首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Based on their geographic proximity to the Virunga Volcanoes (≈ 25 km), the Bwindi-Impenetrable Forest gorillas have been referred to the subspecies Gorilla gorilla beringei. Differences in anatomy, habitat, ecology, and behavior, however, suggest Bwindi gorillas are distinct from those in the Virungas. Relative to Virunga gorillas, Bwindi gorillas live at lower elevations, in warmer temperatures, are much more arboreal, have longer day ranges and larger home ranges, and eat much more fruit and pith, and less bamboo and leaves. Morphological differences reflect the differences in ecology, habitat, and behavior. Bwindi gorillas measured have smaller bodies, relatively longer limbs, hands, and feet, shorter trunks, thumbs, big toes, and tooth row lengths, and narrower trunks and orbital breadths than Virunga gorillas. These differences indicate Bwindi gorillas do not belong to G.g. beringei and should not be referred to as “mountain gorillas.” How unique the distinguishing features of Bwindi gorillas are, and whether or not they should be assigned to a new taxon, depends on the expression of these features in eastern lowland gorillas (G.g. graueri). © 1996 Wiley-Liss, Inc.  相似文献   

2.
The gorillas that inhabit Bwindi Impenetrable National Park in Uganda are the least known of the eastern gorillas. Because they are an allopatric population living a minimum of 25 km from the well‐studied population of mountain gorillas (Gorilla beringei beringei) in Rwanda and have certain morphological and ecological differences from these gorillas, their taxonomic status has been in question in recent years. This study presents new craniodental metrics from Bwindi individuals and compares them to Virunga individuals as well as to eastern lowland gorillas, G. gorilla graueri. Multivariate statistics, including MANCOVA, least‐squares, regression, and principal components analyses, were used to evaluate how closely the Bwindi crania resemble the Virunga crania and how both relate to G. g. graueri. Results indicate that the Bwindi gorillas have generally smaller crania than the Virunga gorillas, but when metrics are log‐transformed, the only variable that distinguishes the Bwindi individuals is a longer face. When both populations are compared to G. g. graueri, they cluster together separately from the eastern lowland gorillas, sharing such features as higher rami, wider bigonia, longer mandibles, and wider and shorter mandibular symphyses in relation to G. g. graueri. Functional morphological explanations for these differences are discussed, but lacking measurements of the physical properties of G. g. graueri, they cannot fully be explained. Results clearly indicate that at least pertaining to the cranium, upon which most gorilla taxonomy is based, the Bwindi gorillas are proper mountain gorillas (G. b. beringei). Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Via a field study of chimpanzees (Pan troglodytes schweinfurthii) and gorillas (Gorilla gorilla beringei) in Bwindi Impenetrable National Park, Uganda, we found that their diets are seasonally similar, but diverge during lean seasons. Bwindi chimpanzees fed heavily on fruits of Ficus sp., which were largely ignored by the gorillas. Bwindi gorilla diet was overall more folivorous than chimpanzee diet, but was markedly more frugivorous than that of gorillas in the nearby Virunga Volcanoes. During 4 mo of the year Bwindi gorilla diet included more food species than that of the chimpanzees. Three factors in particular—seasonal consumption of fibrous foods by gorillas, interspecific differences in preferred fruit species, and meat consumption by chimpanzees—contributed to dietary divergence between the two species. When feeding on fruits, gorillas ate Myrianthus holstii more frequently than chimpanzees did, while chimpanzees included more figs in their annual diet. Chimpanzee diet included meat of duikers and monkeys; gorilla frequently consumed decaying wood.  相似文献   

4.
A survey in 1994 examined intestinal helminths and bacterial flora of mountain gorillas (Gorilla beringei beringei) in Bwindi Impenetrable National Park, Uganda. Parasites and bacteria were identified to genus in the feces of two groups of tourist-habituated and one group of non-tourist-habituated mountain gorillas. Eggs were identified as those of an anoplocephalid cestode, and nematode eggs representative of the genera: Trichuris, Ascaris, Oesophagostomum, Strongyloides, and Trichostrongylus. This is the first report of Ascaris lumbricoides-like eggs in mountain gorillas. Fecal samples (n=76) from all groups contained helminth eggs, with strongyle eggs and anoplocephalid eggs being the most common. Salmonella and Campylobacter were found in both gorilla groups. Regular long-term non-invasive fecal monitoring of the populations of mountain gorillas is essential for the prevention and identification of potential health threats by intestinal parasites and bacteria in this highly endangered subspecies.This revised version was published online in April 2005 with corrections to the cover date of the issue.  相似文献   

5.
Gorilla patterns of variation have great relevance for studies of human evolution. In this study, molar morphometrics were used to evaluate patterns of geographic variation in gorillas. Dental specimens of 323 adult individuals, drawn from the current distribution of gorillas in equatorial Africa were divided into 14 populations. Discriminant analyses and Mahalanobis distances were used to study population structure.Results reveal that: 1) the West and East African gorillas form distinct clusters, 2) the Cross River gorillas are well separated from the rest of the western populations, 3) gorillas from the Virunga mountains and the Bwindi Forest can be differentiated from the lowland gorillas of Utu and Mwenga-Fizi, 4) the Tshiaberimu gorillas are distinct from other eastern gorillas, and the Kahuzi-Biega gorillas are affiliated with them. These findings provide support for a species distinction between Gorilla gorilla and Gorilla beringei, with subspecies G. g. diehli, G. g. gorilla, G. b. graueri, G. b. beringei, and possibly, G. b. rex-pygmaeorum. Clear correspondence between dental and other patterns of taxonomic diversity demonstrates that dental data reveal underlying genetic patterns of differentiation.Dental distances increased predictably with altitude but not with geographic distances, indicating that altitudinal segregation explains gorilla patterns of population divergence better than isolation-by-distance. The phylogeographic pattern of gorilla dental metric variation supports the idea that Plio-Pleistocene climatic fluctuations and local mountain building activity in Africa affected gorilla phylogeography. I propose that West Africa comprised the historic center of gorilla distribution and experienced drift-gene flow equilibrium, whereas Nigeria and East Africa were at the periphery, where climatic instability and altitudinal variation promoted drift and genetic differentiation. This understanding of gorilla population structure has implications for gorilla conservation, and for understanding the distribution of sympatric chimpanzees and Plio-Pleistocene hominins.  相似文献   

6.
We report on a new population of gorillas discovered in November 2002 in the Ebo Forest, Littoral Province, Cameroon. We observed A group of q7 gorillas directly for 83 min, and they were in auditory range for 155 min. Further evidence of gorilla presence included 8 nest groups totaling 38 nests, distinctive feeding signs accompanied by footprints, and a gorilla cranium collected from the nearby village of Iboti. This newly discovered gorilla population is geographically intermediate between the 2 extant populations of western gorillas: Gorilla gorilla gorilla, the most populous gorilla subspecies living in Gabon, Equatorial Guinea, Congo-Brazzaville, Central African Republic and Cameroon to the south of the Sanaga River, and G. g. diehli or the Cross River gorilla, a small population of ca. 250 individuals on the Cameroon-Nigeria border. It is not possible to assign the new gorilla population to either subspecies on the basis of measurements of the single male cranium. Genetic analyses of freshly shed hairs, collected from gorilla nests, may help to resolve the taxonomic status of the Ebo gorillas.  相似文献   

7.
Paternity exclusion studies provide useful information for testing certain theories of behavioral ecology and for the management and conservation of both wild and captive populations of endangered species. This study used eight human nuclear microsatellite loci, in the absence of species-specific PCR primers, to genetically identify the sires of 12 captive lowland gorillas (Gorilla gorilla gorilla) and 2 captive orangutans (Pongo pygmaeus pygmaeus andPongo p. abelii). Parentage assignments were confirmed by excluding all except a single potential sire for each offspring with the least two loci. Sire-offspring relationships were verified in 12 of the 14 cases, and reassigned in the case of two gorilla offspring. The orangutan paternity typing was supplemented by DNA fingerprinting. Additionally, five of the eight microsatellite loci, in conjunction with behavioral data, were used for a non-exhaustive set of paternity exclusions for five wild mountain gorillas (Gorilla g. beringei). The eight loci described in this study should be useful additions to the tools available for the study of genetics in the great apes.  相似文献   

8.
The mountain gorillas (Gorilla beringei beringei) of the Virunga Volcanoes Range of Rwanda, Uganda, and the Democratic Republic of Congo are one of the most endangered ape populations in the world. Following a dramatic decline during the 1960s, and relative stability in the 1970s, the population steadily increased during the 1980s. Due to political instability and war, a complete census had not been conducted since 1989. Here we compare the results of a complete census using the ‘sweep method’ conducted in 2003 with those from a monitoring program, to estimate the size and distribution of the gorilla population. A total of 360 gorillas were counted from census measurements and known habituated groups. Based on quantitative assessments of the census accuracy, we calculated that an additional 20 gorillas were not counted, leading to an estimated population of 380 individuals, and a 1.15% annual growth rate since 1989. The Ranger Based Monitoring programme yielded similar results. The encouraging results must be viewed with caution, however, because the growth was concentrated almost entirely in one section of the Virungas. Additionally, the distribution of gorilla groups was negatively correlated with the frequency of human disturbances, which highlights the need to continue strengthening conservation efforts.  相似文献   

9.
Compared with other African apes, eastern gorillas (Gorilla beringei) have been little studied genetically. We used analysis of autosomal DNA genotypes obtained from non-invasively collected faecal samples to estimate the evolutionary histories of the two extant mountain gorilla populations and the closely related eastern lowland gorillas. Our results suggest that eastern lowland gorillas and mountain gorillas split beginning some 10 000 years ago, followed 5000 years ago by the split of the two mountain gorilla populations of Bwindi Impenetrable National Park and the Virungas Massif. All three populations have decreased in effective population size, with particularly substantial 10-fold decreases for the mountain gorillas. These dynamics probably reflect responses to habitat changes resulting from climate fluctuations over the past 20 000 years as well as increasing human influence in this densely populated region in the last several thousand years.  相似文献   

10.
Western lowland gorillas (Gorilla gorilla gorilla) are designated as critically endangered and wild populations are dramatically declining as a result of habitat destruction, fragmentation, diseases (e.g., Ebola) and the illegal bushmeat trade. As wild populations continue to decline, the genetic management of the North American captive western lowland gorilla population will be an important component of the long‐term conservation of the species. We genotyped 26 individuals from the North American captive gorilla collection at 11 autosomal microsatellite loci in order to compare levels of genetic diversity to wild populations, investigate genetic signatures of a population bottleneck and identify the genetic structure of the captive‐born population. Captive gorillas had significantly higher levels of allelic diversity (t7 = 4.49, = 0.002) and heterozygosity (t7 = 4.15, = 0.004) than comparative wild populations, yet the population has lost significant allelic diversity while in captivity when compared to founders (t7 = 2.44, = 0.04). Analyses suggested no genetic evidence for a population bottleneck of the captive population. Genetic structure results supported the management of North American captive gorillas as a single population. Our results highlight the utility of genetic management approaches for endangered nonhuman primate species.  相似文献   

11.
Molecular studies have demonstrated a deep lineage split between the two gorilla species, as well as divisions within these taxa; estimates place this divergence in the mid-Pleistocene, with gene flow continuing until approximately 80,000 years ago. Here, we present analyses of skeletal data indicating the presence of substantial recent gene flow among gorillas at all taxonomic levels: between populations, subspecies, and species. Complementary analyses of DNA sequence variation suggest that low-level migration occurred primarily in a westerly-to-easterly direction. In western gorillas, the locations of hybrid phenotypes map closely to expectations based on population refugia and riverine barrier hypotheses, supporting the presence of significant vicariance-driven structuring and occasional admixture within this taxon. In eastern lowland gorillas, the high frequency of hybrid phenotypes is surprising, suggesting that this region represents a zone of introgression between eastern gorillas and migrants from the west, and underscoring the conservation priority of this critically endangered group. These results highlight the complex nature of evolutionary divergence in this genus, indicate that historical gene flow has played a major role in structuring gorilla diversity, and demonstrate that our understanding of the evolutionary processes responsible for shaping biodiversity can benefit immensely from consideration of morphological and molecular data in conjunction.  相似文献   

12.
Recent studies demonstrate that western lowland gorillas incorporate much more fruit into their diet than Virunga mountain gorillas do. Very little is known, however, about how the frugivorous behavior of western gorillas influences their daily ranging behavior, which may ultimately affect social factors such as group size and structure. I examined the influence of diet and the spatiotemporal availability of plant foods on the foraging effort of nonhabituated western lowland gorilla groups during 17 months at Bai Hoköu in the Dzanga-Ndoki National Park, Central African Republic. I determined diet from indirect methods and gorilla plant food availability and spatial distribution from phenology and line transects. Daily path length gives an estimate of foraging effort and was the distance paced, following fresh gorilla trails, from morning to evening nest sites. The availability and distribution of fruit and its consumption by gorillas varied seasonally. When concentrating on fruits, gorillas traveled significantly farther (mean = 3.1 km/day) than when their diet consisted mostly of nonfruit vegetation, such as leaves and woody pith, stems, and bark (mean = 2.1 km/day). The amount of herbaceous vegetation in the diet did not vary seasonally and did not influence daily path length. The best environmental predictor of foraging effort was fruit density, or a measure combining both density and spatial pattern: coefficient of dispersion. In addition, when fruit patches were small, path length tended to increase but not significantly. Compared with results of other studies, gorillas at Bai Hoköu travel farther (mean = 2.6 km/day) than gorillas in Gabon (mean = 1.7 km/day) and five times farther than mountain gorillas in the Virungas (mean = 0.5 km/day). Increased foraging effort of gorillas in this region, especially during the fruiting season, may have profound effects on group size and structure.  相似文献   

13.
There has been increasing contact between mountain gorillas (Gorilla gorilla beringei) and the human population surrounding Bwindi Impenetrable Forest National Park (BIFNP) in Uganda. Due to the close taxonomic relationship between humans and gorillas there is potential for disease transmission between them. Preventing the introduction or spread of transmissible diseases to the gorillas is essential to protect them. We interviewed 301 villagers living in close proximity to BIFNP with a medical questionnaire in July, 2000. We collected information on demographics, vaccination and health history, and human/gorilla interaction. Our objectives were to estimate the prevalence of several diseases in the human population and to evaluate the risk of anthropozoonotic transmission from humans to gorillas. We found a high prevalence of disease symptoms such as coughing (72.1%) and fever (56.1%) compatible with acute infectious diseases; over half of the respondents (59.1%) had a specific disease diagnosis within the 6 mo preceding the study. We compared villagers who had visual contact with gorillas in the 6 mo preceding the study (53.5%) to villagers who had no visual contact (46.5%). Men were 2.3 times more likely than women to have visual contact with gorillas. In general, the frequency of disease history and symptoms was similar for people with and without contact. The high prevalence of acute infectious diseases in the population surrounding BIFNP and the high rate of contact with gorillas creates the potential for anthropozoonotic disease transmission.  相似文献   

14.
Gorillas are the largest and among the most sexually dimorphic of all extant primates. While gorillas have been incorporated in broad-level comparisons among large-bodied hominoids or in studies of the African apes, comparisons between gorilla subspecies have been rare. During the past decade, however, behavioral, morphological, and molecular data from a number of studies have indicated that the western lowland (Gorilla gorilla gorilla) and eastern mountain (Gorilla gorilla beringei) subspecies differ to a greater extent than has been previously believed. In this study I compare patterns of relative growth of the postcranial skeleton to evaluate whether differences between subspecies result from the differential extension of common patterns of relative growth. In addition, patterns of ontogeny and sexual dimorphism are also examined. Linear skeletal dimensions and skeletal weight were obtained for ontogenetic series of male and female G.g. gorilla (n = 315) and G.g. beringei (n = 38). Bivariate and multivariate methods of analysis were used to test for differences in patterns of relative growth, ontogeny, and sexual dimorphism between sexes of each subspecies and in same-sex comparisons between subspecies. Results indicate males and females of both subspecies are ontogenetically scaled for postcranial proportions and that females undergo an earlier skeletal growth spurt compared to males. However, results also indicate that the onset of the female growth spurt occurs at different dental stages in lowland and mountain gorillas and that mountain gorillas may be characterized by higher rates of growth. Finally, data demonstrate lowland and mountain gorilla females do not differ significantly in adult body size, but mountain gorilla males are significantly larger than lowland gorilla males, suggesting mountain gorillas are characterized by a higher degree of sexual dimorphism in body size. Thus, although lowland and mountain gorillas do not appear to have evolved novel adaptations of the postcranium which correlate with differences in locomotor behavior, the present investigation establishes subspecies differences in ontogeny and sexual dimorphism which may be linked with ecological variation. Specifically, these findings are evaluated in the context of risk aversion models which predict higher growth rates and increased levels of sexual dimorphism in extreme folivores. Am. J. Primatol. 43:1–31, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
Pan and Gorilla taxonomy is currently in a state of flux, with the number of existing species and subspecies of common chimpanzee and gorilla having been recently challenged. While Pan and Gorilla systematics have been evaluated on the basis of craniometric and odontometric data, only a handful of studies have evaluated multivariate craniometric variation within P. troglodytes, and none have evaluated in detail mandibular variation in either P. troglodytes or Gorilla gorilla. In this paper, we examine ontogenetic and adult mandibular variation in Pan and Gorilla. We test the hypothesis that patterns and degrees of mandibular variation in Pan and Gorilla closely correspond to those derived from previous analyses of craniometric variation. We then use these data to address some current issues surrounding Pan and Gorilla taxonomy. Specifically, we evaluate the purported distinctiveness of P.t. verus from the other two subspecies of Pan troglodytes, and the recent proposals to recognize Nigerian gorillas as a distinct subspecies, Gorilla gorilla diehli, and to acknowledge mountain and lowland gorillas as two separate species. Overall, patterns and degrees of multivariate mandibular differentiation parallel those obtained previously for the cranium and dentition. Thus, differences among the three conventionally recognized gorilla subspecies are somewhat greater than among subspecies of common chimpanzees, but differences between P. paniscus and P. troglodytes are greater than those observed between any gorilla subspecies. In this regard, the mandible does not appear to be more variable, or of less taxonomic value, than the face and other parts of the cranium. There are, however, some finer differences in the pattern and degree of morphological differentiation in Pan and Gorilla, both with respect to cranial and dental morphology, and in terms of the application and manner of size adjustment. Mandibular differentiation supports the conventional separation of bonobos from chimpanzees regardless of size adjustment, but size correction alters the relative alignment of taxa. Following size correction, intergroup distances are greatest between P.t. verus and all other groups, but there is considerable overlap amongst chimpanzee subspecies. Amongst gorillas, the greatest separation is between eastern and western gorillas, but adjustment relative to palatal vs. basicranial length results in a greater accuracy of group classification for G.g. gorilla and G.g. graueri, and more equivalent intergroup distances amongst all gorilla groups. We find no multivariate differentiation of the Nigerian gorillas based on mandibular morphology, suggesting that the primary difference between Nigerian and other western lowland gorillas lies in the nuchal region. Though intergroup distances are greatest between P.t. verus and other chimpanzee subspecies, the degree of overlap amongst all three groups does not indicate a markedly greater degree of distinction in mandibular, as opposed to other morphologies. Finally, mandibular differentiation corroborates previous craniodental studies indicating the greatest distinction amongst gorillas is between eastern and western groups. Thus, patterns and degrees of mandibular variation are in agreement with other kinds of data that have been used to diagnose eastern and western gorillas as separate species.  相似文献   

16.

Objectives

Several theories have been proposed to explain the impact of ecological conditions on differences in life history variables within and between species. Here we compare female life history parameters of one western lowland gorilla population (Gorilla gorilla gorilla) and two mountain gorilla populations (Gorilla beringei beringei).

Materials and Methods

We compared the age of natal dispersal, age of first birth, interbirth interval, and birth rates using long-term demographic datasets from Mbeli Bai (western gorillas), Bwindi Impenetrable National Park and the Virunga Massif (mountain gorillas).

Results

The Mbeli western gorillas had the latest age at first birth, longest interbirth interval, and slowest surviving birth rate compared to the Virunga mountain gorillas. Bwindi mountain gorillas were intermediate in their life history patterns.

Discussion

These patterns are consistent with differences in feeding ecology across sites. However, it is not possible to determine the evolutionary mechanisms responsible for these differences, whether a consequence of genetic adaptation to fluctuating food supplies (“ecological risk aversion hypothesis”) or phenotypic plasticity in response to the abundance of food (“energy balance hypothesis”). Our results do not seem consistent with the extrinsic mortality risks at each site, but current conditions for mountain gorillas are unlikely to match their evolutionary history. Not all traits fell along the expected fast-slow continuum, which illustrates that they can vary independently from each other (“modularity model”). Thus, the life history traits of each gorilla population may reflect a complex interplay of multiple ecological influences that are operating through both genetic adaptations and phenotypic plasticity.
  相似文献   

17.
Mountain, western, and Grauer's gorillas exhibit broad differences in ecological patterns with western gorillas eating more fruit and having larger home ranges than their largely folivorous counterparts in the Virunga Volcanoes. We studied the home range and frugivory patterns of one group of Gorilla beringei beringei in the little-studied population of Bwindi Impenetrable National Park, Uganda, to compare with other populations and to investigate whether there was any relationship between patterns of frugivory and home range size. During the 3-year study, the gorillas ate 16 species of fruit on 27% of observation days. There was high variability in frugivory among the 3 years and no consistent seasonal pattern. Annual home range size was ca. 21 km2 for Years 1 and 2, and it increased dramatically to 40 km2 in Year 3. Home range size varied considerable between months and seasons, but there is no clear relationship between occurrence of fruit-eating and home range size. The group exhibited more fruit-eating and a larger home range size those ofthe gorillas in the Virunga Volcanoes. Their home range size is comparable to that of western gorillas, though Bwindi gorillas consumed less fruit. Home range size and utilization by all gorillas probably depends on a complex relationship between the distribution and abundance of both fruit and herbaceous vegetation and social factors such as male mating tactics.  相似文献   

18.
Testing predictions of socioecological models, specifically that the types of feeding competition and social relationships female primates exhibit are strongly influenced by the distribution, density, and quality of food resources, requires studies of closely related populations of subjects living under different ecological conditions. I examined feeding competition and the resulting female social relationships in mountain gorillas (Gorilla beringei beringei) of Bwindi Impenetrable National Park, Uganda, which has ecological conditions distinctive from those where other gorilla populations live. I observed 1 group of gorillas for 29 mo to examine the proportion of time spent foraging on fruit, the relationship between patch size and occupancy patterns of fruit trees, and agonistic interactions. Patch occupancy time while foraging in fruit trees decreased with increasing number of gorillas in a tree and decreasing tree size, suggesting that fruit trees represent limiting patches and can lead to intragroup scramble competition. Gorillas exhibited higher levels of aggression while feeding on fruit versus other food resources, which indicates intragroup contest competition. I observed a linear dominance hierarchy with no bidirectionality via displacements, and a similar hierarchy via aggression, though a notable proportion of the dyads contained 2-way interactions. However, most aggression was of low intensity (vocalizations) and the recipient typically ignored it. Despite differences in ecological conditions and diet between the Virunga Volcanoes and Bwindi, agonistic relationships among females are largely similar in the 2 populations and are best characterized as dispersal individualistic.  相似文献   

19.
Foods eaten by gorillas (Gorilla beringei) in Bwindi Impenetrable National Park (BINP), Uganda, were analyzed for their nutrient content. The goal of the study was to assess the amounts of fiber, protein, and sugars in the foods eaten by the Bwindi gorillas, and to determine whether condensed tannins and cyanide are present in these foods. A total of 127 food plant parts representing 84 plant species eaten by two groups of Bwindi gorillas were collected, processed, and analyzed for their chemical contents. The Bwindi gorilla ate foods that contain 2-28% crude protein (CP), 21-88% neutral detergent fiber (NDF), 14-60% acid detergent fiber (ADF), 2-42% acid detergent lignin (ADL), and 相似文献   

20.
Data on intraspecific dietary variability has important implications for understanding flexibility in foraging behavior, habitat utilization, population dynamics, and social behavior and may also assist in conservation efforts. We compared food availability and diet of a group of mountain gorillas (Gorilla beringei beringei) at a high altitude site and 2 groups at a low altitude site in Bwindi Impenetrable National Park, Uganda, from September 2001 to August 2002. Plant species diversity was greater at the low altitude site than at the high altitude site. The two groups at the low elevation consumed more plant species (140 species vs. 62 species), and a greater number of fruit species per mo (7 vs. 3 species) and per yr (36 vs. 11 species) than the high altitude group did. Furthermore, each group shared <51% of important fibrous food items in their diet with the 2 other groups. There is no significant difference in the proportion of days fruit remains were found in the dung among groups. Finally, according to Ivlev's electivity index, all groups positively selected the majority of food items in their diets. We attribute a large proportion of dietary variation between locations to differences in fruit availability and plant species composition between sites. Differences between groups at the low altitude site may be due to variation in food profitability—more profitable foods available to choose in the same area—within their overlapping home range, or group traditions. A comparison of our results with the diets of gorillas of the Virunga Volcanoes in Rwanda and Kahuzi-Biega, DRC shows that eastern gorilla populations have highly variable dietary patterns with limited overlap in species consumed among groups and populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号