptotic signaling by deubiquitinating RIPK1, augmenting its interaction with RIPK3.29 Conversely, caspase-8-mediated CYLD cleavage inhibits necroptosis.24TRAF2 recruits cIAPs to the TNFα-TNFR1 signaling complex, facilitating NF-κB activation.30, 31, 32, 33 TRAF2 also supports K48-linked ubiquitination and proteasomal degradation of death-receptor-activated caspase-8, curbing apoptosis.34 TRAF2 KO mice display embryonic lethality; some survive through birth but have severe developmental and immune deficiencies and die prematurely.35, 36 Conditional TRAF2 KO leads to rapid intestinal inflammation and mortality.37 Furthermore, hepatic TRAF2 depletion augments apoptosis activation via Fas/CD95.34 TRAF2 attenuates necroptosis induction in vitro by the death ligands Apo2L/TRAIL and Fas/CD95L.38 However, it remains unclear whether TRAF2 regulates TNFα-induced necroptosis—and if so—how. Our present findings reveal that TRAF2 inhibits TNFα necroptotic signaling. Furthermore, our results establish TRAF2 as a biologically important necroptosis suppressor in vitro and in vivo and provide initial insight into the mechanisms underlying this function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号