首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infections with a variety of Helicobacter species have been documented in rodent research facilities, with variable effects on rodent health. Helicobacter typhlonius has been reported to cause enteric disease in immunodeficient and IL10−/− mice, whereas H. rodentium has only been reported to cause disease in immunodeficient mice coinfected with other Helicobacter species. The effect of Helicobacter infections on murine reproduction has not been well studied. The reproductive performance of C57BL/6 IL10−/− female mice intentionally infected with H. typhlonius, H. rodentium, or both was compared with that of age-matched uninfected controls or similarly infected mice that received antihelicobacter therapy. The presence of Helicobacter organisms in stool and relevant tissues was detected by PCR assays. Helicobacter infection of IL10−/− female mice markedly decreased pregnancy rates and pup survival. The number of pups surviving to weaning was greatest in noninfected mice and decreased for H. rodentium > H. typhlonius >> H. rodentium and H. typhlonius coinfected mice. Helicobacter organisms were detected by semiquantitative real-time PCR in the reproductive organs of a subset of infected mice. Treatment of infected mice with a 4-drug regimen consisting of amoxicillin, clarithromycin, metronidazole, and omeprazole increased pregnancy rates, and pup survival and dam fecundity improved. We conclude that infection with H. typhlonius, H. rodentium, or both decreased the reproductive performance of IL10−/− mice. In addition, antihelicobacter therapy improved fecundity and enhanced pup survival.Abbreviations: qPCR, qualitative real-time PCRHelicobacter rodentium and H. typhlonius5 are gram-negative, urease-negative, microaerophilic flagellated bacteria.6,20 Numerous Helicobacter species have been identified in various rodent organ systems, including portions of the gastrointestinal tract, liver, and associated biliary system.5 Although they often are found in the intestinal tract of immunocompetent mice without clinical disease, various Helicobacter species have been shown induce enteric disease in immunodeficient mice.6,20 This propensity has been a useful tool in developing mouse models to study inflammatory bowel disease and colon cancer.7,13,14Murine fecal samples submitted from a variety of institutions to the University of Missouri Research Animal Diagnostic Laboratory (Columbia, MO) between November 2001 and October 2002 showed 17% positivity for H. typhlonius and 10% positivity for H. rodentium.11 H. typhlonius has been reported to cause significant enteric disease in immunodeficient and IL10−/− mice.4 In contrast, H. rodentium has only been reported to cause disease in immunodeficient mice coinfected with other Helicobacter species.16,20,21 Because these agents cause disease, they are best considered to be rodent pathogens, despite the frequency of their detection in clinically normal mice. Although most murine Helicobacter infections are subclinical, infection with H. rodentium and H. typhlonius may affect experimental studies in vivo under some circumstances. In addition, Helicobacter infections can influence murine reproduction, although this effect has not been well studied.The gastric-infecting species H. pylori influences murine pregnancy by increasing the number of fetal resorptions and producing lower fetal weights compared with those of noninfected controls.18 Induction of Th1-type responses at the endometrial level was a possible mechanism suggested for these phenomena but not further investigated. Whether intestinal-infecting Helicobacter species such as H. rodentium and H. typhlonius affect murine pregnancy in wild-type or genetically modified mice, particularly those with mutations that affect immune function, has not been determined.Mice deficient in IL10 (IL10−/− mice) mount an exaggerated and prolonged inflammatory response resulting from their lack of circulating IL10, a cytokine that normally functions to limit inflammatory processes. Thus IL10−/− mice may be at greater risk of adverse effects after Helicobacter infection due to their lack of IL10 to inhibit Th1 immune responses. In a breeding colony of IL10−/− mice, those housed in a facility where H. rodentium or H. typhlonius (or both) infections were endemic appeared to have less reproductive success than those that were housed in a facility free from Helicobacter spp. These observations lead to this study to specifically determine the effect of infection with H. rodentium and H. typhlonius on the fecundity (potential reproductive capacity) of IL10−/− mice. Because antihelicobacter drug therapy might provide a viable alternative to embryo rederivation for some strains, particularly relative to the risk and resource commitment involved with rederivation, we also investigated whether reproductive performance could be improved by the administration of commercially available antihelicobacter wafers as a method of Helicobacter eradication.  相似文献   

2.
Infection of mouse colonies with Helicobacter spp. has become an increasing concern for the research community. Although Helicobacter infection may cause clinical disease, investigators may be unaware that their laboratory mice are infected because the pathology of Helicobacter species is host-dependent and may not be recognized clinically. The effects of Helicobacter infections are not limited to the gastrointestinal system and can affect reproduction, the development of cancers in gastrointestinal organs and remote organs such as the breast, responses to vaccines, and other areas of research. The data we present in this review show clearly that unintentional Helicobacter infection has the potential to significantly interfere with the reliability of research studies based on murine models. Therefore, frequent screening of rodent research colonies for Helicobacter spp. and the eradication of these pathogens should be key goals of the research community.The reliability of an experiment that uses an in vivo model system depends on understanding and controlling all variables that can influence the experimental outcome. Infections of mouse colonies are important to the scientific community because they can introduce such harmful variables. Therefore, the ultimate goal of laboratory animal facilities is to maintain disease-free animals, to eliminate those unwanted variables.Numerous pathogenic microbes can interfere with animal research (reviewed in reference 57), and colonization of mouse colonies with members of the family Helicobacteriaceae is an increasing concern for the research community. Naturally acquired Helicobacter infections have been reported in all commonly used laboratory rodent species.3,10,36,44,45,49,82,124 A study of mice derived from 34 commercial and academic institutions in Canada, Europe, Asia, Australia, and the United States showed that 88% of these institutions had mouse colonies infected with 1 or more Helicobacter spp.109 Approximately 59% of these mice were infected with Helicobacter hepaticus ; however monoinfections with other species also were encountered. In another study, at least 1 of 5 Helicobacter spp. was detected in 88% of the 40 mouse strains tested.4Surveys such as these have established that a broad range of Helicobacter spp. may be present in mouse research colonies. Several of those Helicobacter species cause disease in laboratory mice. H. hepaticus first was identified as a pathogen when it was discovered to be the cause of chronic hepatitis and hepatocellular carcinoma in mice,26,31,116 either alone or in combination with other Helicobacter spp.78 In addition, H. typhlonius causes intestinal inflammation in mice with immunodeficiency or defects in immune regulation;28,37 H. muridarum has been associated with gastritis,86 and H. bilis has been associated with hepatitis35,38 and colitis.60,61 Although, H. rodentium appears to be relatively nonpathogenic in wild-type and SCID mice,78 combined infection with H. rodentium and H. typhlonius results in a high incidence of inflammation-associated neoplasia in IL10−/− mice.9,46 Further, it is becoming increasingly clear that the effects of Helicobacter infections are not limited to the gastrointestinal system. Helicobacter infections have been documented to directly or indirectly affect responses as diverse as reproduction, development of breast cancer, and altered immune responses to vaccines.65,95,99 In addition to effects on rodents, Helicobacter spp. can infect other laboratory animals2,5,27,29,33,36,107 and can colonize different anatomic regions of the gastrointestinal system.35 This review focuses on the potential effect of these organisms on in vivo experiments and biomedical research. The results summarized here emphasize the importance of knowledge of colony infection status and prevention of unintentional infections to achieve the goal of providing a consistent and reliable environment for research studies.  相似文献   

3.
Enterohepatic Helicobacter species (EHS) often are associated with typhlocolitis and rectal prolapse in mice. We sought to describe rectal prolapses histologically, relate lesions to mouse genotype and EHS infection status, and characterize EHS pathogens on our campus. Our mouse population was housed among 6 facilities on our main campus and a seventh, nearby facility. We investigated cases of rectal prolapse over 1 y and included 76 mice, which were broadly categorized according to genotype. Microscopically, lesions ranged from mild to severe typhlocolitis, often with hyperplastic and dysplastic foci. Neoplastic foci tended to occur at the ileocecal–colic junction. Lesions were most severe in strains that had lower-bowel inflammatory disease, notably IL10, Rag1, and Rag2 knockout strains; prolapses occurred in these strains when housed both in areas with endemic EHS and in our Helicobacter-free barrier facility. Most mice with rectal prolapses were immunocompromised genetically modified mice; however, the most frequently sampled strain, the lamellipodin knockout, was noteworthy for its high incidence of rectal prolapse, localized distal colonic and rectal lesions, and lack of known immunodeficiency. This strain is being explored as a model of rectal carcinoma. Most of the colons examined tested PCR-positive for EHS, often with coinfections. Although H. bilis is prevalent on our campus, we did not find this organism in any mice exhibiting clinical signs of rectal prolapse. Identification of H. apodemus in 22% of cases has fueled increased surveillance on our campus to characterize this organism and differentiate it from the closely related H. rodentium.Abbreviations: EHS, enterohepatic Helicobacter species; IBD, inflammatory bowel disease; RFLP, restriction-fragment–length polymorphism; RP, rectal prolapseRectal prolapse (RP) occurs commonly in laboratory mice and is often associated with lower-bowel inflammation. Mice have a relatively short and poorly supported distal colon, which lacks a serosal covering.30 This anatomic weakness, coupled with a microbial insult, toxic injury, or space-occupying neoplastic masses within the gastrointestinal tract, are the predisposing factors for tenesmus and RP (Figure 1). In the context of microbial insults, the pathogenesis involves diffuse or multifocal inflammation in the more proximal segments of colon or distal colon, which can result in thickened edematous tissue and tenesmus, triggering a prolapse.6,30,40 Bacteria most often associated with this condition are the enterohepatic Helicobacter species (EHS) and Citrobacter rodentium; although in theory any pathogenic bacteria causing colitis may predispose mice to RP.1,11,13,38Open in a separate windowFigure 1.Mouse rectal prolapse. An example of the clinical presentation of rectal prolapse in laboratory mice. Note the attachment of bedding and nesting material in the film of mucous that frequently is seen covering the exposed rectal tissue. Generally the tissue becomes severely erythematous, as can be appreciated in this photograph.Although the clinical presentation of RP may occur in immunocompetent mice, it is most often associated with mice that have a spontaneous or transgenic mutation causing immunodeficiency.11,13,38 Indeed, these naturally occurring murine pathogens are used to model inflammatory bowel disease in strains that are highly susceptible to typhlocolitis with EHS infection; examples include Il10−/− and Rag-deficient mice.3,5,8,9,13,16,19,20,22,40 In addition, H. hepaticus and other EHS including H. typhlonius, H. rodentium, and H. bilis, which are known to persistently colonize the intestinal crypt of the lower bowel, have been shown to induce colitis-associated cancer in susceptible immunodeficient strains of mice.4,7,9,23,24,27,29,31In 1999, our institution introduced a rodent importation policy to reduce the introduction of murine pathogens. As part of this program, all approved commercial vendors were screened to ensure animals were SPF for EHS. Any random-source mice (typically imported from other academic institutions for collaborative projects) were required to be rederived by embryo transfer. In comparing PCR data between 1999 (prior to implementing the ET policy) and 2009, we found that after more than a decade of strict rederivation and husbandry practices that reduce fecal–oral transmission, EHS prevalence was markedly reduced.21 Despite this success, these practices did not completely eradicate rodent EHS. Of particular note, 2 facilities on campus house well-established long-term breeding colonies, many of which are unique transgenic lines with various immunodeficiencies, that are used primarily for immunology and cancer research. Rederivation of each of these strains was considered to be cost-prohibitive; thus EHS has remained endemic in these breeding colonies for more than a decade, as evident by our recent surveillance for EHS prevalence.21 The species known to be prevalent on our campus prior to the current study included H. hepaticus, H. rodentium, H. typhlonius, and H. bilis; in a few isolated areas, H. mastomyrinus was identified also.21Although EHS infections often are subclinical, we sought to correlate the presence of EHS-endemic areas with clinical lower-bowel inflammation (evident by rectal prolapse). In this survey of laboratory mice at our institution, we identified patterns in mouse strain susceptibility to RP, RP association with EHS, and histopathologic findings and correlated specific EHS species with clinical disease. Because we sought to study spontaneous infections, we excluded any mice on study with experimentally induced inflammatory bowel disease (IBD), including Helicobacter-induced IBD and chemically induced colitis models.From July 2011 to July 2012, a total of 63 mice with RP from these 6 facilities at our institution were necropsied as part of this investigation. In addition, 13 mice with RP were identified at a nearby research institute housing mice known to have endemic EHS.  相似文献   

4.
Infection of laboratory mice with murine noroviruses (MNV) is widely prevalent. MNV alters various mouse models of disease, including the Helicobacter bilis-induced mouse model of inflammatory bowel disease (IBD) in Mdr1a−/− mice. To further characterize the effect of MNV on IBD, we used mice deficient in the immunoregulatory cytokine IL10 (Il10−/− mice). In vitro infection of Il10−/− bone marrow-derived macrophages (BMDM) with MNV4 cocultured with H. bilis antigens increased the gene expression of the proinflammatory cytokines IL1β, IL6, and TNFα as compared with that of BMDM cultured with H. bilis antigens only. Therefore, to test the hypothesis that MNV4 infection increases inflammation and alters disease phenotype in H. bilis-infected Il10−/− mice, we compared the amount and extent of inflammation in Il10−/− mice coinfected with H. bilis and MNV4 with those of mice singly infected with H. bilis. IBD scores, incidence of IBD, or frequency of severe IBD did not differ between mice coinfected with H. bilis and MNV4 and those singly infected with H. bilis. Mice infected with MNV4 only had no appreciable IBD, comparable to uninfected mice. Our findings suggest that, unlike in Mdr1a−/− mice, the presence of MNV4 in Il10−/− mouse colonies is unlikely to affect the IBD phenotype in a Helicobacter-induced model. However, because MNV4 altered cytokine expression in vitro, our results highlight the importance of determining the potential influence of MNV on mouse models of inflammatory disease, given that MNV has a tropism for macrophages and dendritic cells and that infection is widely prevalent.Abbreviations: BMDM, bone marrow-derived macrophages; IBD, inflammatory bowel disease; MLN, mesenteric lymph node; MNV, murine norovirusInflammatory bowel disease (IBD), which includes both ulcerative colitis and Crohn disease, is a chronic and relapsing inflammatory disorder of the gastrointestinal tract. In addition, patients with IBD may be at increased risk of developing colorectal cancer.15,46 Although the exact mechanisms of disease are still not understood fully, the pathogenesis of disease is likely multifactorial, with components of the innate and adaptive immune systems, host genetics, and environmental factors (for example, the commensal gut microflora) all playing a role.4,37,55Animal models of IBD have been used to advance our knowledge and understanding of IBD pathogenesis and treatment.16,20,37,38,52 One such model that has been widely used to elucidate the mechanisms of IBD is the interleukin10–deficient (Il10−/−) mouse.3,5,6,20,21,29,33,57 The antiinflammatory cytokine IL10 modulates both innate and adaptive immune responses.41 Produced mainly by dendritic cells, monocytes, macrophages, and T regulatory cells, IL10 exerts its immunomodulatory effects by various mechanisms including decreasing secretion of proinflammatory cytokines (for example, interferon γ, IL1, IL2, IL6, IL12 and TNFα) and downregulating important components of innate immune responses and T-cell activation (for example, MHC class II, costimulatory molecules, and nitric oxide production) in antigen presenting cells.14,41 As a consequence, Il10−/− mice, which lack the suppressive effects of IL10, develop IBD in response to their commensal gut microflora or to certain microbial triggers such as Helicobacter infections.5,6,11,21,29,52,57Antigen-presenting cells such as macrophages and dendritic cells play key roles in the inflammatory responses in IBD.32,47,50 In 2003, a newly discovered murine norovirus (MNV) in laboratory mice was shown to infect macrophages and dendritic cells.27,53 Subsequent studies indicated widespread MNV infection in laboratory mice used for biomedical research, with a serologic prevalence as high as 32%.25,43 Members of the genus Norovirus are regarded as gastrointestinal pathogens in humans and animals, eliciting both innate and adaptive immune responses.19 Therefore, in light of the cellular (macrophages and dendritic cells) and tissue (gastrointestinal) tropisms of MNV as well as the high prevalence of MNV infection in laboratory mice, we hypothesized that MNV infection could be a potential confounder in mouse models of inflammatory diseases including IBD. In support of this idea, our laboratory recently reported that MNV infection in Mdr1a−/− mice (FVB.129P2-Abcb1atm1Bor) accelerated weight loss and exacerbated IBD progression initiated by H. bilis infection.31 This effect potentially was mediated in part through modulating dendritic cell and cytokine responses. In addition, others have reported gastrointestinal abnormalities as a result of MNV infection in some strains of mice,7,26,36 whereas others have described the importance of both innate and adaptive immune responses during MNV infection.8,9,10,28,34,36,48 Collectively, these data indicate that MNV could alter inflammatory responses in laboratory mice.Here we extended our studies of MNV beyond Mdr1a−/− mice to Il10−/− mice, another common animal model of IBD, to further examine the potential effect of MNV on IBD research. Disease was initiated in Il10−/− mice with H. bilis, and we determined whether coinfection with MNV altered disease development, incidence, and severity and the production of cytokines. We demonstrated that although MNV stimulates a Th1 skewing of cytokines in Il10−/− bone marrow-derived macrophages (BMDM) in vitro, MNV does not alter the development, incidence, or severity of disease in vivo. Therefore, although MNV may not affect disease in Il10−/− mouse models, the virus may influence in vitro cytokine phenotypes and thus complicate interpretation of such data. To our knowledge, this report is the first to describe the evaluation of MNV infection in the Helicobacter-induced Il10−/− mouse model of IBD.  相似文献   

5.
Helicobacter spp. are some of the most prevalent bacterial contaminants of laboratory mice. Although abundant data regarding the diseases associated with H. hepaticus infection are available, little is known about the pathogenicity of H. ganmani, which was first isolated in 2001 from the intestines of laboratory mice. The objective of this study was to evaluate the host response to H. ganmani colonization in H. hepaticus disease-resistant C57BL/6 and disease-susceptible A/J and IL10-deficient mice. Mice were inoculated with H. ganmani, H. hepaticus, or Brucella broth. Cecal lesion scores, cecal gene expression, and Helicobacter load were measured at 4 and 90 d after inoculation. At both time points, mice inoculated with H. ganmani had similar or significantly more copies of cecum-associated Helicobacter DNA than did mice inoculated with H. hepaticus. When compared with those of sham-inoculated control mice, cecal lesion scores at 4 and 90 d after inoculation were not significantly greater in H. ganmani-inoculated A/J, C57BL/6, or IL10-deficient mice. Analysis of cecal gene expression demonstrated that H. ganmani infection failed to cause significant elevations of IFNγ in A/J, C57BL/6, or IL10-deficient mice. However, in IL10-deficient mice, H. ganmani infection was associated with a significant increase in the expression of the proinflammatory cytokine IL12/23p40. Although H. ganmani infection in this study failed to induce the typhlitis that is the hallmark of H. hepaticus infection, infection with H. ganmani was associated with alterations in inflammatory cytokines in IL10-deficient mice.Abbreviations: B6, C57BL/6NCr; HPRT, hypoxanthine guanine phosphoribosyl transferase; IL10 KO, B6129P2-IL10tm1Cgn/JSince the discovery of the link between Helicobacter pylori and chronic gastritis in 1982,17 Helicobacter spp. in humans and animals have become a field of extensive study. Due to improved detection methods, there has been a rapid expansion in our understanding and ability to detect native Helicobacter spp. in mouse models. Several reports investigating their prevalence in mice housed in research institutions have found Helicobacter spp. to be some of the most common bacterial contaminants of laboratory rodents.2,3,12,16,23 Helicobacter hepaticus is perhaps the most notorious of the murine helicobacters, by virtue of the early realization of its pathogenicity in adult mice.8,24 The hallmarks of infection by H. hepaticus are typhlitis, colitis, and hepatitis.10 In addition, H. hepaticus is commonly used as a microbial trigger in susceptible mouse strains used as models of inflammatory bowel disease.5,9,19,21,28 In 2001, less than 10 y after H. hepaticus was discovered, H. ganmani was isolated from the intestines of laboratory mice.26 During its initial characterization, 16S rDNA sequence analysis placed H. ganmani phylogenetically closest to H. rodentium, a urease-negative helicobacter that had been previously isolated from mouse intestines.26Despite the reported endemic presence of H. ganmani in many research colonies,2,3,12 only a few reports to date have attempted to address H. ganmani’s potential pathogenicity.22,30 One report describes an outbreak of inflammatory bowel-like disease associated with H. ganmani infection in an otherwise Helicobacter-free conventional colony of IL10-deficient mice.22 The findings from another report describe the effect of natural colonization of IL10-deficient mice with H. ganmani, H. hepaticus, or both.30 In that study, 8- to 20-wk-old mice monoinfected with H. ganmani had significantly lower lesion scores than did mice monoinfected with H. hepaticus, suggesting that infection with H. ganmani alone was not sufficient to cause severe typhlocolitis.30 However, by 34 wk of age, clinical typhlocolitis (diarrhea) and grossly enlarged ceca were observed at necropsy in 2 of the 6 mice monoinfected with H. ganmani.30Although these reports of naturally occurring infections have provided a glimpse into H. ganmani’s potential to produce intestinal disease in immunodeficient mice, a controlled study in immunocompetent and immunodeficient mice had not been conducted previously. The objectives of the current study were to evaluate the effect of H. ganmani infection on intestinal disease and to characterize alterations of inflammatory gene expression associated with infection. To this end, we selected A/J and IL10-deficient mice for this study because of their known susceptibility to H. hepaticus-induced typhlocolitis.9,13,14,19,21,28 In contrast, although C57BL/6 mice show an initial spike in inflammatory cytokines after H. hepaticus infection, they do not typically develop chronic disease.19 We did not expect C57BL/6 mice to develop H. hepaticus-induced disease, but we deemed it prudent to characterize the possible effects—through unknown mechanisms—of H. ganmani on this common strain.Previous studies characterizing cecal gene expression during H. hepaticus induced typhlocolitis demonstrated that IFNγ and IL12/23p40 (IL12/23) are key proinflammatory cytokines that drive typhlitis.19 Expression of these cytokines was increased in H. hepaticus-inoculated A/J mice but not in H. hepaticus-inoculated C57BL/6 mice.19 In addition, treatment with neutralizing monoclonal antibodies against these cytokines significantly decreased cecal lesion severity, implicating the roles of IFNγ and IL12/23 in modulating the pathogenesis of typhlitis.19 We hypothesized that characterizing the effect of H. ganmani infection on expression of IFNγ and IL12/23 would uncover aspects of the host response that are not readily apparent by histologic evaluation of cecal tissue alone.To date, our understanding of the potential for H. ganmani to cause intestinal disease has been limited to reports that focused on the evaluation of histologic disease in naturally infected IL10-deficient mice. Despite the reported endemic presence of H. ganmani in many research colonies,2,3,12 there are no published reports of disease associated with H. ganmani infection in immunocompetent mice. In addition, H. ganmani shares close sequence homology with H. rodentium, which has been found to be nonpathogenic in monoinfected immunodeficient and immunocompetent mice.20 Therefore, we hypothesized that experimental infection with H. ganmani would not produce disease in H. hepaticus-susceptible or -resistant mice.  相似文献   

6.
Murine norovirus (MNV) has recently been recognized as a widely prevalent viral pathogen in mouse colonies and causes disease and mortality in mice with impaired innate immunity. We tested the hypothesis that MNV infection would alter disease course and immune responses in mice with inflammatory bowel disease (IBD). FVB.129P2-Abcb1atm1Bor N7 (Mdr1a−/−) mice develop spontaneous IBD that is accelerated by infection with Helicobacter bilis. As compared with controls, Mdr1a−/− mice coinfected with MNV4 and H. bilis showed greater weight loss and IBD scores indicative of severe colitis, demonstrating that MNV4 can modulate the progression of IBD. Compared with controls, mice inoculated with MNV4 alone had altered levels of serum biomarkers, and flow cytometric analysis of immune cells from MNV4-infected mice showed changes in both dendritic cell (CD11c+) and other nonT cell (CD4 CD8) populations. Dendritic cells isolated from MNV4-infected mice induced higher IFNγ production by polyclonal T cells in vitro at 2 d after infection but not at later time points, indicating that MNV4 infection enhances antigen presentation by dendritic cells early after acute infection. These findings indicate that acute infection with MNV4 is immunomodulatory and alters disease progression in a mouse model of IBD.Abbreviations: DC, dendritic cell; IBD, inflammatory bowel disease; IP, IFNγ–inducible protein; MCP, macrophage chemotactic protein; MLN, mesenteric lymph node; MNV, murine norovirus; TNF, tumor necrosis factorThe genus Norovirus of the family Caliciviridae contains a large number of single-stranded, positive-sense RNA viruses that infect vertebrates, and strains have been identified in humans, cattle, swine, and (most recently) mice.19,29,34 Murine noroviruses (MNV) are recently recognized pathogens that can cause lethal infection in immunocompromised mice that lack innate immunity.19 However, MNV did not cause clinical disease in wild-type mice or many other strains of immunodeficient mice, including those lacking the recombination-activating gene (Rag−/−) and inducible nitric oxide synthase deficient mice.19,35,37 MNV was reported recently to be widespread in laboratory mice and may persist in immunocompetent animals, depending on the strain of MNV used.15,16,25 Studies in Rag−/− mice and B-cell–deficient strains showed that the acquired immune system plays an important role in the clearance of MNV.6,19,37 MNV has tropism for dendritic cells (DCs),36 which are important in the presentation of antigens to T cells in draining lymph nodes and in the pathogenesis of inflammatory bowel disease (IBD). Therefore, MNV is a potential confounder for in vivo immunology studies, including murine models of IBD.Idiopathic IBD, which encompasses both ulcerative colitis and Crohn disease, is a widely studied disorder that affects approximately 1.4 million people in the United States.20 Although the precise cause of human IBD has not been elucidated, studies with mouse models have demonstrated that abnormal host responses of the innate and adaptive immune systems to intestinal microbiota are important in the pathogenesis of IBD.28,38 DCs are the sentinels of the intestinal mucosal barrier and have a pivotal role in the initiation of IBD in response to microbial ligands.39 Alterations in DC responses could lead to persistence of bacterial infection, aberrant activation of the acquired immune system, and (ultimately) tissue damage.38Viral stimulation of DCs leads to activation of adaptive immune responses,17 including effector T cells, and as demonstrated with murine coronavirus (mouse hepatitis virus), intercurrent viral infections in mice can alter the phenotype of mouse models of human disease.10 Additional evidence suggests that intercurrent viral infection may enhance disease in human IBD patients.12,18 Whether infection with MNV alters DC function and, therefore, influences the progression of IBD in mouse models is unclear.Many mouse models of intestinal inflammation develop IBD that is driven by bacterial flora.9,28 Helicobacter spp. have been shown to drive this process in several mouse models including IL10-deficient, SMAD3-deficient, severe combined immunodeficiency and T-cell–deficient mice.4,5,13,23 FVB.129P2-Abcb1atm1Bor (Mdr1a−/−) mice develop spontaneous IBD that is accelerated by infection with Helicobacter bilis.21,22 In this report, we tested the hypothesis that infection with MNV can modulate IBD in this mouse model of bacterial-induced disease. We demonstrate that intercurrent MNV4 infection accelerates the progression of bacterial-induced IBD in the Mdr1a−/− mouse and alters the immune responses in this mouse model of IBD.  相似文献   

7.
8.
9.
M Shen  L Wang  B Wang  T Wang  G Yang  L Shen  T Wang  X Guo  Y Liu  Y Xia  L Jia  X Wang 《Cell death & disease》2014,5(11):e1528
Endoplasmic reticulum (ER) stress occurring in stringent conditions is critically involved in cardiomyocytes apoptosis and cardiac contractile dysfunction (CCD). However, the molecular machinery that mediates cardiac ER stress and subsequent cell death remains to be fully deciphered, which will hopefully provide novel therapeutic targets for these disorders. Here, we establish tunicamycin-induced model of cardiomyocyte ER stress, which effectively mimicks pathological stimuli to trigger CCD. Tunicamycin activates volume-sensitive outward rectifying Cl currents. Blockade of the volume-sensitive outwardly rectifying (VSOR) Cl channel by 4,4''-diisothiocya-natostilbene-2,2''-disulfonic acid (DIDS), a non-selective Cl channel blocker, and 4-(2-butyl-6,7-dichlor-2-cyclopentyl-indan-1-on-5-yl) oxybutyric acid (DCPIB), a selective VSOR Cl channel blocker, improves cardiac contractility, which correlates with suppressed ER stress through inhibiting the canonical GRP78/eIF2α/ATF4 and XBP1 pathways, and promotes survival of cardiomyocytes by inverting tunicamycin-induced decrease of Wnt through the CHOP pathway. VSOR activation of tunicamycin-treated cardiomyocytes is attributed to increased intracellular levels of reactive oxygen species (ROS). Our study demonstrates a pivotal role of ROS/VSOR in mediating ER stress and functional impairment of cardiomyocytes via the CHOP-Wnt pathway, and suggests the therapeutic values of VSOR Cl channel blockers against ER stress-associated cardiac anomalies.The endoplasmic reticulum (ER) is characterized as an organelle that participates in the folding of membrane and secretory proteins.1,2 Efficient functioning of the endoplasmic reticulum is important for cell function and survival. Perturbations of ER homeostasis by energy deprivation and glucose,3 viral infections4 and accumulation of misfolded and/or unfolded proteins2 interfere with ER function, leading to a state of ER stress.5, 6, 7 A cohort of chemicals, for example, tunicamycin and thapsigargin, also trigger ER stress.8, 9, 10 Thapsigargin disrupts the calcium storage of ER by blocking calcium reuptake into the ER lumen, thus by depleting calcium from the organelle.11 In particular, tunicamycin is a highly specific ER stress inducer by inhibiting N-linked glycosylation of protein, representing a well-documented method to artificially elicit unfolded protein response.8 In response to ER stress, ER chaperones such as glucose-regulated protein 78 kDa (GRP78) and glucose-regulated protein 94 kDa (GRP94) are upregulated to facilitate the recovery of unfolded or misfolded proteins.12 ER stress may act as a defense mechanism against external insults; however, prolonged and/or severe ER stress may ultimately trigger apoptosis.8 The C/EBP homologous protein (CHOP) has been defined as a pivotal mediator of cell death signaling in ER stress.13, 14 Accumulating evidence has demonstrated that ER stress-induced cell death is an essential step in the pathogenesis of a wide variety of cardiovascular diseases such as ischemia reperfusion heart diseases,15 atherosclerosis,5, 16, 17, 18 myocardial infarction,19 hypertension20, 21 and heart failure.8, 22, 23 Inhibiting ER stress has great therapeutic values for cardiac anomalies. However, the precise mechanism involved in ER stress-induced cardiovascular diseases has not been well identified, which impedes the translation of our understanding of ER stress-induced cardiovascular anomalies into effective therapeutic strategies. Apoptosis induction requires persistent cell shrinkage, named apoptotic volume decrease (AVD).24, 25, 26, 27 It is an early prerequisite for the activation of caspases.24 In various types of cells including cardiomyocytes, AVD process is accomplished by the activation of volume-sensitive outwardly rectifying (VSOR) Cl channel and is concomitant with the egress of water from the cells undergoing mitochondrion-initiated or death receptor-induced apoptosis.25, 28, 29, 30 Although inhibition of VSOR Cl channel by DIDS (4,4''-diisothiocyanatostilbene-2,2''-disulphonic acid) and DCPIB (4-(2-butyl-6,7- dichlor-2-cyclopentyl-indan-1-on-5-yl) oxybutyric acid) blocked AVD and rescued cardiomyocytes from mitochondrial and death receptor pathway-induced apoptosis,31, 32 it remains largely unknown concerning the role of VSOR Cl channel and how it is regulated in ER stress-induced apoptotic cardiomyocyte death.Emerging evidence indicates that Wnt signal pathways are found to be anti-apoptotic in the cardiovascular diseases,33, 34, 35 regulating crucial aspects of cardiovascular biology. However, up to now, its activity in ER stress-induced apoptosis and in the process of AVD in cardiomyocytes remains elusive.In the present study, we probed the role of VSOR Cl channel in ER stress-induced apoptosis of cardiomyocytes, which intimately correlates with cardiac contractile dysfunction (CCD). We hypothesized that VSOR Cl channel controls the process of AVD occurring concomitantly with ER stress-induced apoptosis of cardiomyocytes. To test this hypothesis, we investigated VSOR Cl currents in cardiomyocytes treated with the ER stress inducer tunicamycin. The pathophysiological role of VSOR Cl channel and the potential signaling mechanisms in the development of ER stress-induced apoptosis in CCD were also dissected.  相似文献   

10.
11.
12.
13.
14.
15.
Secondary hepatic amyloidosis in nonhuman primates carries a grave prognosis once animals become clinically ill. The purpose of this study was to establish serologic parameters that potentially could be used to identify rhesus macaques undergoing subclinical development of secondary hepatic amyloidosis. A retrospective analysis was completed by using serum biochemical profiles from 26 histologically diagnosed amyloidotic macaques evaluated at 2 stages of disease, clinical and subclinical (3 to 32 mo prior to clinical signs of disease). Standard serum biochemistry values for cases were compared with institutional age- and gender-specific references ranges by construction of 95% confidence intervals for the difference between means. In addition, 19 histologically diagnosed amyloidotic macaques and 19 age-matched controls were assayed for changes in various parameters by using routinely banked, frozen (–80 °C) sera available from clinical and subclinical time points. Clinically amyloidotic animals displayed increased levels of alkaline phosphatase, aspartate aminotransferase, lactate dehydrogenase, gamma glutamyltranspeptidase, and macrophage colony-stimulating factor and significantly decreased quantities of albumin and total cholesterol. Subclinical amyloidotic animals displayed increased levels of alkaline phosphatase, aspartate aminotransferase, lactate dehydrogenase, and serum amyloid A and decreased concentrations of albumin and total cholesterol. The serologic parameters studied indicate a temporal relationship of these factors not previously described, show a clear pattern of disease progression, and could be useful in subclinical disease detection.Abbreviations: mCSF, macrophage colony stimulating factor; SAA, serum amyloid AAmyloid is an eosinophilic substance made of insoluble fibrillar protein.32 When deposited extracellularly, amyloid causes displacement of tissue form and disruption of organ function.32 Persistent accretion of amyloid can result in organ failure and ultimately animal death.22 Clinical signs of disease depend on the tissues affected and the degree of involvement.32 Amyloidosis has been well documented in humans, other mammals, birds, and reptiles.38 In humans, amyloidosis plays a key role in many diseases, including Alzheimer disease, type II diabetes, rheumatoid arthritis, and Down syndrome.15,20,35,38Amyloidosis generally is classified into 3 categories: primary, secondary, and hereditary. Primary amyloidosis consists of the immunoglobulin- and myeloma-associated types. Secondary (reactive) amyloidosis is associated with chronic inflammation.24 Common causes of secondary amyloidosis in humans include rheumatoid arthritis, idiopathic colitis, infectious diseases, such as tuberculosis and leprosy, and malignant tumors, such as mesothelioma and Hodgkins disease.28 Hereditary amyloid syndromes are rare and include Mediterranean fever, Muckle–Wells syndrome, and familial amyloid cardiomyopathy.32,38Secondary amyloidosis is the most common form of amyloidosis in animals.38 Amyloidosis occurs in many species of nonhuman primates including the common marmoset (Callithrix jacchus),23 squirrel monkey (Saimiri sciureus),34 rhesus macaque (Macaca mulatta),9,10 pigtailed macaque (Macaca nemestrina),18,27 crab-eating macaque (Macaca fascicularis),27 barbary ape (Macaca sylvanus),6 baboon (Papio spp.),17 mandrill (Papio sphinx), and chimpanzee (Pan troglodytes).16,39 Although a definitive cause of secondary amyloidosis has not been identified in nonhuman primates, this condition has been associated with chronic inflammation due to rheumatoid arthritis,6 viral infection,18 parasitism,1 respiratory disease,27,30 trauma,30 and bacterial enterocolitis.27,30,31 Shigella spp. have received particular attention as a common etiology linking enterocolitis with amyloidosis.4,7,38Previous research on amyloidosis in nonhuman primates has yielded clinical and serologic profiles in end-stage amyloidotic animals, but little is known about the serologic status in the subclinical stages of disease. Amyloid can accumulate for as long as 3 y before severe organ disruption occurs14 and clinical signs of amyloidosis become evident.16 With appropriate analysis, detection of amyloidosis could occur much earlier than typically now achieved, thus allowing for targeted preventative therapy to potentially halt the progression of this insidious disease.  相似文献   

16.
17.
18.
19.
In the oxidative stress hypothesis of aging, the aging process is the result of cumulative damage by reactive oxygen species. Humans and chimpanzees are remarkably similar; but humans live twice as long as chimpanzees and therefore are believed to age at a slower rate. The purpose of this study was to compare biomarkers for cardiovascular disease, oxidative stress, and aging between male chimpanzees and humans. Compared with men, male chimpanzees were at increased risk for cardiovascular disease because of their significantly higher levels of fibrinogen, IGF1, insulin, lipoprotein a, and large high-density lipoproteins. Chimpanzees showed increased oxidative stress, measured as significantly higher levels of 5-hydroxymethyl-2-deoxyuridine and 8-iso-prostaglandin F, a higher peroxidizability index, and higher levels of the prooxidants ceruloplasmin and copper. In addition, chimpanzees had decreased levels of antioxidants, including α- and β-carotene, β-cryptoxanthin, lycopene, and tocopherols, as well as decreased levels of the cardiovascular protection factors albumin and bilirubin. As predicted by the oxidative stress hypothesis of aging, male chimpanzees exhibit higher levels of oxidative stress and a much higher risk for cardiovascular disease, particularly cardiomyopathy, compared with men of equivalent age. Given these results, we hypothesize that the longer lifespan of humans is at least in part the result of greater antioxidant capacity and lower risk of cardiovascular disease associated with lower oxidative stress.Abbreviations: 5OHmU, 5-hydroxymethyl-2-deoxyuridine; 8isoPGF, 8-iso-prostaglandin F; HDL, high-density lipoprotein; IGF1, insulin-like growth factor 1; LDL, low-density lipoprotein; ROS, reactive oxygen speciesAging is characterized as a progressive reduction in the capacity to withstand the stresses of everyday life and a corresponding increase in risk of mortality. According to the oxidative stress hypothesis of aging, much of the aging process can be accounted for as the result of cumulative damage produced by reactive oxygen species (ROS).6,21,28,41,97 Endogenous oxygen radicals (that is, ROS) are generated as a byproduct of normal metabolic reactions in the body and subsequently can cause extensive damage to proteins, lipids, and DNA.6,41 Various prooxidant elements, in particular free transition metals, can catalyze these destructive reactions.6 The damage caused by ROS can be counteracted by antioxidant defense systems, but the imbalance between production of ROS and antioxidant defenses, over time, leads to oxidative stress and may contribute to the rate of aging.28,97Oxidative stress has been linked to several age-related diseases including neurodegenerative diseases, ophthalmologic diseases, cancer, and cardiovascular disease.21,28,97 Of these, cardiovascular disease remains the leading cause of adult death in the United States and Europe.71 In terms of cardiovascular disease, oxidative stress has been linked to atherosclerosis, hypertension, cardiomyopathy, and chronic heart failure in humans.55,78,84 Increases in oxidant catalysts (prooxidants)—such as copper, iron, and cadmium—have been associated with hypertension, coronary artery disease, atherosclerosis, and sudden cardiac death.98,102,106 Finally, both endogenous and exogenous antioxidants have been linked to decreased risk of cardiovascular disease, although the mechanisms behind this relationship are unclear.11,52,53 However, the oxidative stress hypothesis of aging aims to explain not only the mechanism of aging and age-related diseases (such as cardiovascular disease) in humans but also the differences between aging rates and the manifestations of age-related diseases across species.The differences in antioxidant and ROS levels between animals and humans offer promise for increasing our understanding of human aging. Additional evidence supporting the oxidative stress hypothesis of aging has come from comparative studies linking differences in aging rates across taxa with both antioxidant and ROS levels.4,17-21,58,71,86,105 In mammals, maximum lifespan potential is positively correlated with both serum and tissue antioxidant levels.17,18,21,71,105 Research has consistently demonstrated that the rate of oxidative damage varies across species and is negatively correlated with maximum lifespan potential.4,19,20,58,71,86 However, few studies involved detailed comparisons of hypothesized biochemical indicators of aging and oxidative stress between humans and animals.6 This type of interspecies comparison has great potential for directly testing the oxidative stress hypothesis of aging.Much evolutionary and genetic evidence supports remarkable similarity between humans and chimpanzees.95,100 Despite this similarity, humans have a lifespan of almost twice that of chimpanzees.3,16,47 Most comparative primate aging research has focused on the use of a macaque model,62,81,88 and several biochemical markers of age-related diseases have been identified in both humans and macaque monkeys.9,22,28,81,93,97 Several other species of monkeys have also been used in research addressing oxidative stress, antioxidant defenses, and maximum lifespan potential.18,21,58,105 However, no study to date has examined biochemical indicators of oxidative stress and aging in chimpanzees and humans as a test of the oxidative stress hypothesis for aging. The purpose of this study is to compare biochemical markers for cardiovascular disease, oxidative stress, and aging directly between male chimpanzees and humans. Given the oxidative stress hypothesis for aging and the known role of oxidative stress in cardiovascular disease, we predict that chimpanzees will show higher levels of cardiovascular risk and oxidative stress than humans.  相似文献   

20.
A 5.5-y-old intact male cynomolgus macaque (Macaca fasicularis) presented with inappetence and weight loss 57 d after heterotopic heart and thymus transplantation while receiving an immunosuppressant regimen consisting of tacrolimus, mycophenolate mofetil, and methylprednisolone to prevent graft rejection. A serum chemistry panel, a glycated hemoglobin test, and urinalysis performed at presentation revealed elevated blood glucose and glycated hemoglobin (HbA1c) levels (727 mg/dL and 10.1%, respectively), glucosuria, and ketonuria. Diabetes mellitus was diagnosed, and insulin therapy was initiated immediately. The macaque was weaned off the immunosuppressive therapy as his clinical condition improved and stabilized. Approximately 74 d after discontinuation of the immunosuppressants, the blood glucose normalized, and the insulin therapy was stopped. The animal''s blood glucose and HbA1c values have remained within normal limits since this time. We suspect that our macaque experienced new-onset diabetes mellitus after transplantation, a condition that is commonly observed in human transplant patients but not well described in NHP. To our knowledge, this report represents the first documented case of new-onset diabetes mellitus after transplantation in a cynomolgus macaque.Abbreviations: NODAT, new-onset diabetes mellitus after transplantationNew-onset diabetes mellitus after transplantation (NODAT, formerly known as posttransplantation diabetes mellitus) is an important consequence of solid-organ transplantation in humans.7-10,15,17,19,21,25-28,31,33,34,37,38,42 A variety of risk factors have been identified including increased age, sex (male prevalence), elevated pretransplant fasting plasma glucose levels, and immunosuppressive therapy.7-10,15,17,19,21,25-28,31,33,34,37,38,42 The relationship between calcineurin inhibitors, such as tacrolimus and cyclosporin, and the development of NODAT is widely recognized in human medicine.7-10,15,17,19,21,25-28,31,33,34,37,38,42 Cynomolgus macaques (Macaca fasicularis) are a commonly used NHP model in organ transplantation research. Cases of natural and induced diabetes of cynomolgus monkeys have been described in the literature;14,43,45 however, NODAT in a macaque model of solid-organ transplantation has not been reported previously to our knowledge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号