首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
全球气候变化不仅给人类社会可持续发展带来严峻挑战,而且严重威胁到生物多样性及生态安全。我国是生物多样性最为丰富的国家之一,气候变化已经在对动物分布、行为和迁移,植物物候、植被和群落结构等方面造成了影响,并增加了珍稀濒危物种的灭绝风险,同时对生态系统的功能方面也造成了明显影响。未来气候变化将成为生物多样性丧失的主要驱动力之一。世界很多国家都在制定生物多样性适应气候变化的策略和采取适应行动,加强生物多样性的保护。本文在分析国外适应策略的基础上,结合中国生物多样性的现状,提出了适应气候变化的策略建议,包括制定生物多样性适应气候变化的国家战略,开展气候变化对生物多样性的影响监测和评估,针对敏感物种的就地保护和迁地保护,针对气候变化将导致退化生态系统开展恢复与重建,重点关注生物多样性适应气候变化优先区的保护,通过科学研究和国际合作,促进生物多样性适应气候变化技术的提高,期望为我国生物多样性保护和应对气候变化提供支持。  相似文献   

2.
李海东  高吉喜 《生态学报》2020,40(11):3844-3850
应对气候变化和保护生物多样性是2大全球性热点环境问题。气候变化导致物种多样性丧失、生态系统服务降低和区域生态安全屏障功能受损,威胁到中国国土生态安全格局和生态脆弱区域的可持续发展,给生物多样性保护带来新的挑战。做好生物多样性保护适应气候变化的风险管理工作,既是生物多样性应对气候变化风险的必要措施,也是减缓气候变化的重要途径。结合爱知目标10的实现情况,分析了欧盟、澳大利亚、美国等发达国家发布的生物多样性适应气候变化技术政策制定情况、中国生物多样性应对气候变化进展情况,剖析了中国生物多样性保护适应气候变化存在的问题,包括生物多样性应对气候变化的科学认知亟待提高、生物多样性保护适应气候变化的能力建设不足、自然保护地之间缺乏适应气候变化的生态廊道网络、生物多样性保护适应气候变化的技术标准缺乏。研究提出了中国生物多样性应对气候变化的适应性管理策略,包括制定《中国生物多样性保护协同应对气候变化的国家方案》、加强生物多样性保护适应气候变化的能力建设、开展自然保护区适应气候变化的风险管理试点、强化生物多样性应对气候变化的科技支撑,以期为推进纳入气候变化风险管理的生物多样性保护工作提供决策依据。  相似文献   

3.
井新  蒋胜竞  刘慧颖  李昱  贺金生 《生物多样性》2022,30(10):22462-1603
气候变化与生物多样性丧失是人类社会正在经历的两大变化。气候变化影响生物多样性的方方面面, 是导致生物多样性丧失的一个主要驱动因子; 反过来, 生物多样性丧失会加剧气候变化。因此, 阻止甚至扭转气候变化和生物多样性丧失是当前人类社会亟需解决的全球性问题,但我们对气候变化与生物多样性之间的复杂关系和反馈机制尚缺乏清晰认识。本文总结了近年气候变化与生物多样性变化的研究进展, 重点概述了不同组织层次、空间尺度和维度的生物多样性对气候变化的响应和反馈等相关领域的研究进展和存在的主要问题。结果发现多数研究关注气候变化对生物多样性的直接影响, 涉及到生物多样性的不同组织层次、维度和营养级, 但针对气候变化间接影响的研究仍然较少, 机理研究同样需要加强; 生物多样性对生态系统功能影响的环境依赖和尺度推演、生物多样性对生态系统多功能性的作用机理和量化方法是当前研究面临的挑战; 生物多样性对生态系统响应气候变化的作用机制尚无统一的认识; 生物多样性对气候变化的正、负反馈效应是国内外研究的盲点。最后, 本文展望了未来发展方向和需要解决的关键科学问题, 包括多因子气候变化对生物多样性的影响; 减缓和适应气候变化的措施如何惠益于生物多样性保护; 生物多样性与生态系统功能的理论如何应用到现实世界; 生物多样性保护对实现碳中和目标的贡献。  相似文献   

4.
冯莉 《生物多样性》2023,(7):208-214
生物多样性丧失和气候变化是全球面临的共同挑战。生物多样性丧失加剧了气候变暖进程,同时,气候变化也加剧生物多样性丧失,二者之间是耦合关系,应当将应对气候变化和保护生物多样性视为相辅相成的两个目标,实现生物多样性与气候变化的协同治理。《联合国气候变化框架公约》(United Nations Framework Convention on Climate Change, UNFCCC)和联合国《生物多样性公约》(Convention on Biological Diversity, CBD)都注意到生物多样性和气候变化之间的重要联系,二者存在相互交叉的议题。故本文从国际公约的角度出发,梳理了UNFCCC中生物多样性相关议题的谈判焦点与发展、CBD中气候变化相关议题的谈判焦点与发展以及二者履约机制的协同现状;总结出国际法视野下生物多样性与气候变化协同治理所面临的困难:(1) UNFCCC对生物多样性议题的回应不足;(2) CBD对气候变化议题单向回应;(3) UNFCCC与CBD履约机制分割显著;(4)防范生物多样性丧失与应对气候变化的制度措施之间的冲突。基于此,本文以整体系统观为理论基石,提...  相似文献   

5.
生物多样性和生态系统服务为人类的生计和良好的生活质量奠定了重要基础。然而, 越来越多的研究表明, 生物多样性和生态系统服务在全球范围内的持续下降使自然对人类的贡献大幅降低。多尺度评估能够说明不同尺度下生物多样性的现状, 有利于制定适合区域特点、符合国情的决策建议。2013年12月, 生物多样性和生态系统服务政府间科学政策平台(Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, IPBES)通过第一轮工作方案, 决定开展“区域/次区域生物多样性和生态系统服务评估”(简称“区域评估”), 即评估亚洲-太平洋(简称亚太)、美洲、非洲以及欧洲-中亚四大地理区域的生物多样性和生态系统服务。区域评估报告及其决策者摘要已在IPBES第六次全体会议上(2018年3月, 哥伦比亚麦德林)审议通过。本文概述了四大地理区域的生物多样性的重要性、生物多样性保护领域取得的进展、面临的主要危机和机遇, 探讨了评估对其他国际进程的影响, 综合分析了各区域生物多样性和生态系统服务的特点以及各区域评估结果的差别, 总结了评估的政策经验, 以期为中国的生物多样性保护提供科学参考。  相似文献   

6.
国际生物多样性研究科学计划与热点述评   总被引:11,自引:2,他引:11  
李延梅  牛栋  张志强  曲建升 《生态学报》2009,29(4):2115-2123
生物多样性与人类生活密切相关.近年来不断加剧的人类活动,对生物多样性造成了严重破坏.已有研究表明,地球上的物种正以前所未有的速度丧失.为了遏止这种状况,目前,世界上许多国际组织和国家都对生物多样性及其相关问题展开研究,并制定了与生物多样性保护相关的法规和战略计划,也采取了许多保护生物多样性的行动.DIVERSITAS是国际全球环境变化(GEC)四大研究计划之一,也是生物多样性领域最大的国际科学计划, DIVERSITAS于2001年开始启动了第Ⅱ阶段研究并确定了新的核心研究计划和跨学科交叉网络计划.世界自然保护联盟(The World Conservation Union,IUCN)在2008年发布了<塑造可持续的未来:IUCN 2009~2012年计划>,提出了5个优先主题领域.欧盟于2006年通过了一项保护生物多样性的新战略--<2010年及未来阻止生物多样性丧失:人类福祉的可持续生态服务>.此外,很多国际/国家基金组织还发起了一些全球性的生物多样性计划,如国际海洋生物普查计划、生命之树计划、国际生命条码计划等.本文对上述生物多样性保护和研究的国际计划予以概要介绍和评述,并指出当前国际上生物多样性研究的主要热点,即:生物多样性变化与生态系统功能;生物多样性和生态系统服务的价值评估;生物多样性与气候变化;生物多样性长期动态监测;生物多样性的评价指标等.  相似文献   

7.
《生物多样性公约》下的气候变化问题:谈判与焦点   总被引:1,自引:0,他引:1  
近年来,生物多样性与气候变化的关系逐渐成为《生物多样性公约》下的焦点议题,各缔约方就此问题展开了激烈的多边谈判.本文梳理了《生物多样性公约》下气候变化问题谈判的发展历程,探讨了其中的焦点问题及各方的主要立场,指出以欧盟为代表的发达国家和以巴西、哥伦比亚、中国为代表的发展中生物多样性大国是针锋相对的两大主要谈判集团.谈判...  相似文献   

8.
人类健康和生物多样性   总被引:2,自引:0,他引:2  
1 人类健康和生物多样性之间的关系当前 ,科学家们开始关注人类健康和其他物种健康之间关系。本文拟介绍植物、动物和微生物支持人类健康的一些方式 ,以及生物多样性提供的“生态系统服务”,这一“生态系统服务”使所有生命 ,包括人类能够生存于地球上。随着物种的继续灭绝 ,在今后几十年里了解它们之间的联系对任何关注健康的人将变得越来越重要。1.1 潜在的医药 正在失去的植物、动物和微生物 ,可能大多数还没有被发现但却可以作为有价值的新医药。只有约 15 0万种物种已被记录 ,但科学家认为物种数目应是已做记录物种数目的 10倍甚至…  相似文献   

9.
本文从以下几个方面综述了生物多样性对生态系统功能和作用的影响:第一,几个关于物种在生态系统中的不同地位和生物多样性如何影响生态系统功能的假说;第二,生物多样性与生态系统的稳定性;第三,生物多样性如何影响生态系统的生产力;第四,生物多样性对生态系统可持续性的影响。此外还提出了几个需要继续探讨和关注的问题。  相似文献   

10.
生物多样性的生态系统功能   总被引:10,自引:0,他引:10  
本文从以下几个方面综述了生物多样性对生态系统功能和作用的影响 :第一 ,几个关于物种在生态系统中的不同地位和生物多样性如何影响生态系统功能的假说 ;第二 ,生物多样性与生态系统的稳定性 ;第三 ,生物多样性如何影响生态系统的生产力 ;第四 ,生物多样性对生态系统可持续性的影响。此外还提出了几个需要继续探讨和关注的问题  相似文献   

11.
Climate change has far‐reaching impacts on ecosystems. Recent attempts to quantify such impacts focus on measuring exposure to climate change but largely ignore ecosystem resistance and resilience, which may also affect the vulnerability outcomes. In this study, the relative vulnerability of global terrestrial ecosystems to short‐term climate variability was assessed by simultaneously integrating exposure, sensitivity, and resilience at a high spatial resolution (0.05°). The results show that vulnerable areas are currently distributed primarily in plains. Responses to climate change vary among ecosystems and deserts and xeric shrublands are the most vulnerable biomes. Global vulnerability patterns are determined largely by exposure, while ecosystem sensitivity and resilience may exacerbate or alleviate external climate pressures at local scales; there is a highly significant negative correlation between exposure and sensitivity. Globally, 61.31% of the terrestrial vegetated area is capable of mitigating climate change impacts and those areas are concentrated in polar regions, boreal forests, tropical rainforests, and intact forests. Under current sensitivity and resilience conditions, vulnerable areas are projected to develop in high Northern Hemisphere latitudes in the future. The results suggest that integrating all three aspects of vulnerability (exposure, sensitivity, and resilience) may offer more comprehensive and spatially explicit adaptation strategies to reduce the impacts of climate change on terrestrial ecosystems.  相似文献   

12.
Industrial ecology (IE) has made great contributions to climate change mitigation research, in terms of its systems thinking and solid methodologies such as life cycle assessment, material flow analysis, and environmentally extended input–output analysis. However, its potential contribution to climate change adaptation is unclear. Adaptation has become increasingly urgent in a continuously changing climate, especially in developing countries, which are projected to bear the brunt of climate‐change‐related damages. On the basis of a brief review of climate change impacts and adaptation literature, we suggest that IE can play an important role in the following two aspects. First, with the emphasis on a systems perspective, IE can help us determine how climate change interacts with our socio‐economic system and how the interactions may aggravate (or moderate) its direct impacts or whether they may shift burden to other environmental impacts. Second, IE methodologies can help us quantify the direct and indirect environmental impacts of adaptation activities, identify mitigation opportunities, and achieve sustainable adaptation. Further, we find that substantial investment is needed to increase the resilience of infrastructure (e.g., transport, energy, and water supply) and agriculture in developing countries. Because these sectors are also the main drivers of environmental degradation, how to achieve sustainable climate‐resilient infrastructure and agriculture in developing countries deserves special attention in future IE studies. Overall, IE thinking and methodologies have great potential to contribute to climate change adaptation research and policy questions, and exploring this growing field will, in turn, inspire IE development.  相似文献   

13.
In recent years, amid growing concerns that changing climate is affecting species distributions and ecosystems, predicting responses to rapid environmental change has become a major goal. In this issue, Franks and colleagues take a first step towards this objective (Franks et al. 2016). They examine genomewide signatures of selection in populations of Brassica rapa after a severe multiyear drought. Together with other authors, Franks had previously shown that flowering time was reduced after this particular drought and that the reduction was genetically encoded. Now, the authors have sequenced previously stored samples to compare allele frequencies before and after the drought and identify the loci with the most extreme shifts in frequencies. The loci they identify largely differ between populations, suggesting that different genetic variants may be responsible for reduction in flowering time in the two populations.  相似文献   

14.
Climate change is expected to exacerbate the current threats to freshwater ecosystems, yet multifaceted studies on the potential impacts of climate change on freshwater biodiversity at scales that inform management planning are lacking. The aim of this study was to fill this void through the development of a novel framework for assessing climate change vulnerability tailored to freshwater ecosystems. The three dimensions of climate change vulnerability are as follows: (i) exposure to climate change, (ii) sensitivity to altered environmental conditions and (iii) resilience potential. Our vulnerability framework includes 1685 freshwater species of plants, fishes, molluscs, odonates, amphibians, crayfish and turtles alongside key features within and between catchments, such as topography and connectivity. Several methodologies were used to combine these dimensions across a variety of future climate change models and scenarios. The resulting indices were overlaid to assess the vulnerability of European freshwater ecosystems at the catchment scale (18 783 catchments). The Balkan Lakes Ohrid and Prespa and Mediterranean islands emerge as most vulnerable to climate change. For the 2030s, we showed a consensus among the applied methods whereby up to 573 lake and river catchments are highly vulnerable to climate change. The anthropogenic disruption of hydrological habitat connectivity by dams is the major factor reducing climate change resilience. A gap analysis demonstrated that the current European protected area network covers <25% of the most vulnerable catchments. Practical steps need to be taken to ensure the persistence of freshwater biodiversity under climate change. Priority should be placed on enhancing stakeholder cooperation at the major basin scale towards preventing further degradation of freshwater ecosystems and maintaining connectivity among catchments. The catchments identified as most vulnerable to climate change provide preliminary targets for development of climate change conservation management and mitigation strategies.  相似文献   

15.
Current knowledge of effects of climate change on biodiversity is briefly reviewed, and results are presented of a survey of biological research groups in the Netherlands, aimed at identifying key research issues in this field. In many areas of the world, biodiversity is being reduced by humankind through changes in land cover and use, pollution, invasions of exotic species and possibly climate change. Assessing the impact of climate change on biodiversity is difficult, because changes occur slowly and effects of climate change interact with other stress factors already imposed on the environment. Research issues identified by Dutch scientists can be grouped into: (i) spatial and temporal distributions of taxa; (ii) migration and dispersal potentials of taxa; (iii) genetic diversity and viability of (meta) populations of species; (iv) physiological tolerance of species; (v) disturbance of functional interactions between species; and (vi) ecosystem processes. Additional research should be done on direct effects of greenhouse gases, and on interactions between effects of climate change and habitat fragmentation. There are still many gaps in our knowledge of effects of climate change on biodiversity. An interdisciplinary research programme could possibly focus only on one or few of the identified research issues, and should generate input data for predictive models based on climate change scenarios.  相似文献   

16.
17.
The exploration of evolutionary biology and biological adaptation can inform society's adaptation to climate change, particularly the mechanisms that bring about adaptability, such as phenotypic plasticity, epigenetics, and horizontal gene transfer. Learning from unplanned autonomous biological adaptation may be considered undesirable and incompatible with human endeavor. However, it is argued that there is no need for agency, and planned adaptation is not necessarily preferable over autonomous adaptation. What matters is the efficacy of adaptive mechanisms and their capacity to increase societal resilience to current and future impacts. In addition, there is great scope for industrial ecology (IE) to contribute approaches to climate change adaptation that generate system models and baseline data to inform decision making. The problem of “uncertainty” was chosen as an example of a challenge that is shared by biological systems, IE, and climate change adaptation to show how biological adaptation might contribute solutions. Finally, the Coastal Climate Adaptation Decision Support tool was used to demonstrate how IE and biological adaptation approaches may be mainstreamed in climate change adaptation planning and practice. In conclusion, there is close conceptual alignment between evolutionary biology and IE. The integration of biological adaptation thinking can enrich IE, add new perspectives to climate change adaptation science, and support IE's engagement with climate change adaptation. There should be no major obstacles regarding the collaboration of industrial ecologists with the climate change adaptation community, but mainstreaming of biological adaptation solutions depends greatly on successful knowledge transfer and the engagement of open‐minded and informed adaptation stakeholders.  相似文献   

18.
Identifying refugia is a critical component of effective conservation of biodiversity under anthropogenic climate change. However, despite a surge in conceptual and practical interest, identifying refugia remains a significant challenge across diverse continental landscapes. We provide an overview of the key properties of refugia that promote species' persistence under climate change, including their capacity to (i) buffer species from climate change; (ii) sustain long‐term population viability and evolutionary processes; (iii) minimize the potential for deleterious species interactions, provided that the refugia are (iv) available and accessible to species under threat. Further, we classify refugia in terms of the environmental and biotic stressors that they provide protection from (i.e. thermal, hydric, cyclonic, pyric and biotic refugia), but ideally refugia should provide protection from a multitude of stressors. Our systematic characterization of refugia facilitates the identification of refugia in the Australian landscape. Challenges remain, however, specifically with respect to how to assess the quality of refugia at the level of individual species and whole species assemblages. It is essential that these challenges are overcome before refugia can live up to their acclaim as useful targets for conservation and management in the context of climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号