首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
宏生态尺度上景观破碎化对物种丰富度的影响   总被引:3,自引:0,他引:3  
生物多样性的地理格局及其形成机制是宏生态学与生物地理学的研究热点。大量研究表明,景观尺度上的生境破碎化对物种多样性的分布格局具有重要作用,但目前尚不清楚这种作用是否足以在宏生态尺度上对生物多样性地理格局产生显著影响。利用中国大陆鸟类和哺乳动物的物种分布数据,在100 km×100 km网格的基础上生成了这两个类群生物的物种丰富度地理格局,进一步利用普通最小二乘法模型和空间自回归模型研究了物种丰富度与气候、生境异质性、景观破碎化的相关关系。结果表明,景观破碎化因子与鸟类和哺乳动物的物种丰富度都具有显著的关联关系,其方差贡献率可达约30%—50%(非空间模型)和60%—80%(空间模型),略低于或接近于气候和生境异质性因子。方差分解结果显示,景观破碎化因子与气候和生境异质性因子的方差贡献率的重叠部分达20%—40%。相对鸟类而言,景观破碎化对哺乳动物物种丰富度的地理格局具有更高的解释率。  相似文献   

2.
一般认为,景观斑块面积和破碎化对物种丰富度和分布格局有重要的影响。在宁夏中部荒漠地区,天然柠条林和人工柠条林地交错排列,形成点、片、带状等大小不等的斑块性分布,表现为典型的破碎化斑块格局生境特征。本文采用巴氏罐诱法调查了在小尺度下荒漠景观人工柠条林破碎化生境不同斑块内地表甲虫的物种多样性。结果共获得10科20属29种地表甲虫,其中拟步甲科昆虫占绝对优势,阿小鳖甲Microdera kraatzi alashanica Skopin、克小鳖甲Microdera kraatzi kraatzi(Reitter)为优势种。Rarefaction曲线显示较大面积的斑块有较多的物种多样性,但群落多样性指数各斑间块差异不显著。利用斑块面积对物种数-个体数进行回归分析表明,地表甲虫的物种多样性受斑块面积的影响,生境破碎化会导致地表甲虫多样性下降。  相似文献   

3.
青海玉树高原不同生境类型蝶类群落结构与多样性   总被引:1,自引:0,他引:1  
2016年和2017年的5—8月,在玉树市选取森林、灌木、高寒灌丛、高寒草甸草原和裸岩5种生境进行蝴蝶种类资源和群落多样性的调查,共记录到蝶类个体数1580头,62种,隶属于7科40属。其中古北界19种,占总种数的30%,东洋界2种,占总种数的3%,两界共有种(广布种) 41种,占总种数的67%。蛱蝶科(535只)个体数量最多,占蝶类个体总数的34%。计算并分析了5种生境中蝴蝶多样性指数(H')、优势度指数(D)、物种丰富度指数(R)、均匀度指数(J)和相似性系数(I),结果表明:灌木生境具有最高的多样性指数,较高均匀度指数和物种丰富度指数以及最低的优势度指数;高寒草甸草原蝶类的多样性指数、均匀度指数、物种丰富度指数均为最低,而优势度指数最高。  相似文献   

4.
草食动物采食对草地植物多样性和生态系统功能的影响机制是放牧生态学研究的核心问题。该研究以内蒙古锡林郭勒盟苏尼特右旗荒漠草原的长期放牧控制实验为平台, 从既有草地植物多样性和动物偏食性两个层面系统地研究了荒漠草地植物多样性对草食动物采食的响应机制。结果显示: 1)荒漠草地植物对草食动物采食呈现4种响应模式: 放牧“隐没种”、放牧“敏感种”、放牧“无感种”、“绝对优势种”; 2)在群落尺度上, 物种多样性指数随放牧强度增加而减少, 与不放牧小区相比, 重度放牧(HG)与适度放牧(MG)小区植物多样性均下降, 且这一规律同样适用于功能群多样性, 灌木半灌木这一功能群内物种多样性对放牧干扰较敏感; 3)在草地既有植物的基础上, 以不放牧小区为参考系, 草食动物对植物功能群偏食性的排序为: 一二年生草本(AB) >多年生杂类草(PF) >灌木半灌木(SS) >多年生禾草(PG), 且偏食性物种主要分布于AB和PF中; 4)植物多样性与动物偏食性基本呈显著负相关关系(p < 0.05)。  相似文献   

5.
农业景观非农生境植物多样性及其影响因素   总被引:1,自引:0,他引:1  
卢训令  梁国付  汤茜  丁圣彦 《生态学报》2018,38(5):1799-1809
农业景观是人类生活所需资料的最主要来源地和生物多样性保护的重要区域之一。黄河中下游地区是我国最重要的农业区之一,在区域农业景观中,非农生境中各群落植物物种多样性组成特征有何差异?在不同尺度上,景观异质性特征与生境特征对植物物种多样性特征有何影响?在黄河中下游典型区域布点,对区内主要非农生境(次生林、次生灌丛、人工林和农田边缘等)中的植物群落物种多样性进行调查。结果显示:(1)次生灌丛中的物种丰富度和多样性显著高于其他生境,而农田边缘也保育有较多的物种;(2)从物种组成来看,景观尺度上样点间物种多样性差异(β_2)是所有生境中物种丰富度的最主要组成部分,而次生灌丛与次生林两类自然生境中小尺度(α和β1)物种丰富度的贡献相对较高。(3)景观异质性特征指标对物种多样性的影响主要体现在样方尺度上(α_(样方)),而β和γ多样性与之的关系并不甚密切。表征生境特征的群落高度和盖度指标能更好的预测物种多样性的特征。研究发现,常用的表征景观异质性的指数在各尺度上对植物群落物种多样性特征的影响也并不显著,局地群落特征的影响更为直接和重要。在探讨景观异质性特征与生物多样性关系时,常用的多样性指数(Shannon多样性指数、均匀度指数和Simpson指数等)并不合适,而拆分后的物种丰富度会更有效。但景观异质性对生物多样性的影响也不容忽视,它的改变会是影响群落物种多样性及其组成结构的重要潜在因素,在更大尺度上景观异质性会通过对景观组成要素特征(生境组成和构型)的影响进而影响到区域植物物种丰富度的变化。  相似文献   

6.
祖悦晴  魏妍儿  张曦文  于德永 《生态学报》2022,42(17):6937-6947
快速的城市化过程带来的生境斑块破碎化及损失会影响物种迁移、捕食等生态活动,对生物多样性构成威胁。然而,现有生态保护区可能无法覆盖其内生物的必要活动范围。生态保护区外的生境斑块对于维持生态过程也具有重要作用,因此识别生态保护区外的关键斑块并加以保护非常重要。以北京市延庆区为研究区,划分两种生境斑块,即核心生境斑块和潜在生境斑块,并基于图论构建生境网络。考虑地表覆盖类型、坡度、人类活动等因素构建生境阻力面。结合未来土地利用类型变化的模拟,研究城市化过程对区域生境网络和景观连接度的影响,选用CLUE-S模型模拟土地利用类型变化的格局。结合生境斑块特征和未来城市土地利用变化情况设计了3种未来生境变化情景。利用连接概率指数(PC)和网络连接度变化率(dI)评价不同生境变化情景下生态保护区外潜在生境斑块的景观连接度重要性,判断保护优先顺序,并分析景观格局变化对不同迁移能力物种的影响。结果表明:生态保护区外的全部潜在生境斑块对维持生境整体景观连接度有最大2.15%的影响,单个潜在生境斑块对维持景观连接度有最大0.28%的影响。此外,景观格局及其变化对不同迁移能力物种的影响差异显著,因此需针对保护物种和城市生境特征设计保护方案,研究区需要优先保护大中型斑块和位于关键位置的小型斑块。为了满足对生物多样性保护的需求,建议在区分生境斑块保护优先顺序时考虑生境斑块对景观连接度的贡献和城市化扩展过程的压力。研究为城市生物多样性保护和生境管理提供了方法参考。  相似文献   

7.
农业景观中的非农生境对维持与提高农业景观的生物多样性具有非常关键的作用。为了探究非农生境的相关结构属性对农业景观中植物物种多样性的影响,选择黄河下游平原区的封丘县为研究区域,对研究区内42个样点的非农生境进行植物多样性调查,并对各个样点周围1 km范围内的非农景观要素进行了提取,分析不同非农生境中植物物种组成及其景观要素的构成、结构及空间配置对植物物种多样性的影响。研究结果表明:不同类型的非农生境中,物种组成共有种相对较多,特有种或指示种较少;林地与树篱具有相对较高的物种多样性,以沟渠为生境的植物物种组成与其它两种生境类型相比存在明显差异;林地与树篱/沟渠的组成比例相当时,植物物种丰富度最高;景观指数对不同非农生境中的植物物种具有明显影响,景观破碎化及人为干扰指数的影响较为显著。未来在对本区域内农业景观进行结构优化的过程中,应从非农景观要素的改造入手。通过调整和设置非农景观要素的不同类型及比例、合理改造其结构与空间配置,为最终实现农业景观的有效管理与可持续健康发展奠定重要的研究基础。  相似文献   

8.
秦岭中段南坡景观格局与大熊猫栖息地的关系   总被引:9,自引:0,他引:9  
景观格局是各种生态过程在不同尺度上作用的结果 ,同时景观格局强烈影响着生境内种群的生物学过程 ;种群的结构和分布状况同栖息地景观格局之间存在一定的联系。借助遥感和地理信息系统软件 ,对秦岭中段南坡地区 3个保护区 (佛坪、长青和观音山 )大熊猫栖息地的景观格局及其与大熊猫活动痕迹密度之间的关系进行了研究。该研究首先绘制了景观类型格局图并进行总体斑块格局分析 ,其次分别从保护区尺度和 1km2 尺度分析平均斑块分维数、破碎度指数和香农多样性指数 ,以进行比较 ;最后在 1km2尺度上统计分析大熊猫活动密度同景观格局指数分布的相关性。研究结果表明 :(1)各自然保护区内的景观格局存在着差异性 ,佛坪保护区景观多样性水平较高 ,长青保护区居中 ,观音山保护区最低 ;(2 )各保护区内部受人为干扰和生境恢复程度不同 ,使得景观破碎化程度在佛坪保护区最低 ,长青保护区居中 ,观音山保护区最高 ;(3)大熊猫活动密度有集中分布的趋势 ,高密度区域主要分布在佛坪中部和长青北部 ;(4 )在 1km2尺度 ,3个保护区大熊猫活动痕迹密度同景观指数格局之间存在不同的相关性 ,说明不同的景观格局会影响到大熊猫的活动和生境利用。  相似文献   

9.
农业景观生物多样性与害虫生态控制   总被引:12,自引:1,他引:11  
郑云开  尤民生 《生态学报》2009,29(3):1508-1518
现代农业的一个重要特征就是人类对农田生态系统的干扰强度及频率不断增加,严重影响农业景观的结构及其生物多样性.农业景观结构的变化及其生物多样性的丧失,必然引起生态系统服务功能的弱化,不利于实施以保护自然天敌为主的害虫生态控制.农业的集约化经营导致自然生境破碎化,减少了农业景观的复杂性,使得作物和非作物变成一种相对离散化的生境类型和镶嵌的景观格局;破碎化的生境不仅会减少某些物种的丰度,还会影响物种之间的相互关系及生物群落的多样性和稳定性.非作物生境类型如林地、灌木篱墙、田块边缘区、休耕地和草地等,是一种比较稳定的异质化环境.非作物生境较少受到干扰,可以为寄生性和捕食性节肢动物提供适宜的越冬或避难场所以及替代猎物、花粉和花蜜等资源,因此,非作物生境有利于自然天敌的栖息和繁衍,也有利于它们迁入邻近的作物生境中对害虫起到调节和控制作用.景观的格局-过程-尺度影响农田生物群落物种丰富度、多度、多样性以及害虫与天敌之间的相互作用.从区域农业景观系统的角度出发,运用景观生态学的理论和方法来研究作物、害虫、天敌等组分在不同斑块之间的转移过程和变化规律,揭示害虫在较大尺度和具有异质性的空间范围内的灾变机理,可为利用农业景观生物多样性来保护农田自然天敌,实施害虫的区域性生态控制提供新的研究思路和手段.  相似文献   

10.
物种多样性的空间分布格局和维持机制是群落生态学的基本问题。为了探讨海南尖峰岭地区物种多样性空间分布格局的尺度效应, 以海南尖峰岭热带山地雨林60 hm2样地为研究对象, 分析了物种丰富度、物种多度、Shannon-Wiener指数、Simpson指数以及Pielou均匀度指数随6个空间取样尺度(5 m × 5 m、10 m × 10 m、20 m × 20 m、40 m × 40 m、100 m ×100 m、200 m × 200 m)的变化。结果表明: 相比Simpson指数和Pielou均匀度指数, 物种丰富度、多度以及Shannon-Wiener指数具有更为明显的空间尺度效应; 物种丰富度的方差随取样尺度增加呈现单峰分布特征, 并且在20 m × 20 m尺度上达到最大值, 而物种多度的方差随取样尺度的增加而增大; 物种丰富度和多度的正相关性随着取样尺度的增加逐渐减小甚至消失, 这可能与随取样尺度增加生境异质性增加有关; 取样尺度对3个物种多样性指数空间分布的影响可能与研究区域内稀有种的组成有关。  相似文献   

11.
Many recent studies have explored the effects of present and past landscape structure on species distribution and diversity. However, we know little about the effects of past landscape structure on distribution of genetic diversity within and between populations of a single species. Here we describe the relationship between present and past landscape structure (landscape connectivity and habitat size estimated from historical maps) and current genetic structure in a perennial herb, Succisa pratensis. We used allozymes as co‐dominant markers to estimate genetic diversity and deviation from Hardy–Weinberg equilibrium in 31 populations distributed within a 5 km2 agricultural landscape. The results showed that current genetic diversity of populations was related to habitat suitability, habitat age, habitat size and habitat connectivity in the past. The effects of habitat age and past connectivity on genetic diversity were in most cases also significant after taking the current landscape structure into account. Moreover, current genetic similarity between populations was affected by past connectivity after accounting for current landscape structure. In both cases, the oldest time layer (1850) was the most informative. Most populations showed heterozygote excess, indicating disequilibrium due to recent gene flow or selection against homozygotes. These results suggest that habitat age and past connectivity are important determinants of distribution of genetic diversity between populations at a scale of a few kilometres. Landscape history may significantly contribute to our understanding of distribution of current genetic structure within species and the genetic structure may be used to better understand landscape history, even at a small scale.  相似文献   

12.
Habitat loss is one of the key drivers of the ongoing decline of biodiversity. However, ecologists still argue about how fragmentation of habitat (independent of habitat loss) affects species richness. The recently proposed habitat amount hypothesis posits that species richness only depends on the total amount of habitat in a local landscape. In contrast, empirical studies report contrasting patterns: some find positive and others negative effects of fragmentation per se on species richness. To explain this apparent disparity, we devise a stochastic, spatially explicit model of competitive species communities in heterogeneous habitats. The model shows that habitat loss and fragmentation have complex effects on species diversity in competitive communities. When the total amount of habitat is large, fragmentation per se tends to increase species diversity, but if the total amount of habitat is small, the situation is reversed: fragmentation per se decreases species diversity.  相似文献   

13.
Habitat richness, that is, the diversity of ecosystem types, is a complex, spatially explicit aspect of biodiversity, which is affected by bioclimatic, geographic, and anthropogenic variables. The distribution of habitat types is a key component for understanding broad‐scale biodiversity and for developing conservation strategies. We used data on the distribution of European Union (EU) habitats to answer the following questions: (i) how do bioclimatic, geographic, and anthropogenic variables affect habitat richness? (ii) Which of those factors is the most important? (iii) How do interactions among these variables influence habitat richness and which combinations produce the strongest interactions? The distribution maps of 222 terrestrial habitat types as defined by the Natura 2000 network were used to calculate habitat richness for the 10 km × 10 km EU grid map. We then investigated how environmental variables affect habitat richness, using generalized linear models, generalized additive models, and boosted regression trees. The main factors associated with habitat richness were geographic variables, with negative relationships observed for both latitude and longitude, and a positive relationship for terrain ruggedness. Bioclimatic variables played a secondary role, with habitat richness increasing slightly with annual mean temperature and overall annual precipitation. We also found an interaction between anthropogenic variables, with the combination of increased landscape fragmentation and increased population density strongly decreasing habitat richness. This is the first attempt to disentangle spatial patterns of habitat richness at the continental scale, as a key tool for protecting biodiversity. The number of European habitats is related to geography more than climate and human pressure, reflecting a major component of biogeographical patterns similar to the drivers observed at the species level. The interaction between anthropogenic variables highlights the need for coordinated, continental‐scale management plans for biodiversity conservation.  相似文献   

14.
Aim Studies on habitat fragmentation of insect communities mostly ignore the impact of the surrounding landscape matrix and treat all species equally. In our study, on habitat fragmentation and the importance of landscape context, we expected that habitat specialists are more affected by area and isolation, and habitat generalists more by landscape context. Location and methods The study was conducted in the vicinity of the city of Göttingen in Germany in the year 2000. We analysed butterfly communities by transect counts on thirty‐two calcareous grasslands differing in size (0.03–5.14 ha), isolation index (2100–86,000/edge‐to‐edge distance 55–1894 m), and landscape diversity (Shannon–Wiener: 0.09–1.56), which is correlated to percentage grassland in the landscape. Results A total of 15,185 butterfly specimens belonging to fifty‐four species are recorded. In multiple regression analysis, the number of habitat specialist (n = 20) and habitat generalist (n = 34) butterfly species increased with habitat area, but z‐values (slopes) of the species–area relationships for specialists (z = 0.399) were significantly steeper compared with generalists (z = 0.096). Generalists, but not specialists, showed a marginally significant increase with landscape diversity. Effects of landscape diversity were scale‐dependent and significant only at the smallest scale (landscape context within a 250 m radius around the habitat). Habitat isolation was not related to specialist and generalist species numbers. In multiple regression analysis the density of specialists increased significantly with habitat area, whereas generalist density increased only marginally. Habitat isolation and landscape diversity did not show any effects. Main conclusions Habitat area was the most important predictor of butterfly community structure and influenced habitat specialists more than habitat generalists. In contrast to our expectations, habitat isolation had no effect as most butterflies could cope with the degree of isolation in our study region. Landscape diversity appeared to be important for generalist butterflies only.  相似文献   

15.
For butterflies, tolerance to the matrix may be an important criterion of habitat occurrence in fragmented landscapes. Here we examine the relative effects of habitat fragmentation and the surrounding agricultural matrix on the functional composition of fruit-feeding butterflies of the Atlantic rain forest in southeastern Brazil. Generalized linear models were used to detect the effects of landscape metrics on butterfly richness and abundance of the total assemblage and functional groups. Circular statistics were used to analyze the patterns of monthly abundance of the total assemblage and functional groups in the forest remnants and the surrounding matrices. In total, 650 butterflies representing 57 species were captured; species composition differed significantly between the forest fragments and the surrounding matrices. We recorded 22 forest specialists, 18 matrix specialists, 11 common species with matrix preference and six common species with forest preference. Forest connectivity favored the richness of forest specialists, while habitat fragmentation enhances the richness and abundance of matrix-tolerant species. Circular analysis revealed that forest specialists were more abundant in the rainy season while matrix-tolerant species proliferated in the dry season. Although maintaining connectivity of forest fragments may increase the mobility and dispersion of forest species, our results showed that landscape fragmentation modify butterfly assemblage by promoting an increase of matrix tolerant species with detriment of forest specialists.  相似文献   

16.
Plant diversity is threatened in many agricultural landscapes. Our understanding of patterns of plant diversity in these landscapes is mainly based on small‐scale (<1000 m2) observations of species richness. However, such observations are insufficient for detecting the spatial heterogeneity of vegetation composition. In a case‐study farm on the North‐West Slopes of New South Wales, Australia, we observed species richness at four scales (quadrat, patch, land use and landscape) across five land uses (grazed and ungrazed woodlands, native pastures, roadsides and crops). We applied two landscape ecological models to assess the contribution of these land uses to landscape species richness: (i) additive partitioning of diversity at multiple spatial scales, and (ii) a measure of habitat specificity – the effective number of species that a patch contributes to landscape species richness. Native pastures had less variation between patches than grazed and ungrazed woodlands, and hence were less species‐rich at the landscape scale, despite having similar richness to woodlands at the quadrat and patch scale. Habitat specificity was significantly higher for ungrazed woodland patches than all other land uses. Our results showed that in this landscape, ungrazed woodland patches had a higher contribution than the grazed land uses to landscape species richness. These results have implications for the conservation management of this landscape, and highlighted the need for greater consensus on the influence of different land uses on landscape patterns of plant diversity.  相似文献   

17.
Due to habitat fragmentation, the loss of species diversity has been extensively studied. On the contrary, the effects of habitat fragmentation on functional diversity is still poorly understood. In the Thousand Island Lake, we conducted studies of insect functional diversity on a set of 29 isolated islands. We used 10 functional diversity indices from three aspects (functional richness, functional evenness and functional divergence) to respectively describe functional diversity of insects on sample islands. We found the following results: (i) The functional indices selected could reflect the functional diversity of sample islands and it is further proved that in general, three components of functional diversity were independent of each other; (ii) Sample islands could be divided into two categories, island JSD and the remaining islands; (iii) Functional richness increased with island area and shape index, but had no significant correlation with isolation. Likewise, both functional evenness and functional divergence had no significant correlation with island attributes. The conclusion to emphasize from our research is that: (i) habitat fragmentation reduced the biological functional diversity to some extent, further demonstrating the importance of habitat continuity in biodiversity protection; and (ii) for functional diversity protection of insects in a fragmented landscape, an island which has high approximate shape index values of at least hundred hectare magnitude order has a critical promoting effect.  相似文献   

18.
The effect of isolation and the importance of dispersal in establishing and maintaining populations in fragments of remnant habitat remain poorly understood. Nevertheless, environmental connectivity is likely to be important for ensuring the long‐term preservation of biodiversity in extensively cleared landscapes. In this study, we compared reptile communities in large conservation parks with those in small woodland remnants 6.5–12 km from the parks, on the Eyre Peninsula, South Australia, Australia. We assessed the impact of fragmentation on the abundance, richness and habitat preferences of reptiles, and examined whether connection to linear roadside vegetation altered reptile communities in small woodland remnants. Of the 31 reptile species, 12 were restricted to conservation parks and six to habitat fragments in farmland. There was a substantial reduction in reptile species richness and abundance in farmland fragments. Direct connection of remnant vegetation to roadside corridors did not affect abundance of common species in the farmland fragments, although species richness was lower in isolated remnants in one of our two study regions. The habitat preference of the scincid lizard Menetia greyii differed between farmland fragments, where they were regularly found on dunes and roadsides, and conservation parks, where they were rare and not detected on dunes. We suggest that habitat fragmentation may have altered interspecific interactions, enabling an expansion of habitat use in the farming landscape. Significantly lower abundance of four common species in farmland settings compared with reserves indicated that existing corridors and small fragments provide inadequate connectivity over larger distances. To counter this effect, large reserves may need to be less than 10 km apart.  相似文献   

19.
We studied the effects of habitat mosaics on butterfly assemblage on multiple spatial scales: landscape, landscape element, local habitat, and microhabitat, based on the transect counts conducted along a 3.84 km route. The transect route, including 21 local habitats, passed through two distinct areas: 1.65 km of a secondary deciduous Quercus forest and the grove of a shrine in Hiraoka, and 2.19 km of a mosaic of secondary deciduous Quercus forest, grassland, and farmland in Narukawa. The diversity of the landscape elements and species richness were higher in Narukawa than in Hiraoka; the landscape mosaic enhanced the species richness in Narukawa. However, the diversity indices and specialist species (univoltine tree feeder) were decreased in this mosaic landscape. The species richness at local habitats was also increased by the mosaic of microhabitats, such as the herbaceous layer, glade, and mantle in the local habitats, whereas it was decreased by an abundant shrub layer. The ratios of species richness to abundance in the local habitats were lower than expected based on random sampling from the total of Hiraoka and Narukawa. This means that local assemblages were non-random samples from an assemblage on the landscape or regional scale, and were made up by the process of habitat selection of butterfly species in the assemblages on the landscape or regional scale. For conservation of butterfly assemblages, we recommend that woodlands should be kept without fragmentation, but with glades or small grasslands, and with clearance of the shrub layer along the path.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号